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What are we going to talk about?

● The language modeling problem
● How do we learn a language model?

○ A quick primer on learning a model via gradient descent
○ The role of training data

● ✨✨ The Transformer ✨✨
○ The two things that make it such an improvement over our previous techniques for language 

modeling
○ More detail about both of those two things

● From language models to large language models
● Large language models for chat (ala ChatGPT)



Quick poll

1. Are you familiar with supervised machine learning? gradient descent?

2. Are you familiar with neural networks?



The language modeling problem

Rank these sentences in the order of plausibility?

1. Jane went to the store.
2. store to Jane went the.
3. Jane went store. 
4. Jane goed to the store.
5. The store went to Jane.
6. The food truck went to Jane. 

How probable is a piece of text? Or what is p(text)
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p(how are you this evening ? has your house ever been burgled ?) = 10-15

p(how are you this evening ? fine , thanks , how about you ?)             = 10-9
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The language modeling problem

A language model answers the question: What is p(text)?

Text is a sequence of symbols: 

Just the chain rule of 
probability– no simplifying 
assumptions!

context



The language modeling problem

[the rest of the vocabulary]

context



Language models of this form can generate text

The ____

The students ____

The students opened ____

The students opened their ____

[the rest of the LM’s vocabulary]

At each timestep, sample a token from the language model’s new probability 
distribution over next tokens. 



In short, predicting which word comes next



Language models play the role of ...

● a judge of grammaticality
○ e.g., should prefer “The boy runs.” to “The boy run.”

● a judge of semantic plausibility
○ e.g., should prefer “The woman spoke.” to “The sandwich spoke.”

● an enforcer of stylistic consistency
○ e.g., should prefer “Hello, how are you this evening? Fine, thanks, how are you?” to 

“Hello, how are you this evening? Has your house ever been burgled?”
● a repository of knowledge (?)

○ e.g., “Barack Obama was the 44th President of the United States”
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Note that this is very difficult to guarantee!



Language models in the news (these days, ChatGPT)

Image taken from Springboard
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We use language models every day
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We use language models every day
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Why language modeling?
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● Machine translation
○ p(strong winds) > p(large winds)

● Spelling correction
○ The office is about fifteen minuets from my house
○ p(about fifteen minutes from)  > p(about fifteen minuets from)

● Speech recognition 
○ p(I saw a van) >> p(eyes awe of an) 

● Summarization, question-answering, handwriting recognition, OCR, etc.



How we learn a language model



Language modeling
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a very large corpus language model



How do we learn a language model?

Estimate probabilities using text data

● Collect a textual corpus
● Find a distribution that maximizes the probability of the corpus – maximum likelihood estimation

A naive solution: count and divide

● Assume we have N training sentences 
● Let x1, x2, …, xn be a sentence, and c(x1, x2, …, xn) be the number of times it appeared in the training data. 
● Define a language model:

No generalization!



Markov assumption
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● We make the Markov assumption: x(t+1) depends only on the preceding n-1 
words

assumption

n-1 words



Markov assumption
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or maybe even



n-gram Language Models

● Question: How to learn a Language Model?
● Answer (pre- Deep Learning): learn an n-gram Language Model!

● Idea: Collect statistics about how frequent different n-grams are and use these 
to predict next word
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“I have a dog whose name is Lucy. I have two cats, they like playing with Lucy.”



unigram probability

● corpus size m = 17
● P(Lucy) = 2/17; P(cats) = 1/17

● Unigram probability: 
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“I have a dog whose name is Lucy. I have two cats, they like playing with Lucy.”



bigram probability
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“I have a dog whose name is Lucy. I have two cats, they like playing with Lucy.”



trigram probability

23

“I have a dog whose name is Lucy. I have two cats, they like playing with Lucy.”



n-gram probability
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“I have a dog whose name is Lucy. I have two cats, they like playing with Lucy.”



Sampling from an n-gram language model
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Sampling from a language model
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Sampling from a language model
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Sampling from a language model
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Neural language models

f(Θ)

I have a dog whose name is Lucy. I have two
A differentiable 
function (e.g. a 
neural network)

cat A distribution over 
the vocabulary



How do we maximize the likelihood? 

The dominant strategy from the past decade:

1. The randomly initialized differentiable function (neural network) takes the 
context as input 

2. Have that function output a probability distribution over the vocabulary
3. Treat the probability of the correct token as your objective to maximize.
4. Or negative log (probability) as your objective to minimize 
5. Differentiate with respect to the parameters, and perform gradient 

descent, or



Intuition of gradient descent

How do I get to the bottom of this river canyon?

Look around me 360∘

Find the direction of steepest slope up

Go the opposite direction
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X



Gradient descent: a throwback to calculus

Q: Given current parameter w, should we make w bigger or smaller to minimize 
our loss? 
A: Move w in the reverse direction from the slope of the function
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Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller? 
A: Move w in the reverse direction from the slope of the function
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Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller? 
A: Move w in the reverse direction from the slope of the function
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Now let’s imagine 2 dimensions, w and b

Visualizing the (negative) gradient vector
at the red point 

It has two dimensions shown 
in the x-y plane
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Key difference from our motivating scenario: in practice, calculating the exact 
gradient is really time-consuming. 

So… we estimate the gradient using samples of data.

Gradient Descent → Stochastic Gradient Descent
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✨✨ The Transformer ✨✨



Why did the transformer make such a big difference for 
language modeling?

It allowed for faster learning of more model parameters on more data (by allowing 
parallel computation on GPUs!)



A brief aside about some visual shorthand I’ll be using



A 3-layer LSTM’s calculations for an input of 10 tokens

(For more on computing 
gradients via 
backpropagation, see 
colah’s blog post on this 
topic)

http://colah.github.io/posts/2015-08-Backprop/
http://colah.github.io/posts/2015-08-Backprop/


One layer of the transformer architecture (Vaswani et al. 
2017)



One layer of the transformer architecture (Vaswani et al. 
2017)

ok but how does this 
mess help anything 



Comparing training times: how many functions do we need to backpropagate through?



Comparing training times: how many functions do we need to backpropagate through?

**Transformers parallelize a lot of the computations that LSTMs make us do in sequence**



Comparing training times: how many functions do we need to backpropagate through?

**Transformers parallelize a lot of the computations that LSTMs make us do in sequence**
And (a very specific, but nonempty, subset of) you can therefore train a transformer on a 

ridiculously large amount of data in a way that you cannot for an LSTM.



What kind of function can take in a variable number 
of inputs like that?



Attention mechanisms



Building up to the attention mechanism

What about an average?

But we probably don’t want to weight all input 
vectors equally…

How about a weighted average?

Great idea! How can we automatically 
decide the weights for a weighted average 
of the input vectors?

What kind of function can take in a 
variable number of inputs?



A simple form of attention (adapted from Bahdanau et al. 
2014)

Parameter vector

(Variable number 
of) input vectors

Computed how?
1. Dot product between param vector 
and each input vector
2. Softmax the set of resulting scalars.

M
ultiply

M
ultiply

M
ultiply

M
ultiply

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473


Pros and cons

Pros:

● We have a function that can compute a weighted 
average (largely) in parallel of an arbitrary number 
of vectors!

● The parameters determining what makes it into our 
output representation are learned

Cons:

● We’re also hoping to produce n different output 
token representations… and this just produces 
one…



Enter “self attention”

“What if instead of comparing each vector of the 
sequence to a single learned vector, we compared 

the sequence to itself?”



Queries Keys Values

Q K V



Q

Q K V

V

K



Our function is still made up almost entirely of matrix multiplications! Which are very 
parallelizable ( → efficient!)

We still learn fixed-size blocks of parameters that can be used for a sequence with 
an arbitrary length

Our function is still made up almost entirely of matrix multiplications! Which are very 
parallelizable ( → efficient!)

We still learn fixed-size blocks of parameters that can be used for a sequence with 
an arbitrary length

We’re now capable of producing n different new token representations!

Hooray for self attention!

Our function is still made up almost entirely of matrix multiplications! Which are very 
parallelizable ( → efficient!)



Self attention is the key component of the transformer



That’s all I’ve got! Questions?



A brief aside: let’s talk about data

What does each instance of data is contribute?

Some of the nudges to a model’s parameters over the course of training.

Which data is used to train modern large language models?

Web text

… it’s kind of tough to give a more specific description than that.

See Dodge et al. EMNLP ‘21, “Documenting Large Webtext Corpora: A Case 
Study on the Colossal Clean Crawled Corpus”

Also see Gururangan et al. EMNLP ‘22, “Whose Language Counts as High 
Quality? Measuring Language Ideologies in Text Data Selection”

https://aclanthology.org/2021.emnlp-main.98/
https://aclanthology.org/2021.emnlp-main.98/
https://aclanthology.org/2022.emnlp-main.165/
https://aclanthology.org/2022.emnlp-main.165/


Large Language Models

The transformer model allows fast parallel computations on many GPUs (large 
amounts of compute)

It allows training on large amounts of data (think the whole internet worth of text).

It allows adding many and many layers in the model (large model)

A large language model is a language model with a large number of parameters, 
trained on large amounts of data, for long period of time.



Why large language models?

● Scaling the models, compute, and data leads in increase in performance

● Emergent properties at scale (Wei et al 2022)
○ Large models (with 7-100B+ parameters) suddenly become capable of performing 

tasks they weren’t able to do when small (such as 1B or small).



Training the model to chat

A simple language model (also called a pretrained model) is not equipped to chat 
with an end user, like ChatGPT.

ChatGPT (and many other models) are further trained on supervised data to follow 
instructions.



Instruction Tuning

● Collect a large dataset of instruction following examples of the form 
○ <instruction> <input> <output>
○ For example,
○ Summarize this news article [ARTICLE] [SUMMARY]
○ Answer this question [QUESTION] [ANSWER]
○ Predict the sentiment of this review [REVIEW] [SENTIMENT]....

● This is also a text corpus but in a very specific format.

● Continue training the model on this dataset (again using the same training objective)



Aligning the model to humans’ preferences

● Chat based on models are supposed to converse with humans

● Why not learn from humans’ feedback 

● Basic idea: Model samples multiple outputs – users rank them based on their 
preference
○ Convert user preferences into reward scores – more preferred output has higher 

reward
○ Treat an LLM like an agent and use RL to maximize this reward (RLHF)



So what does this mean ChatGPT is good at?



Some aspects of producing answers that might fall under 
that category: 

● Writing in specific styles (that have appeared in the model’s training data)
● Grammatical consistency
● Generating boilerplate sentences that often appear at the beginning, end of 

emails, etc.
● Fluency



What are some problems that ChatGPT’s 
training leaves it prone to?



Inaccuracies

● The language model doesn’t “plan” what it will say in advance

● The model doesn’t store facts, just outputs plausible looking sentences which 
may or may not be factual



Lack of source attribution

Just like the model doesn’t store facts… it doesn’t store sources.



Outputs that reflect social biases

An example from machine translation a few years ago:



Thanks! Questions?


