CSE 473:
Artificial Intelligence

Hanna Hajishirzi

Search
(Un-informed, Informed Search)

= g [

,,,,,

by

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer

Announcements

o PS1
o Due Oct 20th

o Office hours:
o Check the website

o HW1 will be released soon.
o Release: Oct 7, Due: Oct. 13t -> Oct 16th

Recap: General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

Uniform Cost Issues

o Remember: UCS explores increasing
cost contours

o The good: UCS is complete and
optimal!

o The bad:

o Explores options in every “direction”
o No Iinformation about goal location

o We'll fix that soon!

Up next: Informed Search

o Uninformed Search = |nformed Search
o DFS = Heuristics
o BFS » Greedy Search
o UCS = A* Search

= Graph Search

nofe. [\ GoAl!

Search Heuristics

= A heuristic Is:

A function that estimates how close a state is to a goal
Designed for a particular search problem
Pathing?

Examples: Manhattan distance, Euclidean distance for
pathing

r@

Heuriski - Tron \

——

L

e ——

=
Heuristi - Tron J

Example: Heuristic Function

Arad

] Vaslui

Timisoara

142

11 Pitesti

98

] Hirsova

86

] Mehadia Urziceni

75
Bucharest

Dobreta [

L Eforie
] Giurgiu

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

@ra ight—line distance \

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

J

h(x)

Greedy Search

Greedy Search

[] Vaslui

o Expand the node that seems closest... ==

[] Hirsova

86
~ Arad

Dobreta [J

Eforie

Sibiu

329

366 380 193
253 0

o Is it optimal?
o No. Resulting path to Bucharest is not the shortest!

Greedy Search

o Strategy: expand a node that you think is
closest to a goal state

o Heuristic: estimate of distance to nearest
goal for each state

o A common case:

® Beslt—first takes you straight to the (wrong)
goa

o Worst-case: like a badly-guided DFS

Video of Demo Contours Greedy (Empty)

8 OO

Video of Demo Contours Greedy (Pacman Small
Maze)

A* Search

A* Search

Combining UCS and Greedy

o Uniform-cost orders by path cost, or backward cost g(n)
o Greedy orders by goal proximity, or forward cost h(n)

o A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg

When should A* terminate?

o Should we stop when we enqueue a goal?

h=2

h=1

o No: only stop when we dequeue a goal

—_—

S->B->G 505
S->A->G 404

Is A* Optimal?

o What went wrong?
o Actual bad goal cost < estimated good goal cost
o We need estimates to be less than actual costs!

ldea: Admissibility

Heuristi - Tron @

Inadmissible (pessimistic) heuristics Admissible (optimistic) heuristics
break optimality by trapping slow down bad plans but
good plans on the fringe never outweigh true costs

Admissible Heuristics
o A heuristic h is admissible (optimistic) If:
0 < h(n) < h*(n)

where h*(n) is the true cost to a nearest goal

o Examples:
- - O.O

o Coming up with admissible heuristics is most of what's
Involved In using A* In practice.

Properties of A*

Uniform-Cost

b

A*

UCS vs A* Contours

o Uniform-cost expands equally in

all “directions” @
St Goal

o A* expands mainly toward the

goal, but does hedge its bets to
ensure optimality StarGoaI

Comparison

SCORE: 0 SCORE: 0 SCORE: 0

Greedy Uniform Cost A*

Video of Demo Contours (Empty) -- UCS

® OO Search Strategies Demo

Video of Demo Contours (Empty) -- Greedy

® OO Search Strategies Demo

Video of Demo Contours (Empty) — A*

® OO Search Strategies Demo

A*. Summary

A*. Summary

o A* uses both backward costs and (estimates of) forward
costs

o A* Is optimal with admissible (optimistic) heuristics

o Heuristic design Is key: often use relaxed problems

Video of Demo Empty Water Shallow/Deep
— Guess Algorithm

file Edit Nawigste Search Project Run Window |elp

- - B-0 Q> B ¥ Wr prirt oo 74 (B By &° Tear
a’ 1 search -- plan biny astar ’ o o
o a 2 seaech -« plan tny ucs
! @& 3 search demo empty =
@ 4 search -- contours greedy vs ucs (greedy)
e- S search -« cantours greedy vs ucs (ucs)
& 6 search -- contours greedy vs ucs (astar)
& T march -« greedy bad
e" 8 search - greedy good
& 9search demc moze
& sesrch ut?-c costs
Run As ’
Run Corfigurations..
Organize Favorites,,

& Console | X M| w Gl 4 @~ 0
<terminated> 1 5

Tozal cosr: 27

of nodea expanded: 182

Nunber of unigue nodes expanded: 18

Pacman emerges victorious! Score: =
{'nomiK1lla’: [0], 'resulra’: ['Win'), ‘numMovea': [27)], ‘scarea’: [573 1

11:54 AM

Pr ol @

Creating Heuristics

YOU GOT

HEURISTIL
UFGRADE!

Creating Admissible Heuristics

o Most of the work In solving hard search problems optimally is In
coming up with admissible heuristics

o Often, admissible heuristics are solutions to relaxed problems,
where new actions are available

o Inadmissible heuristics are often useful too

O O O O O

Example: 8 Puzzle

7 2 |4 3|71 12
5 6 L2[%[5 3 45
8 3 1 SISl 6 6 7 8

-7,

Start State Actions Goal State
What are the states?
How many states? Admissibleh
ions? o
What are the actions” euristics?

How many successors from the start state?
What should the costs be?

8 Puzzle |

o Heuristic: Number of tiles misplaced
o Why is it admissible?

o h(start) =8

o This Is a relaxed-problem heuristic

Start State

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
UCS 112 6,300 3.6 x10°
TILES 13 39 227

Statistics from Andrew Moore

O

O

O

O

What if we had an easier 8-puzzle
where any tile could slide any direction
at any time, ignoring other tiles?

Total Manhattan distance

Why is it admissible?

h(start) =3 +1+2+..=

18

8 Puzzle Il

Start State

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
TILES 13 39 227
MANHATTAN 12 25 73

8 Puzzle Il

o How about using the actual cost as a heuristic?
o Would it be admissible?

o Would we save on nodes expanded?
o What's wrong with it? v;? NNNNN ,t conc |

o With A*: a trade-off between quality of estimate and work per node

o As heuristics get closer to the true cost, you will expand fewer nodes but
usually do more work per node to compute the heuristic itself

Example: Pancake Problem

N

Cost: Number of pancakes flipped

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES
Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*T
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978
Revised 28 August 1978

For a permutation o of the integers from 1 to n, let f(o) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(o)
for all ¢ in (the symmetric group) S,. We show that f(n)=(5n +5)/3, and that f(n)=17n/16 for
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2—-1=g(n)=2n+3.

Example: Pancake Problem

State space graph with costs as weights

—

I

N
‘
w

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

o Dominance: h, 2 h_ if
Vn : hg(n) > he(n)

o Heuristics form a semi-lattice:
o Max of admissible heuristics is admissible

h(n) = maz(ha(n), hp(n))

o Trivial heuristics

o Bottom of lattice is the zero heuristic (what
does this give us?)

o Top of lattice is the exact heuristic

exact
|

max(hg, hy)

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

o A'is an optimal goal node

o B is a suboptimal goal node
o his admissible

Claim:

o A will exit the fringe before B

Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe

o Some ancestor n of A is on the
fringe, too (maybe Al)
o Claim: n will be expanded before B O

1. f(n) is less or equal to f(k
\

f(n) =g(n) + h(n) Definition of f-cost
f(n) < g(A) Admissibility of h

(A) = f(A) h =0 at a goal
. Y

~a_

Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe

o Some ancestor n of A is on the
fringe, too (maybe Al)
o Claim: n will be expanded before B
1. f(n)is less or equal to f(A)

2. f(A)is less than f(&x
~

g(A) < g(B) B is suboptimal

f(A) < f(B) h =0 at a goal
N\ ,

Optimality of A* Tree Search: Blocking

Proof:

O

O

O

O

Imagine B is on the fringe

Some ancestor n of A Is on the
fringe, too (maybe Al)

Claim: n will be expanded before B
1. f(n)is less or equal to f(A)

2. f(A) is less than f(B)
3. n expands before

All ancestors of A expand before B
A expands before B
A* search is optimal

f(n) < f(A) < f(B) J

Graph Search

Tree Search: Extra Work!

o Failure to detect repeated states can cause exponentially more

WQ
/ State Graph \

-~

Search Tree

- .--""-\.
”~ Ny
”~ S
o~ .,
.-""‘ \‘\‘-—
.

~

Graph Search

o In BFS, for example, we shouldn’t bother expanding the circled nodes
(why?)

d € P

N |

b/m h q
| /@ |
f

@ /\

q G

r

|

f
PR

P q X
G a

g

C
I
a

O

O

O

O

O

Graph Search

ldea: never expand a state twice

How to implement:

o Tree search + set of expanded states (“closed set”)
o Expand the search tree node-by-node, but...

o Before expanding a node, check to make sure its state has
never been expanded before

o If not new, skip it, if new add to closed set

Important: store the closed set as a set, not a list
Can graph search wreck completeness? Why/why not?

How about optimality?

A* Graph Search Gone Wrong?

State space graph Search tree
L
—€A(2+1) ~C(3+1)

| |
G (5+0) G (6+0)

Closed SetSB C A

Consistency of Heuristics

o Main idea: estimated heuristic costs < actual costs

o Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from Ato G

o Consistency: heuristic “arc” cost < actual cost for each

arc

h(A) — h(C) < cost(Ato C)
o Consequences of consistency:

o The f value along a path never decreases

h(A) < cost(A to C) + h(C)

o A* graph search is optimal

A* Graph Search

o Sketch: consider what A* does with a
consistent heuristic:

o Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

o Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

o Result: A* graph search is optimal

Optimality of A* Search

o With a admissible heuristic, Tree A* is optimal.
o With a consistent heuristic, Graph A* is optimal.
o With h=0, the same proof shows that UCS Is optimal.

Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure
fringe <— INSERT(MAKE-NODE(INITIAL-STATE|problem]), fringe)
loop do
if fringe is empty then return failure
node <— REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node|) then return node

for child-node in EXPAND(STATE|[node|, problem) do
fringe <— INSERT(child-node, fringe)
end
end

function Graru-SEARCH(problem, fringe) return a solution, or failure
closed < an empty set
fringe <~ INSERT(MAKE-NODE(INITIAL-STATE|problem]), fringe)
loop do
if fringe 1s empty then return failure
node <~ REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node

if STATE[node| is not in closed then
add STATE[node| to closed
for child-node in EXPAND(STATE[node|, problem) do
fringe < INSERT(child-node, fringe)
end
end

A* Applications

o Video games

o Pathing / routing problems

o Resource planning problems
o Robot motion planning

o Language analysis

o Machine translation

o Speech recognition

O ...

A* In Recent Literature

o Joint A* CCG Parsing and T
Semantic Role Labeling (EMLN'15) e

S\NP (S\NP)/NP (S\NP)/NP

|

ARG(‘)%ARGI &
He reports refused

Imageditle

7 Food Web Food®@Veb

Arrows

o Diagram
Understanding (ECCV'17)

Red-breasted

nuthatch et

Pougoss. § ML
Intraobjectlinkage squirre! Mule deer
T Y S

\ &Y SectionTitle
Producers
and
Decomposers

MultipleEChoiceMuestion: From@he@bovefoodivebRiagram,Bvhatvilldead®@oBniAncrease@n®he@opulation
off@leer ?Bh)Ancreasedndiontb)Aecrease@ndlantsi)@ ecreaselhiion®)dncreaseAntpika

o NeuroLogic Decoding (NAACL'22)

The One Queue

o All these search algorithms are
the same except for fringe
strategies

o Conceptually, all fringes are priority
gueues (i.e. collections of nodes
with attached priorities)

o Practically, for DFS and BFS, you
can avoid the log(n) overhead from
an actual priority queue, by using
stacks and gqueues

o Can even code one implementation
that takes a variable queuing object

Search and Models

o Search operates over
models of the world

o The agent doesn't
actually try all the plans
out in the real world!

o Planning is all “in
simulation”

o Your search is only as
good as your models...

Search Gone Wrong?

UOIN

- MAPQVEST.

|

ICELAND

[®PH
L)
eq

7.-RUSSIA
: <. Helsinki Tver
Telingfers

=

Riga b
Vo 2. Smelenst
1 Vilnius @}:" Ty

bl [
Bizty=tok é{ BELARus_ru'

POLAND i~ Kievy

)

s i = 1._|_1|_1|_|
~7 200 400 &00

~ o
%0.9’ S

Start: Haugesund, Rogaland, Morway
End: Trondheim, Ser-Trendelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

» 2005 MapQ .com, Inc.

nrk.no/alltidmoro

Video of Demo Empty UCS

® OO Search Strategies Demo

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
1)

‘® 00 Search Strategies Demo i

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
2)

®00 —— Search Strategies Demo

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
3)

®00 —— Search Strategies Demo [

