
CSE 473:
Artificial Intelligence

Hanna Hajishirzi

slides adapted from

Dan Klein, Pieter Abbeel ai.berkeley.edu

And Dan Weld, Luke Zettlemoyer

Search

(Un-informed, Informed Search)

Announcements

o PS1

oDue Oct 20th

o Office hours:

oCheck the website

o HW1 will be released soon.

oRelease: Oct 7, Due: Oct. 13th -> Oct 16th

Recap: General Tree Search

Uniform Cost Issues

o Remember: UCS explores increasing
cost contours

o The good: UCS is complete and
optimal!

o The bad:
o Explores options in every “direction”

o No information about goal location

o We’ll fix that soon!

Start Goal

…

c  3

c  2

c  1

Up next: Informed Search

o Uninformed Search

o DFS

o BFS

o UCS

 Informed Search

 Heuristics

 Greedy Search

 A* Search

 Graph Search

Search Heuristics

 A heuristic is:
 A function that estimates how close a state is to a goal

 Designed for a particular search problem

 Pathing?

 Examples: Manhattan distance, Euclidean distance for

pathing

10

5

11.2

Example: Heuristic Function

h(x)

Greedy Search

Greedy Search

o Expand the node that seems closest…

o Is it optimal?
o No. Resulting path to Bucharest is not the shortest!

Greedy Search

o Strategy: expand a node that you think is
closest to a goal state
o Heuristic: estimate of distance to nearest

goal for each state

o A common case:
o Best-first takes you straight to the (wrong)

goal

o Worst-case: like a badly-guided DFS

…
b

…
b

Video of Demo Contours Greedy (Empty)

Video of Demo Contours Greedy (Pacman Small

Maze)

A* Search

A* Search

UCS Greedy

A*

Combining UCS and Greedy

o Uniform-cost orders by path cost, or backward cost g(n)

o Greedy orders by goal proximity, or forward cost h(n)

o A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G

h=5

h=6

h=2

1

8

1

1

2

h=6
h=0

c

h=7

3

e h=1

1

Example: Teg

Grenager

S

a

b

c

ed

dG

G

g = 0

h=6
g = 1

h=5

g = 2

h=6

g = 3

h=7

g = 4

h=2

g = 6

h=0

g = 9

h=1

g = 10

h=2

g = 12

h=0

When should A* terminate?

o Should we stop when we enqueue a goal?

o No: only stop when we dequeue a goal

S

B

A

G

2

3

2

2

h = 1

h = 2

h = 0h = 3

S 0 3 3

g h +

S->A 2 2 4

S->B 2 1 3

S->B->G 5 0 5

S->A->G 4 0 4

Is A* Optimal?

o What went wrong?

o Actual bad goal cost < estimated good goal cost

o We need estimates to be less than actual costs!

A

GS

1 3

h = 6

h = 0

5

h = 7

g h +

S 0 7 7

S->A 1 6 7

S->G 5 0 5

Idea: Admissibility

Inadmissible (pessimistic) heuristics

break optimality by trapping

good plans on the fringe

Admissible (optimistic) heuristics

slow down bad plans but

never outweigh true costs

Admissible Heuristics

o A heuristic h is admissible (optimistic) if:

where is the true cost to a nearest goal

o Examples:

o Coming up with admissible heuristics is most of what’s

involved in using A* in practice.

15 11.5
0.0

Properties of A*

…
b

…
b

Uniform-Cost A*

UCS vs A* Contours

o Uniform-cost expands equally in

all “directions”

o A* expands mainly toward the

goal, but does hedge its bets to

ensure optimality

Start Goal

Start Goal

Comparison

Greedy Uniform Cost A*

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) – A*

A*: Summary

A*: Summary

o A* uses both backward costs and (estimates of) forward

costs

o A* is optimal with admissible (optimistic) heuristics

o Heuristic design is key: often use relaxed problems

Video of Demo Empty Water Shallow/Deep

– Guess Algorithm

Creating Heuristics

Creating Admissible Heuristics

o Most of the work in solving hard search problems optimally is in

coming up with admissible heuristics

o Often, admissible heuristics are solutions to relaxed problems,

where new actions are available

o Inadmissible heuristics are often useful too

15

366

Example: 8 Puzzle

o What are the states?

o How many states?

o What are the actions?

o How many successors from the start state?

o What should the costs be?

Start State Goal StateActions

Admissibleh

euristics?

8 Puzzle I

o Heuristic: Number of tiles misplaced

o Why is it admissible?

o h(start) =

o This is a relaxed-problem heuristic

8

Average nodes expanded
when the optimal path has…

…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore

8 Puzzle II

o What if we had an easier 8-puzzle
where any tile could slide any direction
at any time, ignoring other tiles?

o Total Manhattan distance

o Why is it admissible?

o h(start) = 3 + 1 + 2 + … = 18
Average nodes expanded
when the optimal path has…

…4 steps …8 steps …12 steps

TILES 13 39 227

MANHATTAN 12 25 73

Start State Goal State

8 Puzzle III

o How about using the actual cost as a heuristic?

o Would it be admissible?

o Would we save on nodes expanded?

o What’s wrong with it?

o With A*: a trade-off between quality of estimate and work per node

o As heuristics get closer to the true cost, you will expand fewer nodes but

usually do more work per node to compute the heuristic itself

Example: Pancake Problem

Cost: Number of pancakes flipped

Example: Pancake Problem

Example: Pancake Problem

3

2

4

3

3

2

2

2

4

State space graph with costs as weights

3

4

3

4

2

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

4

3

0

2

3

3

3

4

4

3

4

4

4

h(x)

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

o Dominance: ha ≥ hc if

o Heuristics form a semi-lattice:

o Max of admissible heuristics is admissible

o Trivial heuristics

o Bottom of lattice is the zero heuristic (what

does this give us?)

o Top of lattice is the exact heuristic

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

o A is an optimal goal node

o B is a suboptimal goal node

o h is admissible

Claim:

o A will exit the fringe before B

…

Optimality of A* Tree Search: Blocking

Proof:

o Imagine B is on the fringe

o Some ancestor n of A is on the

fringe, too (maybe A!)

o Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

Definition of f-cost

Admissibility of h

…

h = 0 at a goal

Optimality of A* Tree Search: Blocking

Proof:

o Imagine B is on the fringe

o Some ancestor n of A is on the

fringe, too (maybe A!)

o Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

2. f(A) is less than f(B)

B is suboptimal

h = 0 at a goal

…

Optimality of A* Tree Search: Blocking

Proof:

o Imagine B is on the fringe

o Some ancestor n of A is on the

fringe, too (maybe A!)

o Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

2. f(A) is less than f(B)

3. n expands before B

o All ancestors of A expand before B

o A expands before B

o A* search is optimal

…

Graph Search

Tree Search: Extra Work!

o Failure to detect repeated states can cause exponentially more

work.

Search TreeState Graph

Graph Search

o In BFS, for example, we shouldn’t bother expanding the circled nodes

(why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Graph Search

o Idea: never expand a state twice

o How to implement:

o Tree search + set of expanded states (“closed set”)

o Expand the search tree node-by-node, but…

o Before expanding a node, check to make sure its state has

never been expanded before

o If not new, skip it, if new add to closed set

o Important: store the closed set as a set, not a list

o Can graph search wreck completeness? Why/why not?

o How about optimality?

A* Graph Search Gone Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

State space graph Search tree

Closed Set:S B C A

Consistency of Heuristics

o Main idea: estimated heuristic costs ≤ actual costs

o Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

o Consistency: heuristic “arc” cost ≤ actual cost for each

arc

h(A) – h(C) ≤ cost(A to C)

o Consequences of consistency:

o The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

o A* graph search is optimal

3

A

C

G

h=4 h=1
1

h=2

A* Graph Search

o Sketch: consider what A* does with a
consistent heuristic:

o Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

o Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

o Result: A* graph search is optimal

…

f  3

f  2

f  1

Optimality of A* Search

o With a admissible heuristic, Tree A* is optimal.

o With a consistent heuristic, Graph A* is optimal.

o With h=0, the same proof shows that UCS is optimal.

Pseudo-Code

A* Applications

o Video games

o Pathing / routing problems

o Resource planning problems

o Robot motion planning

o Language analysis

o Machine translation

o Speech recognition

o …

A* in Recent Literature

o Joint A* CCG Parsing and

Semantic Role Labeling (EMLN’15)

o Diagram

Understanding (ECCV’17)

o NeuroLogic Decoding (NAACL’22)

A Diagram Is Worth A Dozen Images 9

Arrowheads

Arrows

Text

Blobs

Interobject	Linkage

Tree

Intraobject	Linkage

Section	Title

Food	Web

Image	Title

Intraobject	Label

Tree

FoodWeb

From	the	above	food	web	diagram,	what	will	lead	to	an	increase	in	the	population
of	deer?	a)	increase	in	lion	b)	decrease	in	plants	c)	decrease	in	lion	d)	increase	in	pika

Multiple	Choice	Question:

F ig. 4. An image from the A I2D dataset showing some of its rich annotat ions and a

mult iple choice quest ion.

15000 mult iple choice quest ions associated to the diagrams. We divide the A I2D

dataset into a t rain set with 4000 images and a blind test set with 1000 images

and report our numbers on this blind test set .

The images are collected by scraping Google Image Search with seed terms

derived from the chapter t it les in Grade 1 - 6 science textbooks. Each image is

annotated using Amazon Mechanical Turk (AMT). Annotat ing each image with

rich annotat ions such as ours, is a rather complicated task and must be broken

down into several phases to maximize the level of agreement obtained from turk-

ers. Also, thesephasesneed to becarried out sequent ially to avoid conflicts in the

annotat ions. The phases involve (1) annotat ing the four low-level const ituents,

(2) categorizing the text boxes into one of four categories: relat ionship with the

canvas, relat ionship with a diagrammat ic element , int ra-object relat ionship and

inter-object relat ionship, (3) categorizing the arrows into one of three categories:

int ra-object relat ionship, inter-object relat ionship or neither, (4) labelling int ra-

object linkage and inter-object linkage relat ionships. For this step, we display

arrows to turkers and have them choose the origin and dest inat ion const ituents

in the diagram, (5) labelling int ra-object label, int ra-object region label and ar-

row descriptor relat ionships. For this purpose, we display text boxes to turkers

and have them choose the const ituents related to it , and finally (6) mult iple

choice quest ions with answers, represent ing grade school science quest ions are

then obtained for each image using AMT. Figure 4 shows some of the rich an-

notat ions obtained for an image in the dataset along with one of its associated

mult iple choice quest ions.

The One Queue

o All these search algorithms are

the same except for fringe

strategies

o Conceptually, all fringes are priority

queues (i.e. collections of nodes

with attached priorities)

o Practically, for DFS and BFS, you

can avoid the log(n) overhead from

an actual priority queue, by using

stacks and queues

o Can even code one implementation

that takes a variable queuing object

Search and Models

o Search operates over

models of the world

o The agent doesn’t

actually try all the plans

out in the real world!

o Planning is all “in

simulation”

o Your search is only as

good as your models…

Search Gone Wrong?

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part

1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part

2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part

3)

