CSE 473: Artificial Intelligence

Hanna Hajishirzi

Search
(Un-informed, Informed Search)

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer
Announcements

- **PS1**
 - Due Oct 20th

- **Office hours:**
 - Check the website

- **HW1 will be released soon.**
 - Release: Oct 7, Due: Oct. 13th -> Oct 16th
Recap: General Tree Search

function Tree-Search(problem, strategy) returns a solution, or failure
 initialize the search tree using the initial state of problem
 loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
 end
Uniform Cost Issues

- Remember: UCS explores increasing cost contours
- The good: UCS is complete and optimal!
- The bad:
 - Explores options in every “direction”
 - No information about goal location
- We’ll fix that soon!
Up next: Informed Search

- Uninformed Search
 - DFS
 - BFS
 - UCS

- Informed Search
 - Heuristics
 - Greedy Search
 - A* Search
 - Graph Search
A heuristic is:

- A function that *estimates* how close a state is to a goal
- Designed for a particular search problem
- Pathing?
- Examples: Manhattan distance, Euclidean distance for pathing
Example: Heuristic Function $h(x)$
Greedy Search
Greedy Search

- Expand the node that seems closest...

- Is it optimal?
 - No. Resulting path to Bucharest is not the shortest!
Greedy Search

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

- A common case:
 - Best-first takes you straight to the (wrong) goal

- Worst-case: like a badly-guided DFS
Video of Demo Contours Greedy (Empty)
Video of Demo Contours Greedy (Pacman Small Maze)
A* Search
Combining UCS and Greedy

- **Uniform-cost** orders by path cost, or *backward cost* $g(n)$
- **Greedy** orders by goal proximity, or *forward cost* $h(n)$

- **A* Search** orders by the sum: $f(n) = g(n) + h(n)$

Example: Teg
When should A* terminate?

- Should we stop when we enqueue a goal?
 - No: only stop when we dequeue a goal
Is A* Optimal?

- What went wrong?
 - Actual bad goal cost < estimated good goal cost
 - We need estimates to be less than actual costs!
Idea: Admissibility

Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe.

Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs.
Admissible Heuristics

- A heuristic h is **admissible** (optimistic) if:

$$0 \leq h(n) \leq h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal.

- Examples:

- Coming up with admissible heuristics is most of what’s involved in using A* in practice.
Properties of A*

Uniform-Cost

A*
UCS vs A* Contours

- Uniform-cost expands equally in all “directions”

- A* expands mainly toward the goal, but does hedge its bets to ensure optimality
Comparison

Greedy

Uniform Cost

A*
Video of Demo Contours (Empty) -- UCS
Video of Demo Contours (Empty) -- Greedy
Video of Demo Contours (Empty) – A*
A*: Summary
A*: Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible (optimistic) heuristics
- Heuristic design is key: often use relaxed problems
Video of Demo Empty Water Shallow/Deep
– Guess Algorithm
Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics.

- Often, admissible heuristics are solutions to relaxed problems, where new actions are available.

- Inadmissible heuristics are often useful too.
Example: 8 Puzzle

- What are the states?
- How many states?
- What are the actions?
- How many successors from the start state?
- What should the costs be?

Admissible heuristics?
8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- $h(\text{start}) = 8$
- This is a *relaxed-problem* heuristic

Start State

```
7 2 4
5 6
8 3 1
```

Goal State

```
1 2
3 4 5
6 7 8
```

Average nodes expanded when the optimal path has...

<table>
<thead>
<tr>
<th>Steps</th>
<th>UCS</th>
<th>TILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>...4 steps</td>
<td>112</td>
<td>13</td>
</tr>
<tr>
<td>...8 steps</td>
<td>6,300</td>
<td>39</td>
</tr>
<tr>
<td>...12 steps</td>
<td>3.6×10^6</td>
<td>227</td>
</tr>
</tbody>
</table>

Statistics from Andrew Moore
8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?

- Total Manhattan distance

- Why is it admissible?

- \(h(\text{start}) = 3 + 1 + 2 + \ldots = 18 \)

<table>
<thead>
<tr>
<th>Average nodes expanded when the optimal path has...</th>
<th>...4 steps</th>
<th>...8 steps</th>
<th>...12 steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>TILES</td>
<td>13</td>
<td>39</td>
<td>227</td>
</tr>
<tr>
<td>MANHATTAN</td>
<td>12</td>
<td>25</td>
<td>73</td>
</tr>
</tbody>
</table>
How about using the *actual cost* as a heuristic?
- Would it be admissible?
- Would we save on nodes expanded?
- What’s wrong with it?

With A*: a trade-off between quality of estimate and work per node
- As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself
Example: Pancake Problem

Cost: Number of pancakes flipped
Example: Pancake Problem

BOUND FOR SORTING BY PREFIX REVERSAL

William H. GATES
Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*†
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978
Revised 28 August 1978

For a permutation σ of the integers from 1 to n, let $f(\sigma)$ be the smallest number of prefix reversals that will transform σ to the identity permutation, and let $f(n)$ be the largest such $f(\sigma)$ for all σ in (the symmetric group) S_n. We show that $f(n) \leq (5n + 5)/3$, and that $f(n) \geq 17n/16$ for n a multiple of 16. If, furthermore, each integer is required to participate in an even number of reversed prefixes, the corresponding function $g(n)$ is shown to obey $3n/2 - 1 \leq g(n) \leq 2n + 3$.

Example: Pancake Problem

State space graph with costs as weights
Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

\[h(x) \]
Semi-Lattice of Heuristics
Trivial Heuristics, Dominance

- Dominance: $h_a \geq h_c$ if
 \[\forall n : h_a(n) \geq h_c(n) \]

- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible
 \[h(n) = \max(h_a(n), h_b(n)) \]

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic
Optimality of A* Tree Search
Optimality of A* Tree Search

Assume:
- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:
- A will exit the fringe before B
Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 1. $f(n)$ is less or equal to $f(A)$

\[f(n) = g(n) + h(n) \quad \text{Definition of f-cost} \]
\[f(n) \leq g(A) \quad \text{Admissibility of h} \]
\[g(A) = f(A) \quad h = 0 \text{ at a goal} \]
Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 1. $f(n)$ is less or equal to $f(A)$
 2. $f(A)$ is less than $f(B)$

\[
g(A) < g(B) \quad \text{B is suboptimal}\]
\[
f(A) < f(B) \quad \text{h = 0 at a goal}\]
Optimality of A* Tree Search: Blocking

Proof:
- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 1. $f(n)$ is less or equal to $f(A)$
 2. $f(A)$ is less than $f(B)$
 3. n expands before B
- All ancestors of A expand before B
- A expands before B
- A* search is optimal

$f(n) \leq f(A) < f(B)$
Graph Search
Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work.

State Graph

- A
- B
- C
- D

Search Tree

- A
 - B
 - C
 - C
 - B
 - C
 - C
 - C
 - C
 - C
In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)
Graph Search

- Idea: never expand a state twice

- How to implement:
 - Tree search + set of expanded states (“closed set”)
 - Expand the search tree node-by-node, but…
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set

- Important: store the closed set as a set, not a list

- Can graph search wreck completeness? Why/why not?

- How about optimality?
A* Graph Search Gone Wrong?

State space graph

Search tree

Closed Set: S B C A
Consistency of Heuristics

- **Main idea:** estimated heuristic costs ≤ actual costs
 - **Admissibility:** heuristic cost ≤ actual cost to goal
 \[h(A) \leq \text{actual cost from A to G} \]
 - **Consistency:** heuristic “arc” cost ≤ actual cost for each arc
 \[h(A) - h(C) \leq \text{cost(A to C)} \]

- **Consequences of consistency:**
 - The f value along a path never decreases
 \[h(A) \leq \text{cost(A to C)} + h(C) \]
 - A* graph search is optimal
A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
 - Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
 - Result: A* graph search is optimal
Optimality of A* Search

- With a admissible heuristic, Tree A* is optimal.
- With a consistent heuristic, Graph A* is optimal.
- With \(h=0 \), the same proof shows that UCS is optimal.
Pseudo-Code

function Tree-Search(problem, fringe) return a solution, or failure
 fringe ← Insert(make-node(initial-state[problem]), fringe)
 loop do
 if fringe is empty then return failure
 node ← Remove-Front(fringe)
 if Goal-Test(problem, state[node]) then return node
 for child-node in Expand(state[node], problem) do
 fringe ← Insert(child-node, fringe)
 end
end

function Graph-Search(problem, fringe) return a solution, or failure
 closed ← an empty set
 fringe ← Insert(make-node(initial-state[problem]), fringe)
 loop do
 if fringe is empty then return failure
 node ← Remove-Front(fringe)
 if Goal-Test(problem, state[node]) then return node
 if state[node] is not in closed then
 add state[node] to closed
 for child-node in Expand(state[node], problem) do
 fringe ← Insert(child-node, fringe)
 end
 end
 end
A* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- ...

A* in Recent Literature

- Joint A* CCG Parsing and Semantic Role Labeling (EMLN’15)

- Diagram Understanding (ECCV’17)

- NeuroLogic Decoding (NAACL’22)
The One Queue

- All these search algorithms are the same except for fringe strategies
 - Conceptually, all fringes are priority queues (i.e. collections of nodes with attached priorities)
 - Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual priority queue, by using stacks and queues
 - Can even code one implementation that takes a variable queuing object
Search and Models

- Search operates over models of the world
 - The agent doesn’t actually try all the plans out in the real world!
 - Planning is all “in simulation”
 - Your search is only as good as your models…
Search Gone Wrong?
Video of Demo Empty UCS
Video of Demo Maze with Deep/Shallow Water —- DFS, BFS, or UCS? (part 1)
Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)
Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)