CSE 573:
Artificial Intelligence

Agents & Search

Hanna Hajishirzi

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer

Agents & Search

o Agents that Plan Ahead

o Search Problems

o Uninformed Search Methods
o Depth-First Search
o Breadth-First Search

o Uniform-Cost Search

Agents that Plan

Retlex Agents

o Reflex agents:

o Choose action based on current percept
(and maybe memory)

o May have memory or a model of the
world’s current state

o Do not consider the future consequences of
their actions

o Consider how the world IS

o Can a reflex agent be rational?

Video of Demo Reflex Optimal

SCORE: 0

Video of Demo Reflex Odd

SCORE:

Planning Agents

o Planning agents:

o Ask “what if”

o Decisions based on (hypothesized)
consequences of actions

o Must have a model of how the world
evolves in response to actions

o Must formulate a goal (test)
o Consider how the world WOULD BE

o Optimal vs. complete planning

o Planning vs. replanning

Video of Demo Replanning

SCORE: 0

Video of Demo Mastermind

SCORE:

Search Problems

Search Problems

o A search problem consists of:

e D O O

o A successor function N", 1.0

(with actions, costs) —

. -
lIEH’ 1.0

o A start state and a goal test

o A solution is a sequence of actions (a plan)
which transforms the start state to a goal state

Search: it is not just for agents

Route Hardware Planning optimal
Planning verification repair sequences

X © =m 8 fF &H 4 x K

o Clvic Center, San Francisco, CA 94102

@ Presidio of San Francisco, San Francis:

o Search:
Modeling the world

Example: Traveling in Romania

o State space:
o Cities
o Successor function:

o Roads: Go to adjacent city with
s .:- M Vaslui cost = distance

o Start state:
o Arad

o Goal test:

Dobreta [L o Is state == Bucharest?

Eforie

FHirsova

o Solution?

What's in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

o Problem: Pathing o Problem: Eat-All-Dots
o States: (x,y) location o States: {(x,y), dot booleans}
o Actions: NSEW o Actions: NSEW
o Successor: update location o Successor: update location
only and possibly a dot boolean

o Goal test: is (x,y)=END o Goal test: dots all false

State Space Sizes?

o World state;
o Agent positions: 120
o Food count: 30

o Ghost positions: 12
o Agent facing: NSEW

o How many
o World states?
120x(239%)x(122)x4
o States for pathing?
120

o States for eat-all-dots?
120x(239)

Parsing Natural Language

* Input:

This lecture is about search algorithms.

nsubj
cop
case
DI (NN compound Punctin
—_—— N —— —_— ~

. Operations This lecture is about search algorithms

= Set of states

= Start state

» Goal state (test)

= Output:

State Representation

o Real-world applications:
o Requires approximations and heuristics

o Need to design state representation so that search is feasible
o Only focus on important aspects of the state
o E.g., Use features to represent world states

Sate Passage

o Problem: eat all dots while keeping the ghosts perma-scared

o What does the state space have to specify?

o (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

o State space graph: A mathematical
representation of a search problem
o Nodes are (abstracted) world configurations

o Arcs represent successors (action results)

o The goal test is a set of goal nodes (maybe only
one)

o In a state space graph, each state occurs
only once!

o We can rarely build this full graph in
memory (it’s too big), but it’s a useful idea

Search Trees

H _ This is now / start

N‘/ 10— \EEO

! _ Possible futures
— - l \\ / l \\A

o A search tree:

o. The start state is the root node

)

Children correspond to successors
Nodes show states, but correspond to PLANS that achieve those states

o O

For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

/State Space Graph\

Each NODE in in
the search tree is
an entire PATH in
the state space
graph.

We construct both
on demand — and
we construct as
little as possible.

-

Search Tree

d
bthr
[| AN |
a a r p q f

e S D
p f 9@ ¢ G
l/\

g ¢ G a

State Space Graphs vs. Search Trees

(6)

earch tree (from S)?

Consider this 4-state graph: How big i

State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?
y S

a \b

o © AN TN

b Ga G
N N
a/ G é G

/N /N

Important: Lots of repeated structure in the search tree!

Tree Search

Search Example: Romania

Eforie

Searching with a Search Tree

o Search:

o Expand out potential plans (tree nodes)

o Maintain a fringe of partial plans under
consideration

o Try to expand as few tree nodes as possible

General Tree Search

function TREE-SEARCH(@Wa{r{ng@) returns a solution, or failure

—

initialize the search tree using the initial state of problem
S T

loop do
if there are no candidates for expansion then return failure

choose a leaf node for expansion according to strateqy
if the node contains a goal state then return the corresponding solution

else expand the node and add the resulting nodes to the search tree

end \

o Important ideas:

5o Fringe

o Expansion
o Exploration strategy

o Main question: which fringe nodes to explore?
—

Recap: Search

o Search problem:
o States (configurations of the world)
o Actions and costs
o Successor function (world dynamics)
o Start state and goal test

o Search tree:
o Nodes: represent plans for reaching states

o Search algorithm:

o Systematically builds a search tree
o Chooses an ordering of the fringe (unexplored nodes)

Search Algorithms

o Uninformed Search Methods
o Depth-First Search
o Breadth-First Search
o Uniform-Cost Search

o Heuristic Search Methods
o Best First / Greedy Search
o A”

Depth-First Search

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Search Algorithm Properties

O O O O

O

O

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?

Time complexity? -
Space complexity?

Cartoon of search tree:

o b is the branching factor m tiers <

———

o m is the maximum depth

o solutions at various depths

\

° ° u .V\/\
o 2
Number of nodes in entire tree? | Lx%k>-& o +,L
ol+b+bZ+....bm=0(bm)

_—
p—;

1 node
b nodes

b2 nodes

b™ nodes

Depth-First Search (DFS) Properties

o What nodes DFS expand?

o Some left prefix of the tree. 1 node
o Could process the whole tree! b nodes
o If m is finite, takes time O(b™) b2 nodes
: m tiers
o How much space does the fringe take? <
o Only has siblings on path to root, so O(bm)
o Isit complete? bm nodes

o m could be infinite, so only if we prevent ///
cycles (more later)

o Isit optimal?

Breadth-First Search

Strategy: expand a
shallowest node first

Implementation: Fringe
is a[FIFO queue

Breadth-First Search

Search

Tiers

O

O

O

O

Breadth-First Search (BFS) Properties

What nodes does BFS expand?

o Processes all nodes above shallowest
solution

o Let depth of shallowest solution be s
o Search takes time O(b®)

How much space does the fringe
take?
o Has roughly the last tier, so O(b®)

Is it complete?

o s must be finite if a solution exists, so yes!

Is it optimal?

o Only if costs are all 1 (more on costs later)

s tiers

<

b 1 node
b nodes
b2 nodes
AN
N o \L) bs nodes

BFS

Algorithm Complete |Optimal |[Time Space
/ Path m
DFS \(ﬁ;hec?king Y N O(b) O(bm)
BFS Y Y* O(b®) O(b®)
(1 node
. b nodes
d tiers < 02 nodes
_ bs nodes
b™ nodes

C

Quiz: DFS vs BFS

o When will BFS outperform DFS?

o When will DFS outperform BFS?

Iterative Deepening

o Idea: get DFS’s space advantage with
BFS’s time / shallow-solution
advantages

o Run a DFS with depth limit 1. If no
solution...

o Run a DFS with depth limit 2. If no
solution...

o Run a DFS with depth limit 3.

o Isn’t that wastefully redundant?

o Generally most work happens in the lowest
level searched, so not so bad!

S-A

A\ o

oy

O
o/

%

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
[t does not find the least-cost path. We will now cover How?
a similar algorithm which does find the least-cost path.

Uniform Cost Search

Uniform Cost Search

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

/
@ 1
|
B4 .. @5 W17 ()1 @@ 16
| B A
Cost @6 a W37 p q f
contours PN | | PN
p g (D8 ad ¢ G
| =\ |
q 11 ©) 10 2
I

Uniform Cost Search (UCS) Properties

o What nodes does UCS expand?

o Processes all nodes with cost less than cheapest solution!

N

o If that solution costs C* dnd arcs cost at least ¢, then the
£/ M J7 ° *
effective depth” is roughly C*/& C¥s “tiers” <

-

o Takes time O(b¢"?) (exponential in effective depth) -

o How much space does the fringe take?
o Has roughly the last tier, so O(b*"?)

o Isit complete?

o Assuming best solution has a finite cost and minimum
arc cost is positive, yes! /\ \ < g
o C
o Is it optimal? 4 7
L L0
o Yes! SO -

Uniform Cost Issues

o Remember: UCS explores increasing
cost contours

o The good: UCS is complete and
optimal!

o The bad:

o Explores options in every “direction”
o No information about goal location

o We'll fix that soon!

Video of Demo Empty UCS

® OO Search Strate gies Demo

Video of Demo Maze with Deep /Shallow Water --- DFS, BFS, or UCS? (part
1)

® 00 Search Strategies Demo

Video of Demo Maze with Deep /Shallow Water --- DFS, BFS, or UCS? (part
2)

‘® 00 Search Strategies Demo

Video of Demo Maze with Deep /Shallow Water --- DFS, BFS, or UCS? (part
3)

‘® 00 Search Strategies Demo [

The One Queue

o All these search algorithms are
the same except for fringe L@ »E 1 j@\ﬁ@ﬁ\(}&\#@ﬂl ﬂ

strategies

o Conceptually, all fringes are priority
queues (i.e. collections of nodes
with attached priorities)

o Practically, for DFS and BFS, you
can avoid the log(n) overhead from
an actual priority queue, by using
stacks and queues

o Can even code one implementation
that takes a variable queuing object

Search and Models

o Search operates over
models of the world

o The agent doesn’t
actually try all the
plans out in the real
world!

o Planning is all “in
simulation”

o Your search is only as
good as your models...

To Do:

o Try python practice (PSO0)
o Won't be graded

o PS1 on the website
o Start ASAP

o Submission: Canvas

o Website:
o Do readings for search algorithms

o Try this search visualization tool
o http:/ / qiao.github.io / PathFinding.js/ visual /

