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Announcements

§ Quiz 2 -> Nov 29
§ 50 min; in-class; bring your laptop; no paper prints; will be released on 

Gradescope, similar to your hw
§ Released sample questions; also review your homeworks
§ Material, up to and including RL

§ HW4, will be released tomorrow morning, due, Dec. 8th

§ PS4, will be released tomorrow morning, due, Dec 14th

§ No late day for this one! 
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Recap: Reasoning Over Time

§ Markov models

§ Hidden Markov models

X2X1 X3 X4 rain sun
0.7

0.7

0.3

0.3

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

X E P
rain umbrella 0.9
rain no umbrella 0.1
sun umbrella 0.2
sun no umbrella 0.8



Example: Weather HMM

Rt-1 Rt P(Rt|Rt-1)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Umbrellat-1

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrellat Umbrellat+1

Raint-1 Raint Raint+1

§ An HMM is defined by:
§ Initial distribution:
§ Transitions:
§ Emissions:

P (Xt | Xt�1)
P (Et | Xt)

P (Xt | Xt�1)

P (Et | Xt)
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Inference: Find State Given Evidence

§ We are given evidence at each time and want to know

§ Idea: start with P(X1) and derive Bt in terms of Bt-1
§ equivalently, derive Bt+1 in terms of Bt



Detour: Inference by Enumeration

§ P(W)? S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

§ P(W)? S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

§ P(W)? S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

P(sun)=.3+.1+.1+.15=.65
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Inference by Enumeration

§ P(W)? S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

P(sun)=.3+.1+.1+.15=.65
P(rain)=1-.65=.35

10



Inference by Enumeration

§ P(W | winter)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

§ P(W | winter)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

P(sun|winter)~.1+.15=.25
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Inference by Enumeration

§ P(W | winter)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

P(rain|winter)~.05+.2=.25

13



Inference by Enumeration

§ P(W | winter)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

P(sun|winter)~.25
P(rain|winter)~.25
P(sun|winter)=.5
P(rain|winter)=.5
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Inference by Enumeration
§ General case:

§ Evidence variables: 
§ Query* variable:
§ Hidden variables: All variables

* Works fine with 
multiple query 
variables, too

§ We want:

§ Step 1: Select the 
entries consistent 
with the evidence

§ Step 2: Sum out H to get joint 
of Query and evidence

§ Step 3: Normalize

⇥ 1

Z
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Detour: Inference by Enumeration

§ P(W | winter, hot)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

§ P(W | winter, hot)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

§ P(W | winter, hot)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

P(sun|winter,hot)~.1
P(rain|winter,hot)~.05
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Inference by Enumeration

§ P(W | winter, hot)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

P(sun|winter,hot)~.1
P(rain|winter,hot)~.05
P(sun|winter,hot)=2/3
P(rain|winter,hot)=1/3
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§ Obvious problems:

§ Worst-case time complexity O(dn) 

§ Space complexity O(dn) to store the joint distribution

Inference by Enumeration
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Inference: Find State Given Evidence

§ We are given evidence at each time and want to know

§ Idea: start with P(X1) and derive Bt in terms of Bt-1
§ equivalently, derive Bt+1 in terms of Bt



Inference: Base Cases

E1

X1

X2X1



Inference: Base Cases

X2X1



Inference: Base Cases

E1

X1



Passage of Time

§ Assume we have current belief P(X | evidence to date)

§ Then, after one time step passes:

§ Basic idea: beliefs get “pushed” through the transitions
§ With the “B” notation, we have to be careful about what time step t the belief is about, and what 

evidence it includes

X2X1

=
X

xt

P (Xt+1, xt|e1:t)

=
X

xt

P (Xt+1|xt, e1:t)P (xt|e1:t)

=
X

xt

P (Xt+1|xt)P (xt|e1:t)

§ Or compactly:

B0(Xt+1) =
X

xt

P (X 0|xt)B(xt)

P (Xt+1|e1:t)



Example: Passage of Time

§ As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

(Transition model: ghosts usually go clockwise)



Inference: Base Cases

E1

X1



Observation
§ Assume we have current belief P(X | previous evidence):

§ Then, after evidence comes in:

§ Or, compactly:

E1

X1

B0(Xt+1) = P (Xt+1|e1:t)

P (Xt+1|e1:t+1) = P (Xt+1, et+1|e1:t)/P (et+1|e1:t)
/Xt+1 P (Xt+1, et+1|e1:t)

= P (et+1|Xt+1)P (Xt+1|e1:t)

= P (et+1|e1:t, Xt+1)P (Xt+1|e1:t)

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)

§ Basic idea: beliefs “reweighted” 
by likelihood of evidence

§ Unlike passage of time, we have 
to renormalize



Example: Observation

§ As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation



Filtering: P(Xt | evidence1:t)

Elapse time: compute P( Xt | e1:t-1 )

Observe: compute P( Xt | e1:t )

X2

E1

X1

E2

<0.5, 0.5>

Belief: <P(rain), P(sun)>

<0.82, 0.18>

<0.63, 0.37>

<0.88, 0.12>

Prior on X1

Observe

Elapse time

Observe

X2X1

X2

E2



Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8
Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = 0.818
B(-r)  = 0.182

B’(+r) = 0.627
B’(-r)  = 0.373

B(+r) = 0.883
B(-r)  = 0.117



Pacman – Sonar (P4)



Approximate Inference

§ Sometimes |X| is too big for exact inference
§ |X| may be too big to even store B(X)
§ E.g. when X is continuous
§ |X|2 may be too big to do updates

§ Solution: approximate inference by sampling
§ How robot localization works in practice



Approximate Inference: Sampling
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Sampling
§ Sampling is a lot like repeated simulation

§ Predicting the weather, basketball games, …

§ Basic idea
§ Draw N samples from a sampling distribution S

§ Compute an approximate probability

§ Why sample?
§ Learning: get samples from a distribution 

you don’t know

§ Inference: getting a sample is faster than 
computing the right answer 



Sampling

§ Sampling from given distribution

§ Step 1: Get sample u from uniform 
distribution over [0, 1)
§ E.g. random() in python

§ Step 2: Convert this sample u into an 
outcome for the given distribution by 
having each target outcome 
associated with a sub-interval of [0,1) 
with sub-interval size equal to 
probability of the outcome

§ Example

§ If random() returns u = 0.83, 
then our sample is C = blue

§ E.g, after sampling 8 times:

C P(C)
red 0.6

green 0.1
blue 0.3



Particle Filtering



Particle Filtering

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

§ Filtering: approximate solution

§ Sometimes |X| is too big to use exact inference
§ |X| may be too big to even store B(X)
§ E.g. X is continuous

§ Solution: approximate inference
§ Track samples of X, not all values
§ Samples are called particles
§ Time per step is linear in the number of samples
§ But: number needed may be large
§ In memory: list of particles, not states

§ This is how robot localization works in practice

§ Particle is just new name for sample



Representation: Particles

§ Our representation of P(X) is now a list of N particles (samples)
§ Generally, N << |X|
§ Storing map from X to counts would defeat the point

§ P(x) approximated by number of particles with value x
§ So, many x may have P(x) = 0! 
§ More particles, more accuracy

§ For now, all particles have a weight of 1

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)



Particle Filtering: Elapse Time

§ Each particle is moved by sampling its next 
position from the transition model

§ Samples’ frequencies reflect the transition 
probabilities

§ Here, most samples move clockwise, but some move in 
another direction or stay in place

§ This captures the passage of time
§ If enough samples, close to exact values before and 

after (consistent)

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)



§ Slightly trickier:

§ Don’t sample observation, fix it

§ Downweight samples based on the evidence

§ As before, the probabilities don’t sum to one, 
since all have been downweighted (in fact they 
now sum to (N times) an approximation of P(e))

Particle Filtering: Observe

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)



Particle Filtering: Resample

§ Rather than tracking weighted samples, we 
resample

§ N times, we choose from our weighted sample 
distribution (i.e. draw with replacement)

§ This is equivalent to renormalizing the 
distribution

§ Now the update is complete for this time step, 
continue with the next one

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)   
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)



Recap: Particle Filtering
§ Particles: track samples of states rather than an explicit distribution

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Elapse Weight Resample

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)   
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)



Video of Demo – Moderate Number of Particles



Video of Demo – Huge Number of Particles



Which Algorithm?

Particle filter, uniform initial beliefs, 25 particles



Which Algorithm?

Exact filter, uniform initial beliefs



Which Algorithm?

Particle filter, uniform initial beliefs, 300 particles



Robot Localization

§ In robot localization:
§ We know the map, but not the robot’s position
§ Observations may be vectors of range finder readings
§ State space and readings are typically continuous (works 

basically like a very fine grid) and so we cannot store B(X)
§ Particle filtering is a main technique



Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi]



Particle Filter Localization (Laser)


