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Announcements

® Quiz 2 -> Nov 29

= 50 min; in-class; bring your laptop; no paper prints; will be released on
Gradescope, similar to your hw

= Released sample questions; also review your homeworks

= Material, up to and including RL
= HW4, will be released tomorrow morning, due, Dec. 8"
= PS4, will be released tomorrow morning, due, Dec 14t

= No late day for this one!



Recap: Reasoning Over Time

= Markov models
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P(X1) P(X|X_1)

= Hidden Markov models
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rain umbrella 0.9
rain no umbrella 0.1
sun umbrella 0.2
sun no umbrella 0.8




Example: Weather HMM
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Inference: Find State Given Evidence

= We are given evidence at each time and want to know
Bi(X) = P(X¢le1:t)

" |dea: start with P(X,) and derive B, in terms of B, ;
= equivalently, derive B,,, in terms of B,



. P(W)?

Detour: Inference by Enumeration

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




. P(W)?

Inference by Enumeration

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




. P(W)?

Inference by Enumeration

P(sun)=.3+.1+.1+.15=65

S T W P
summer | hot sun 0.30
summer | hot rain | 0.05
summer | cold sun 0.10
summer | cold rain | 0.05
winter hot sun 0.10
winter hot rain 0.05
winter | cold sun 0.15
winter | cold rain 0.20




. P(W)?

Inference by Enumeration

P(sun)=.3+.1+.1+.15=.65
P(rain)=1-.65=.35

S T W P
summer | hot sun 0.30
summer | hot rain | 0.05
summer | cold sun 0.10
summer | cold rain | 0.05
winter hot sun 0.10
winter hot rain 0.05
winter | cold sun 0.15
winter | cold rain 0.20
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= P(W | winter)?

Inference by Enumeration

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

= P(W | winter)?

P(sun|winter)~.1+.15=.25

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

= P(W | winter)?

P(rain|winter)~.05+.2=.25

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

= P(W | winter)?

P(sun|winter)~.25
P(rain|winter)~.25
P(sun|winter)=.5
P(rain|winter)=.5

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

=  General case:

» Evidencevariables: FEq1...Ep=e€1...€

= Query* variable: Q

= Hidden variables: Hy...H,

= Step 1: Select the
entries consistent
with the evidence
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0.25
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P(Q,e1...e;) = >, P(Q7hl'
X1, X0, ... Xn

X1, Xo,... Xn,

All variables

Step 2: Sum out H to get joint
of Query and evidence
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. hryeq1...ep)
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~

* Works fine with

We want: multiple query

variables, too

P(Qley...ex)

= Step 3: Normalize
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Detour: Inference by Enumeration

= P(W | winter, hot)?

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

= P(W | winter, hot)?

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

= P(W | winter, hot)?

P(sun|winter,hot)~.1
P(rain|winter,hot)~.05

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

= P(W | winter, hot)?

P(sun|winter,hot)~.1

P(rain|winter,hot)~.05
P(sun|winter,hot)=2/3
P(rain|winter,hot)=1/3

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

= QObvious problems:

= Worst-case time complexity O(d")

= Space complexity O(d") to store the joint distribution
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Inference: Find State Given Evidence

= We are given evidence at each time and want to know
Bi(X) = P(X¢le1:t)

" |dea: start with P(X,) and derive B, in terms of B, ;
= equivalently, derive B,,, in terms of B,



Inference: Base Cases

i

P(Xiler) P(X5)



Inference: Base Cases

@

=

P(X5)

P(zp) =) P(z1,22)

= > P(x1)P(x3|z1)



Inference: Base Cases

P(X1le1)

P(xile1) = P(x1,e1)/P(e1)
o x, P(x1,e1)

= P(x1)P(e1|r1)



Passage of Time

= Assume we have current belief P(X | evidence to date) @ @
—
B(X:) = P(Xtle1:)

= Then, after one time step passes:

P(Xt+1’€1:t) — ZP(Xt—I—laxt‘elit)

T
- Z P(Xt+1 ’x“ 61:t)P(£Ut\61:t) = Or compactly:
3 (X P(X'
- ZP(XtH’xt)P(xt\el:t) t+1) Z z¢) B(x¢)

= Basicidea: beliefs get “pushed” through the transitions

= With the “B” notation, we have to be careful about what time step t the belief is about, and what
evidence it includes



Example: Passage of Time

= As time passes, uncertainty “accumulates’ (Transition model: ghosts usually go clockwise)
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Inference: Base Cases

P(X1le1)

P(xile1) = P(x1,e1)/P(e1)
o x, P(x1,e1)

= P(x1)P(e1|r1)



Observation

= Assume we have current belief P(X | previous evidence):

B'(Xt41) = P(Xeq1ler)

= Then, after evidence comes in:

P(Xt+1|€1:t+1) — P(Xt—l—la6t—|—1|€1:t)/P(6t—|—1‘61:t)

XXi41 P(Xi11,erv1]e1:t)
— P(€t+1 61:t,Xt+1)P(Xt+1|€1:t)
— P(€t+1 Xt—l—l)P(Xt—i—l‘elzt)

= Basic idea: beliefs “reweighted”
" Or, compactly: by likelihood of evidence
B(Xi41) o<x,y, Plett1]X41)B (Xit1) = Unlike passage of time, we have
to renormalize



Example: Observation

= As we get observations, beliefs get reweighted, uncertainty “decreases’

Before observation After observation

B(X) «x P(e|X)B'(X)




Filtering: P(X, | evidence.)

Elapse time: compute P( X; | €;.+.1)

P(xtleltt—l) — Z P<33t—1‘€1:t—1) ' P(ﬂft‘l’t_l)

Lt—1
Observe: compute P( X, | €1.) @
P(xi|er.r) o< P(welers—1) - Plet|wt) )

Belief: <P(rain), P(sun)>

@ a P(X4) <0.5, 0.5> Prior on X;

P(X, | E, = umbrella) <0.82,0.18>  Observe

)
a G P(Xs | By = umbrella)  <0.63,0.37>  Elapse time
)

P(X5 | By = umb, E5 = umb <0.88, 0.12> Observe



Example: Weather HMM

B’(+r) = 0.5 B’(+r) = 0.627
B’(-r) =0.5 B’(-r) =0.373
B(+r) = 0.5 B(+r) =0.818 B(+r) = 0.883
B(-r) =0.5 B(-r) =0.182 B(-r) =0.117
» Rain Rain, Re | Rea | P(RualR) [ [ Re | Ur | P(UIRY
+r +r 0.7 +r +U 0.9
+r -r 0.3 +r -u 0.1

Umbrella, Umbrella, -r | +r 0.3 -r | +u 0.2
-r -r 0.7 -r -U 0.8




Pacman — Sonar (P4)

14.0 21.0 26.0




Approximate Inference

= Sometimes |X| is too big for exact inference
= |X] may be too big to even store B(X)
= E.g. when X is continuous
= |X]? may be too big to do updates

= Solution: approximate inference by sampling
= How robot localization works in practice



Approximate Inference: Sampling

Q = 2\

Ly e

& o




Sampling

= Sampling is a lot like repeated simulation = Why sample?

= Learning: get samples from a distribution

= Predicting the weather, basketball games, ...
you don’t know

= |nference: getting a sample is faster than

= Basicidea
computing the right answer

= Draw N samples from a sampling distribution S

= Compute an approximate probability




Sampling

= Sampling from given distribution = Example
= Step 1: Get sample u from uniform
distribution over [0, 1) C P(C)
= E.g.random() in python red 0.6 0 S - 06, s O'= red
outcome for the given distribution by
having each target outcome blue 0.3 0.7<u<1,— C =blue
associated with a sub-interval of [0,1)
with sub-interval size equal to = |If random() returns u = 0.83,

probability of the outcome then our sample is C = blue

= E.g, after sampling 8 times:

T o




Particle Filtering




Particle Filtering

Filtering: approximate solution

Sometimes |X]| is too big to use exact inference
= |X| may be too big to even store B(X)
= E.g. Xis continuous

Solution: approximate inference

= Track samples of X, not all values

= Samples are called particles

= Time per step is linear in the number of samples
But: number needed may be large
= |n memory: list of particles, not states

This is how robot localization works in practice

Particle is just new name for sample

0.0 | 0.1 | 00

0.0 | 0.0 | 0.2

0.0 | 02 | 05
O

o0

00 | o




Representation: Particles

= Qur representation of P(X) is now a list of N particles (samples)
= Generally, N << | X]|
= Storing map from X to counts would defeat the point

= P(x) approximated by number of particles with value x
= So, many x may have P(x) = 0!
= More particles, more accuracy

" For now, all particles have a weight of 1

Particles:
(3,3)




Particle Filtering: Elapse Time

= Each particle is moved by sampling its next particles.
- . ()
position from the transition model (33 - .o:\
(3,3)
/ / (3,2) ® @ \
x' = sample(P(X"'|x)) et ®
(L2)
: . (3,3)
= Samples’ frequencies reflect the transition (3,3)
probabilities (2.3)
= Here, most samples move clockwise, but some move in
another direction or stay in place Particles:
(3,2)
(2,3)
(3,2) @ : I:
= This captures the passage of time ) bo
O
= |f enough samples, close to exact values before and 83 ®
after (consistent) (2,3) o
(3,2)
(2,2)




Particle Filtering: Observe

= Slightly trickier:

Don’t sample observation, fix it

Downweight samples based on the evidence

w(x) = P(e|x)
B(X) < P(e|X)B'(X)

As before, the probabilities don’t sum to one,
since all have been downweighted (in fact they
now sum to (N times) an approximation of P(e))

Particles:

-
PoONR LMD LNI




Particle Filtering: Resample

= Rather than tracking weighted samples, we
resample

= N times, we choose from our weighted sample
distribution (i.e. draw with replacement)

* This is equivalent to renormalizing the
distribution

= Now the update is complete for this time step,
continue with the next one

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)




Recap: Particle Filtering

= Particles: track samples of states rather than an explicit distribution

Elapse Weight Resample
® ® 0 m—__ ) ) ° %)
@ @ ©_@e
@ ® ® % ® | ¢%
o o o
Particles: Particles: Particles: (New) Particles:
(3,3) (3,2) (3,2) w=.9 (3,2)
(2,3) (2,3) (2,3) w=.2 (2,2)
(3,3) (3,2) (3,2) w=.9 (3,2)
(3,2) (3,1) (3,1) w=.4 (2,3)
(3,3) (3,3) (3,3) w=.4 (3,3)
(3,2) (3,2) (3,2) w=.9 (3,2)
(1,2) (1,3) (1,3) w=.1 (1,3)
(3,3) (2,3) (2,3) w=.2 (2,3)
(3,3) (3,2) (3,2) w=.9 (3,2)
(2,3) (2,2) (2,2) w=.4 (3,2)



Video of Demo — Moderate Number of Particles




Video of Demo — Huge Number of Particles




Which Algorithm?

Particle filter, uniform initial beliefs, 25 particles




Which Algorithm?

Exact filter, uniform initial beliefs




Which Algorithm?

Particle filter, uniform initial beliefs, 300 particles




Robot Localization

" |n robot localization:

= We know the map, but not the robot’s position

= QObservations may be vectors of range finder readings

DIRECTORY
= State space and readings are typically continuous (works

basically like a very fine grid) and so we cannot store B(X)

= Particle filtering is a main technique




Particle Filter Localization (Sonar)

Global localization with
© SONAr SENSOrs '




Particle Filter Localization (Laser)




