UW CSE 473 Notes 3 Notes by: Wisdom Ikezogwo, Yizhong Wang

1 Adversarial Search

Adversarial search problems, more commonly known as games where our agents have one or
more adversaries, and take actions with either deterministic or stochastic (probabilistic) out-
comes, can have any variable number of players, and may or may not be zero-sum. As opposed to
normal search, which returns a comprehensive plan, adversarial search returns a strategy, or pol-
icy, which simply recommends the best possible move given some configuration of our agent(s)
and their adversaries. Giving rise to behavior through computation.

The standard game formulation consists of the following definitions:

¢ Initial state, sg

Players, Players(s) denote whose turn is

Actions, Actions(s) available actions for the player

e Transition model Result(s,a)

Terminal test, Terminal — test(s)

Terminal values, Utility(s, player)

1.1 Minimax

minimax runs under the motivating assumption that the opponent we face behaves optimally,
and will always perform the move that is worst for us. To introduce this algorithm, we must
tirst formalize the notion of terminal utilities and state value. The value of a state is the optimal
score attainable by the agent which controls that state. In order to get a sense of what this means,
observe the following trivially simple Pacman game board:

Assume that Pacman starts with 10 points and loses 1 point per move until he eats the pellet, at
which point the game arrives at a terminal state and ends. We can start building a game tree
for this board as follows, where children of a state are successor states just as in search trees for
normal search problems:

CSE 473 Autumn’23 1

UW CSE 473 Notes 3

<
//\
_ -
T T~
E- L c - ¢ -
4 6
It’s evident from this tree that if Pacman goes straight to the pellet, he ends the game with a score
of 8 points, whereas if he backtracks at any point, he ends up with some lower-valued score. Now
that we’ve generated a game tree with several terminal and intermediary states, we're ready to
formalize the meaning of the value of any of these states.

A state’s value is defined as the best possible outcome (utility) an agent can achieve from that
state. Simply, think of an agent’s utility as its score or number of points it attains. The value
of a terminal state, called a terminal utility, is always some deterministic known value and an
inherent game property. In our Pacman example, the value of the rightmost terminal state is
simply 8, the score Pacman gets by going straight to the pellet. Also, in this example, the value of

a non-terminal state is defined as the maximum of the values of its children. Defining V'(s) as the
function defining the value of a state s, we can summarize the above discussion:

V non-terminal states, V(s) = max V(s
s'€successors(s)

V terminal states, V(s) = known

This sets up a simple recursive rule, from which it should make sense that the value of the root
node’s direct right child will be 8, and the root node’s direct left child will be 6, since these are
the maximum possible scores the agent can obtain if it moves right or left, respectively, from the
start state. It follows that by running such computation, an agent can determine that it’s optimal
to move right, since the right child has a greater value than the left child of the start state.

Let’s now introduce a new game board with an adversarial ghost that wants to keep Pacman
from eating the pellet.

€ o

The two agents take turns making moves, leading to a game tree where the two agents switch
off/on layers of the tree that they "control." Here’s the game tree that arises from the new two-
agent game board above:

CSE 473 Autumn’23 2

UW CSE 473 Notes 3

‘ e 0o

/\
/\ /\
;

-20 8 -18 5 . -10 20 +8

+4
Blue nodes correspond to nodes that Pacman controls and can decide what action to take, while
red nodes correspond to ghost-controlled nodes. Note that all children of ghost-controlled nodes
are nodes where the ghost has moved either left or right from its state in the parent, and vice versa
for Pacman-controlled nodes. For simplicity purposes, let’s truncate this game tree to a depth-2
tree, and assign spoofed values to terminal states as follows:

Naturally, adding ghost-controlled nodes changes the move Pacman believes to be optimal, and
the new optimal move is determined with the minimax algorithm. Instead of maximizing the util-
ity over children at every level of the tree, the minimax algorithm only maximizes over the chil-
dren of nodes controlled by Pacman, while minimizing over the children of nodes controlled by
ghosts. Hence, the two ghost nodes above have values of min(—8, —5) = —8 and min(—10,+48) =
—10 respectively. Correspondingly, the root node controlled by Pacman has a value of max(—8, —10) =
—8. Since Pacman wants to maximize his score, he’ll go left and take the score of —8 rather than
trying to go for the pellet and scoring —10. This is a prime example of the rise of behavior through
computation - though Pacman wants the score of +8 he can get if he ends up in the rightmost
child state, through minimax he "knows" that an optimally-performing ghost will not allow him
to have it. In order to act optimally, Pacman is forced to hedge his bets and counterintuitively
move away from the pellet to minimize the magnitude of his defeat. We can summarize the way
minimax assigns values to states as follows:
V agent-controlled states, V(s) = max V(s

s'€successors(s)

V opponent-controlled states, V(s) = min V(s

s’ €successors(s)

V terminal states, V(s) = known

CSE 473 Autumn’23 3

UW CSE 473 Notes 3

In implementation, minimax behaves similarly to depth-first search, computing values of nodes
in the same order as DFS would, starting with the the leftmost terminal node and iteratively work-
ing its way rightwards. More precisely, it performs a postorder traversal of the game tree. The
resulting pseudocode for minimax is both elegant and intuitively simple, and is presented below.
Note that minimax will return an action, which corresponds to the root node’s branch to the child
it has taken its value from.

def value(state):
if the state is a terminal state: return the state’s utility
if the agent is MAX: return max-value(state)
if the agent is MIN: return min-value(state)

def max-value(state): def min-value(state):
initialize v = -0 initialize v = +o0
for each successor of state: for each successor of state:
v = max(v, value(successor)) v = min(v, value(successor))
return v returnv

Alpha-Beta Pruning

Minimax seems just about perfect - it’s simple, it’s optimal, and it’s intuitive. However its time
complexity, similar to depth-first search, is a dismal O(b™). Recalling that b is the branching factor
and m is the approximate tree depth at which terminal nodes can be found, this yields far too
great a runtime for many games. For example, chess has a branching factor b ~ 35 and tree depth
m ~ 100. To help mitigate this issue, minimax has an optimization - alpha-beta pruning.

Conceptually, alpha-beta pruning is this: if you're trying to determine the value of a node n
by looking at its successors, stop looking as soon as you know that n’s value can at best equal the
optimal value of n’s parent. Consider the following game tree, with square nodes corresponding to
terminal states, downward-pointing triangles corresponding to minimizing nodes, and upward-
pointing triangles corresponding to maximizer nodes:

Let’s walk through how minimax derived this tree - it began by iterating through the nodes with
values 3, 12, and 8, and assigning the value min(3,12,8) = 3 to the leftmost minimizer. Then, it
assigned min(2,4,6) = 2 to the middle minimizer, and min(14,5,2) = 2 to the rightmost mini-
mizer, before finally assigning max(3, 2, 2) = 3 to the maximizer at the root. However, if we think
about this situation, we can come to the realization that as soon as we visit the child of the mid-
dle minimizer with value 2, we no longer need to look at the middle minimizer’s other children.
Why? Since we’ve seen a child of the middle minimizer with value 2, we know that no matter
what values the other children hold, the value of the middle minimizer can be at most 2. Now
that this has been established, let’s think one step further still - the maximizer at the root is decid-
ing between the value of 3 of the left minimizer, and the value that’s < 2, it’s guaranteed to prefer

CSE 473 Autumn’23 4

UW CSE 473 Notes 3

the 3 returned by the left minimizer over the value returned by the middle minimizer, regardless
of the values of its remaining children. This is precisely why we can prune the search tree, never
looking at the remaining children of the middle minimizer:

(3] [12] [8] [2] [14] [5] [2]

Implementing such pruning can reduce our runtime to as good as O(b"/2), effectively doubling
our "solvable" depth and is implemented as follows:

a: MAX’s best option on path to root
B: MIN’s best option on path to root

def max-value(state, a, B): def min-value(state , a, B):
initialize v = -o0 initialize v = too
for each successor of state: for each successor of state:
v = max(v, value(successor, a, B)) v = min(v, value(successor, a, B))
if v Breturnv ifv<areturnv
o =max(a, v) B =min(B, v)
return v return v

Take some time to compare this with the pseudocode for vanilla minimax, and note that we can
now return early without searching through every successor.

Evaluation Functions

These are functions that take in a state and output an estimate of the true minimax value of that
node. Typically, this is plainly interpreted as "better" states being assigned higher values by a
good evaluation function than "worse" states. Evaluation functions are widely employed in depth-
limited minimax, where we treat non-terminal nodes located at our maximum solvable depth as
terminal nodes, giving them mock terminal utilities as determined by a carefully selected evalua-
tion function. Because evaluation functions can only yield estimates of the values of non-terminal
utilities, this removes the guarantee of optimal play when running minimax.

Typically, domain knowledge and experimentation are used for the selection of an evaluation
function when designing an agent that runs minimax, and the better the evaluation function is,

CSE 473 Autumn’23 5

UW CSE 473 Notes 3

the closer the agent will come to behaving optimally. Additionally, going deeper into the tree
before using an evaluation function also tends to give us better results. These functions serve a
very similar purpose in games as heuristics do in standard search problems.

The most common design for an evaluation function is a linear combination of features.

Eval(s) = w1 f1(s) + wafa(s) + ... + wn fn(s)

Each f;(s) corresponds to a feature extracted from the input state s, and each feature is assigned
a corresponding weight w;. Features are simply some element of a game state that we can ex-
tract and assign a numerical value. For example, in a game of checkers we might construct
an evaluation function with 4 features: number of agent pawns, number of agent kings, num-
ber of opponent pawns, and number of opponent kings. We’d then select appropriate weights
based loosely on their importance. It makes sense to select positive weights for our agent’s
pawns/kings and negative weights for our opponents pawns/kings. Furthermore, we might de-
cide that since kings are more valuable pieces in checkers than pawns, the features corresponding
to our agent’s/opponent’s kings deserve weights with greater magnitude than the features con-
cerning pawns. Below is a possible evaluation function that conforms to the features and weights
we’ve just brainstormed:

Eval(s) = 2 - agent_kings(s) + agent_pawns(s) — 2 - opponent_kings(s) — opponent_pawns(s)

Evaluation function design can be quite free-form and doesn’t necessarily have to be linear
functions either. For example, nonlinear evaluation functions based on neural networks are very
common in Reinforcement Learning applications.

1.2 Expectimax

Minimax is often overly pessimistic in situations where optimal responses to an agent’s actions are
not guaranteed. Such situations include scenarios with inherent randomness such as card or dice
games or unpredictable opponents that move randomly or suboptimally. This randomness can be
represented through a generalization of minimax known as expectimax. Expectimax introduces
chance nodes into the game tree, which instead of considering the worst case scenario as minimizer
nodes do, considers the average case. More specifically, while minimizers simply compute the
minimum utility over their children, chance nodes compute the expected utility or expected value.
Our rule for determining values of nodes with expectimax is as follows:

V agent-controlled states, V(s) = max V(s

s'€successors(s)

V chance states, V(s) = Z p(s'|s)V (s)
s'€successors(s)

V terminal states, V(s) = known

In the above formulation, p(s'|s) refers to either the probability that a given nondeterministic
action results in moving from state s to s’, or the probability that an opponent chooses an action

CSE 473 Autumn’23 6

UW CSE 473 Notes 3

that results in moving from state s to s’, depending on the specifics of the game and the game
tree under consideration. From this definition, we can see that minimax is simply a special case
of expectimax. Minimizer nodes are simply chance nodes that assign a probability of 1 to their
lowest-value child and probability O to all other children.

The pseudocode for expectimax is quite similar to minimax, with only a few small tweaks to
account for expected utility instead of minimum utility, since we’re replacing minimizing nodes
with chance nodes:

def value(state):
if the state is a terminal state: return the state’s utility
if the agent is MAX: return max-value(state)
if the agent is EXP: return exp-value(state)

def max-value(state): def exp-value(state):
initialize v = -o0 initializev=0
for each successor of state: for each successor of state:
v = max(v, value(successor)) p = probability(successor)
return v v += p * value(successor)
returnv

Consider the following expectimax tree, where chance nodes are represented by circular nodes
instead of the upward/downward facing triangles for maximizers/minimizers.

1 C] O] B [EEE]

Assume for simplicity that all children of each chance node have a probability of occurrence of
%. Hence, from our expectimax rule for value determination, we see that from left to right the 3

chance nodes take on values of 1-3+1-12+1.9 = 18] 1:2414+1.6 = (4], and 115416430 = [7]
The maximizer selects the maximimum of these three values, yielding a filled-out game tree
as follows:

CSE 473 Autumn’23 7

/2N
O (+) ()

] [B B [[=] [[

As a final note on expectimayx, it’s important to realize that, in general, it’s necessary to look at all
the children of chance nodes — we can’t prune in the same way that we could for minimax. Unlike
when computing minimums or maximums in minimax, a single value can skew the expected
value computed by expectimax arbitrarily high or low. However, pruning can be possible when
we have known, finite bounds on possible node values.

1.3 Summary

In this note, we discussed adversarial search problems, specifically the introduction of other
agents (random, or deterministically adversarial), algorithms that produce policies/strategies dy-
namically based on the state of the agent, and adversaries.

Depending on the game attributes i.e the players, transition function, etc. we can employ a
variety of search techniques, including: MinMax Search and ExpectiMax Search, or a combination
of both depending on the agents and their objectives in the game. We discussed how Alpha-beta
pruning can help reduce the time complexity of minimax search by leveraging the adversarial
bounds of opponent agents in zero-sum settings, having the following effect:

¢ Does not affect the minimax value at the root node.
¢ Intermediate nodes might be wrong.

* Good ordering of child nodes improves the effectiveness of pruning.

We also discussed good evaluation functions (similar to heuristics in informed search, which
require experimentation and domain knowledge of the game world/objectives) combined with
depth-limited minimax search can further improve search time albeit at the the cost of no optimal
play guarantee. Note: that the deeper in the tree the evaluation function is buried, the less the
quality of the evaluation function matters, depicting a tradeoff between the complexity of features
and the complexity of computation.

Finally, we discussed expectimax - a generalization of minimax wherein adversaries act non-
deterministically, hence, minimax can be viewed as a special case of expectimax, wherein mini-
mizer nodes are simply chance nodes that assign a probability of 1 to their lowest-value child and
probability 0 to all other children.

