CSE 473: Artificial Intelligence

Reinforcement Learning

slides adapted from
Stuart Russel, Dan Klein, Pieter Abbeel from ai.berkeley.edu
And Hanna Hajishirzi, Jared Moore, Dan Weld
Reinforcement Learning
Double Bandits
Double-Bandit MDP

- **Actions**: Blue, Red
- **States**: Win, Lose

No discount
10 time steps
Both states have the same value
Solving MDPs is offline planning

- You determine all quantities through computation
- You need to know the details of the MDP
- You do not actually play the game!

<table>
<thead>
<tr>
<th>Value</th>
<th>Play Red</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Play Blue</td>
<td>10</td>
</tr>
</tbody>
</table>

No discount
10 time steps
Let’s Play!

$2 $2 $0 $2 $2

$2 $2 $0 $0 $0
Online Planning

- Rules changed! Red’s win chance is different.
Let’s Play!
What Just Happened?

- That wasn’t planning, it was learning!
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn’t solve it with just computation
 - You needed to actually act to figure it out

- Important ideas in reinforcement learning that came up
 - Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP
Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states \(s \in S \)
 - A set of actions (per state) \(A \)
 - A model \(T(s,a,s') \)
 - A reward function \(R(s,a,s') \)
- Still looking for a policy \(\pi(s) \)

- New twist: don’t know \(T \) or \(R \)
 - I.e. we don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn
Reinforcement Learning

- **Basic idea:**
 - Receive feedback in the form of **rewards**
 - Agent’s utility is defined by the reward function
 - Must (learn to) act so as to **maximize expected rewards**
 - All learning is based on observed samples of outcomes!
Robotics Rubik Cube

- https://www.youtube.com/watch?v=x4O8pojMF0w

Solving Rubik’s Cube with a Robot Hand
DeepMind Atari (©Two Minute Lectures)
Video of Demo Crawler Bot
Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model $T(s,a,s')$
 - A reward function $R(s,a,s')$
- Still looking for a policy $\pi(s)$

- New twist: don’t know T or R
 - I.e. we don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn
Offline (MDPs) vs. Online (RL)

Offline Solution

Online Learning
Analogy: Expected Age

Goal: Compute expected age of cse473 students

Known P(A)

\[E[A] = \sum_a P(a) \cdot a = 0.35 \times 20 + \ldots \]

Without P(A), instead collect samples \([a_1, a_2, \ldots, a_N]\)

Unknown P(A): “Model Based”

\[
\hat{P}(a) = \frac{\text{num}(a)}{N}
\]

\[
E[A] \approx \sum_a \hat{P}(a) \cdot a
\]

Unknown P(A): “Model Free”

\[
E[A] \approx \frac{1}{N} \sum_i a_i
\]

Why does this work? Because eventually you learn the right model.

Why does this work? Because samples appear with the right frequencies.
Model-Based Learning
Model-Based Learning

- **Model-Based Idea:**
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct

- **Step 1: Learn empirical MDP model**
 - Count outcomes s' for each s, a
 - Normalize to give an estimate of $\hat{T}(s, a, s')$
 - Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')

- **Step 2: Solve the learned MDP**
 - For example, use value iteration, as before
Example: Model-Based Learning

<table>
<thead>
<tr>
<th>Input Policy π</th>
<th>Observed Episodes (Training)</th>
<th>Learned Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$\hat{T}(s, a, s')$</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>$T(B, \text{east}, C) = 1.00$</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>$T(C, \text{east}, D) = 0.75$</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>$T(C, \text{east}, A) = 0.25$</td>
</tr>
</tbody>
</table>

Assume: $\gamma = 1$

- **Episode 1**: B, east, C, -1; C, east, D, -1; D, exit, x, +10
- **Episode 2**: B, east, C, -1; C, east, D, -1; D, exit, x, +10
- **Episode 3**: E, north, C, -1; C, east, D, -1; D, exit, x, +10
- **Episode 4**: E, north, C, -1; C, east, A, -1; A, exit, x, -10

$T(s,a,s')$ and $R(s,a)$ represent the transition probability and reward functions, respectively.
Model-Free Learning
A Motivating Example Video

CURRENT Q-VALUES
Goal: Compute values for each state under π

Idea: Average together observed sample values

- Act according to π
- Every time you visit a state, write down what the sum of discounted rewards turned out to be
- Average those samples

This is called direct evaluation
Example: Direct Evaluation

Input Policy π

Observed Episodes (Training)

Episode 1
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 2
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 3
- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 4
- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10

Output Values

$U^\pi(D) = 3/3 \times 10 = 10$
$U^\pi(A) = 1/1 \times -10 = -10$
$U^\pi(B) = 2/2 \times (-1 + -1 + 10) = 8$
$U^\pi(C) = 3/4 \times (-1 + 10) + 1/4 \times (-1 + -10) = 4$
$U^\pi(E) = 1/2 \times (-1 + -1 + 10) + 1/2 \times (-1 + -1 + -10) = -2$

Assume: $\gamma = 1$
Problems with Direct Evaluation

- What’s good about direct evaluation?
 - It’s easy to understand
 - It doesn’t require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions

- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values

If B and E both go to C under this policy, how can their values be different?
Passive Reinforcement Learning

- **Simplified task: policy evaluation**
 - Input: a fixed policy $\pi(s)$
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - Goal: learn the state values

- **In this case:**
 - Learner is “along for the ride”
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.
Why Not Use Policy Evaluation?

- **Simplified Bellman updates calculate V for a fixed policy:**
 - Each round, replace V with a one-step-look-ahead layer over V

 \[
 V_{0}^{\pi}(s) = 0
 \]

 \[
 V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_{k}^{\pi}(s')]
 \]
 - This approach fully exploited the connections between the states
 - Unfortunately, we need T and R to do it!

- **Key question: how can we do this update to V without knowing T and R?**
 - In other words, how do we take a weighted average without knowing the weights?
Sample-Based Policy Evaluation?

- We want to improve our estimate of V by computing these averages:

$$V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^\pi(s')]$$

- Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_1 = R(s, \pi(s), s_1') + \gamma V_k^\pi(s_1')$$

$$sample_2 = R(s, \pi(s), s_2') + \gamma V_k^\pi(s_2')$$

$$\ldots$$

$$sample_n = R(s, \pi(s), s_n') + \gamma V_k^\pi(s_n')$$

$$V_{k+1}^\pi(s) \leftarrow \frac{1}{n} \sum_i sample_i$$
Temporal Difference Learning

- **Big idea: learn from every experience!**
 - Update $V(s)$ each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often

- **Temporal difference learning of values**
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of $V(s)$:

$$sample = R(s, \pi(s), s') + \gamma V^\pi(s')$$

Update to $V(s)$:

$$V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + (\alpha)sample$$

Same update:

$$V^\pi(s) \leftarrow V^\pi(s) + \alpha(sample - V^\pi(s))$$
Exponential Moving Average

- Exponential moving average
 - The running interpolation update: \(\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n \)
 - Makes recent samples more important
 - Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages
Example: Temporal Difference Learning

States

Assume: $\gamma = 1, \alpha = 1/2$

Observed Transitions

$U^\pi(B) \leftarrow (1/2)U^\pi(B) + \frac{1}{2} [-2 + U^\pi(C)] \leftarrow -1$

$U^\pi(C) \leftarrow (1/2)U^\pi(C) + \frac{1}{2} [-2 + U^\pi(D)] \leftarrow 3$

$U^\pi(s) \leftarrow (1 - \alpha)U^\pi(s) + \alpha [R(s, \pi(s), s') + \gamma U^\pi(s')]$
Example: Temporal Difference Learning

Observed Transitions

- **D, exit, +10**

 \[
 \begin{array}{ccc}
 & 0 & 3 \\
 0 & & 8 \\
 -1 & 3 & \\
 0 & 0 &
 \end{array}
 \]

 \[U^\pi(D) \leftarrow (1/2)U^\pi(D) + \frac{1}{2} [+10] \]
 \[\leftarrow 9\]

- **B, east, C, -2**

 \[
 \begin{array}{ccc}
 0 & & \\
 -1 & 3 & 9 \\
 & 0 & \\
 & 0 &
 \end{array}
 \]

 \[U^\pi(B) \leftarrow (1/2)U^\pi(B) + \frac{1}{2} [-2 + U^\pi(C)] \]
 \[\leftarrow -1/2 + 1.5 = 0\]

- **C, east, D, -2**

 \[
 \begin{array}{ccc}
 0 & & \\
 0 & 3 & 9 \\
 & 0 & \\
 & 0 &
 \end{array}
 \]

 \[U^\pi(C) \leftarrow (1/2)U^\pi(C) + \frac{1}{2} [-2 + U^\pi(D)] \]
 \[\leftarrow 1.5 + 3.5 = 5\]

\[
U^\pi(s) \leftarrow (1 - \alpha)U^\pi(s) + \alpha [R(s,\pi(s),s') + \gamma U^\pi(s')]\]
Problems with TD Value Learning

- TD value learning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages.
- However, if we want to turn values into a (new) policy, we’re sunk:

 $$\pi(s) = \arg \max_a Q(s, a)$$

 $$Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]$$

- Idea: learn Q-values, not values.
- Makes action selection model-free too!
Active Reinforcement Learning
Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - You choose the actions now
 - Goal: learn the optimal policy / values

- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...
Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k, calculate the depth $k+1$ values for all states:
 \[
 V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
 \]

- But Q-values are more useful, so compute them instead
 - Start with $Q_0(s, a) = 0$, which we know is right
 - Given Q_k, calculate the depth $k+1$ q-values for all q-states:
 \[
 Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]
 \]
Q-Learning

- **Q-Learning: sample-based Q-value iteration**

\[Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right] \]

- **Learn Q(s,a) values as you go**
 - Receive a sample \((s,a,s',r)\)
 - Consider your old estimate: \(Q(s, a)\)
 - Consider your new sample estimate:
 \[\text{sample} = R(s, a, s') + \gamma \max_{a'} Q(s', a') \]
 no longer policy evaluation!
 - Incorporate the new estimate into a running average:
 \[Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) [\text{sample}] \]
Q-Learning Demo

CURRENT Q-VALUES
Video of Demo Q-Learning -- Gridworld
Video of Demo Q-Learning -- Crawler
Q-Learning: act according to current optimal (and also explore...)

- **Full reinforcement learning**: optimal policies (like value iteration)
 - You don’t know the transitions $T(s,a,s’)$
 - You don’t know the rewards $R(s,a,s’)$
 - You choose the actions now
 - **Goal**: learn the optimal policy / values

- **In this case:**
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!

- This is called off-policy learning

- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn’t matter how you select actions (!)
Exploration vs. Exploitation
How to Explore?

Several schemes for forcing exploration

- Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε, act randomly
 - With (large) probability $1-\varepsilon$, act on current policy

- Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions
Exploration Functions

- **When to explore?**
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

- **Exploration function**
 - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. $f(u, n) = u + k/n$

 Regular Q-Update: $Q(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} Q(s', a')$

 Modified Q-Update: $Q(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))$

 - Note: this propagates the “bonus” back to states that lead to unknown states as well!
Q-Learn Epsilon Greedy
Video of Demo Q-learning – Epsilon-Greedy – Crawler
Video of Demo Q-learning – Exploration Function – Crawler
Even if you learn the optimal policy, you still make mistakes along the way!

Regret is a measure of your total mistake cost: the difference between your (expected) rewards and optimal (expected) rewards.

Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal.

Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret.
Approximate Q-Learning
Video of Demo Q-Learning Pacman – Tricky – Watch All
Generalizing Across States

- Basic Q-Learning keeps a table of all q-values

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory

- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we’ll see it over and over again
Example: Pacman

Let’s say we discover through experience that this state is bad:

In naïve q-learning, we know nothing about this state:

Or even this one!
Feature-Based Representations

- **Solution**: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - $1 / (\text{dist to dot})^2$
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)
Using a feature representation, we can write a q function (or value function) for any state using a few weights:

\[V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!
Approximate Q-Learning

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- **Q-learning with linear Q-functions:**

 transition \(= (s, a, r, s') \)

 difference \(= \left[r + \gamma \max_{a'} Q(s', a') \right] - Q(s, a) \)

 \[Q(s, a) \leftarrow Q(s, a) + \alpha \text{ [difference]} \]

 \[w_i \leftarrow w_i + \alpha \text{ [difference]} f_i(s, a) \]

- **Intuitive interpretation:**
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state’s features

- **Formal justification:** online least squares
Example: Q-Pacman

\[Q(s, a) = 4.0 \cdot f_{\text{DOT}}(s, a) - 1.0 \cdot f_{\text{GST}}(s, a) \]

\[f_{\text{DOT}}(s, \text{NORTH}) = 0.5 \]
\[f_{\text{GST}}(s, \text{NORTH}) = 1.0 \]

\[a = \text{NORTH} \]
\[r = -500 \]

\[Q(s, \text{NORTH}) = +1 \]
\[r + \gamma \max_{a'} Q(s', a') = -500 + 0 \]

\[\text{difference} = -501 \]

\[w_{\text{DOT}} \leftarrow 4.0 + \alpha [-501] 0.5 \]
\[w_{\text{GST}} \leftarrow -1.0 + \alpha [-501] 1.0 \]

\[Q(s, a) = 3.0 \cdot f_{\text{DOT}}(s, a) - 3.0 \cdot f_{\text{GST}}(s, a) \]
Video of Demo Approximate Q-Learning -- Pacman
Bonus: Q-Learning and Least Squares*
Linear Approximation: Regression*

Prediction:
\[
\hat{y} = w_0 + w_1 f_1(x)
\]

Prediction:
\[
\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)
\]
Optimization: Least Squares*

\[
\text{total error} = \sum_i (y_i - \hat{y}_i)^2 = \sum_i \left(y_i - \sum_k w_k f_k(x_i) \right)^2
\]
Imagine we had only one point \(x \), with features \(f(x) \), target value \(y \), and weights \(w \):

\[
\text{error}(w) = \frac{1}{2} \left(y - \sum_k w_k f_k(x) \right)^2
\]

\[
\frac{\partial \text{error}(w)}{\partial w_m} = -\left(y - \sum_k w_k f_k(x) \right) f_m(x)
\]

\[
w_m \leftarrow w_m + \alpha \left(y - \sum_k w_k f_k(x) \right) f_m(x)
\]

Approximate q update explained:

\[
w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)
\]

"target" "prediction"
Overfitting: Why Limiting Capacity Can Help
Summary: MDPs and RL

Known MDP: Offline Solution

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^$, $Q^$, π^*</td>
<td>Value / policy iteration</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>Policy evaluation</td>
</tr>
</tbody>
</table>

Unknown MDP: Model-Based

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^$, $Q^$, π^*</td>
<td>VI/PI on approx. MDP</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>PE on approx. MDP</td>
</tr>
</tbody>
</table>

use features to generalize

Unknown MDP: Model-Free

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^$, $Q^$, π^*</td>
<td>Q-learning</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>Value Learning</td>
</tr>
</tbody>
</table>

use features to generalize
Conclusion

- We’ve seen how AI methods can solve problems in:
 - Search
 - Games
 - Markov Decision Problems
 - Reinforcement Learning

- Next up: Uncertainty and Learning!