CSE 473: Artificial Intelligence
Hidden Markov Models
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Uncertainty and Time

= Often, we want to reason about a sequence of observations
= Speech recognition
= Robot localization
= User attention

= Medical monitoring

" Generalize MDPs by adding sensing noise (and removing
actions)
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Markov Models (aka Markov chain/process)

= Value of X at a given time is called the state (usually discrete, finite)

=)0 -

P(Xo) P(X; | Xt.1)

* The transition model P(X; | X;_) specifies how the state evolves over time
= Stationarity assumption: transition probabilities are the same at all times
" Markov assumption: “future is independent of the past given the present”

" X;41isindependent of X, ..., X;_1 given X;
= This is a first-order Markov model (a kth-order model allows dependencies on k earlier steps)

= Joint distribution P(X,..., X7) = P(Xo) | I, P(X; | X;.1)



Example: Random walk in one dimension

< |||_11"'O?"’1f||| >

-4 -3 -2 2 3 4

State: location on the unbounded integer line

Initial probability: starts at O

Transition model: P(X; = k| X;.1= k+1) = 0.5

Applications: particle motion in crystals, stock prices, gambling, genetics, etc.

Questions:
= How far does it get as a function of t?
= Expected distance is O(Vt)

= Does it get back to O or can it go off for ever and not come back?
" |[n 1D and 2D, returns w.p. 1; in 3D, returns w.p. 0.34053733



Example: Web browsing

State: URL visited at step t

Transition model:
= With probability p, choose an outgoing link at random
= With probability (1-p), choose an arbitrary new page

Question: What is the stationary distribution over pages?

= |.e., if the process runs forever, what fraction of time does it spend in
any given page?

Application: Google page rank




Example: Weather

= States {rain, sun}

= |nitial distribution P(X;)

P(Xo)

sun rain

0.5 0.5

Two new ways of representing the same CPT

= Transition model P(X; | X;_¢)

03 0.9
' ’ 0.9
Xer | PX|Xe) @ @ un_ gL sun
sun rain A
rain rain
sun 0.9 0.1 0.7
_ 0.7 '
rain 0.3 0.7 0.1




Weather prediction

. Xt- P Xt Xt-
= Time 0: <0.5,0.5> 1 | POGiX)
sun rain
sun 0.9 0.1
rain 0.3 0.7

= \What is the weather like at time 17?
u P(Xl) = Z P(Xl,XO=XO)
=2 P(Xo =Xo) P(X1| Xo=xo)
= O.5<O.9,0.1> + 0.5<0.3,0.7> =<0.6,0.4>




Weather prediction, contd.

. Xt- P Xt Xt-
* Time 1: <0.6,0.4> 1 | POGiX)
sun rain
sun 0.9 0.1
rain 0.3 0.7

= \What is the weather like at time 2?
" P(X;) = le P(X5, X1=x1)
= le P(X1=x1) P(X; | X1=x)
=0.6<0.9,0.1> + 0.4<0.3,0.7> =<0.66,0.34>




Weather prediction, contd.

= Time 2:<0.66,0.34> [ X Pl

sun rain
sun 0.9 0.1
rain 0.3 0.7

= \What is the weather like at time 3?
" P(X3) = sz P(X3,X;=x;)
= 2y, P(X5=x5) P(X5| Xp=x3)
= 0.66<0.9,0.1> + 0.34<0.3,0.7> =<0.696,0.304>



Forward algorithm (simple form)

Probability from
previous iteration /

= \What is the state at time
- P(Xt) = th_l P(Xt;Xt_lz 2

- th_l P(Xi1=Xp1) P(X¢| Xe1=X1)
" |terate this update starting at t=0

Transition model ]

/




And the same thing in linear algebra

= \What is the weather like at time 2?
P(X,) = 0.6<0.9,0.1> + 0.4<0.3,0.7> = <0.66,0.34>

" |n matrix-vector form:

X1 P(X¢ [ X¢1)
sun rain
0.910.3 0.6 0.66
P(X;) = ( 0.1 0.7) (0.4) - (0.34) sun | | 0.5 0.1
rain 0.3 0.7

= |.e., multiply by T', transpose of transition matrix




Stationary Distributions

" The limiting distribution is called the stationary distribution P_,
of the chain

|t satisfiesP =P, =T P,

= Solving for P_ in the example:
(3202) (z.) = (2)
0.9p+0.3(1-p)=p
p=0.75

Stationary distribution is <0.75,0.25> regardless of starting distribution

006



Stationary Distributions

" Question: What’s P(X) at time t = infinity?

OO

Py (sun) = P(sun|sun)Ps (sun) + P(sun|rain) P (rain)
Py (rain) = P(rain|sun)Ps (sun) + P(rain|rain) Py (rain)
P (sun) = 0.9P (sun) + 0.3 P (rain)

Py (rain) = 0.1 P (sun) 4+ 0.7 Py (rain)

Py (sun) = 3P (rain)

Poo(rain) = 1/3 P (sun)

Py (sun) = 3/4
Py (rain) =1/4

)

Also: P (sun) + Ps(rain) =1

Xew | Xe | P(Xe|Xea)
sun | sun 0.9
sun | rain 0.1
rain | sun 0.3
rain | rain 0.7




Hidden Markov Models




Hidden Markov Models

= Usually the true state is not observed directly

= Hidden Markov models (HMMs)
= Underlying Markov chain over states X
= You observe evidence E at each time step

" X:is asingle discrete variable; £+ may be continuous
and may consist of several variables

OaOnOn Ol




Example: Weather HMM
= An HMM is defined by:

Wy, [ P(W[W,,)

sun rain

sun 0.9 0.1

rain 0.3 0.7
Weather4 Weather;

Umbrella, Umbrella, Umbrella;.,

= |nitial distribution: P(X)
" Transition model: P(X,| X, )

= Sensor model:

P(E.| X)

E

N

Weather,,,
W, P(U,|W,)
true false
sun 0.2 0.8
rain 0.9 0.1




HMM as probability model

= Joint distribution for Markov model:

P(Xg,...) X7) = P(Xg) I I,oq.7 P, | X,q)
= Joint distribution for hidden Markov model:

P(X0, X1, Ex e XryE7) = PXg) [ a7 POX | X i) PLE, | XD
= Future states are independent of the past given the present

= Current evidence is independent of everything else given the current state
= Question: Are evidence variables independent of each other?

- Useful notation:
X(J:b = Xa, X(]+1’ cesy Xb




Real HMM Examples

Speech recognition HMMs:
= QObservations are acoustic signals (continuous valued)
= States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:
= QObservations are words (tens of thousands)
= States are translation options

Robot tracking:
= QObservations are range readings (continuous)
= States are positions on a map (continuous)

Molecular biology:
= QObservations are nucleotides ACGT
= States are coding/non-coding/start/stop/splice-site etc.



Inference tasks

Filtering: P(X,|e;.;)

» pelief state—input to the decision process of a rational agent

= evaluation of possible action sequences; like filtering without the evidence
" Smoothing: P(X,|eq.,) forO< k<t

" better estimate of past states, essential for learning
" Most likely explanation: arg max, P(x.| e;.)

" speech recognition, decoding with a noisy channel



Filtering / Monitoring

Filtering, or monitoring, or state estimation, is the task of
maintaining the distribution f;.; = P(X;|e.;) over time

We start with f, in an initial setting, usually uniform
Filtering is a fundamental task in engineering and science

The Kalman filter (continuous variables, linear dynamics,
Gaussian noise) was invented in 1960 and used for trajectory
estimation in the Apollo program; core ideas used by Gauss for
planetary observations



Example: Robot Localization

Example from
Michael Pfeiffer
]
,'[/
N
Prob 0 1
t=0

Sensor model: four bits for wall/no-wall in each direction, never more than 1 mistake
Transition model: action may fail with small prob.



Example: Robot Localization

S
Prob 0 1

t=1
Lighter grey: was possible to get the reading,

but less likely (required 1 mistake)



Example: Robot Localization

Prob 0 1

t=2



Example: Robot Localization

Prob 0 1

t=3



Example: Robot Localization

Prob 0 1

t=4



Example: Robot Localization

Prob 0 1

t=5



Filtering algorithm

= Aim: devise a recursive filtering algorithm of the form

. P(Xt+1 | el:t+1) = g(et+1' P(th elit) ) Marginal Probability ]
- P(Xt+1 | el:t+1) = P(Xt+1 | €10 et+1) Norm;k:;ciggérick/]

= th P(Xt,Xt+1 |€1.) €441)

Definition of HMM

= th a P(Xt, Xt+1,et+1 |el:t')
= th a P(et+1 |Xt+1) P(Xt | el:t) P(Xt+1| Xty el:t)
= P(et+1 |Xt+1) th 'D(Xt | el:t) P(Xt+1| Xt)

Simple factoring
of a constant




Filtering algorithm

- P(Xt+1 | el t+1) =a P et+1 |Xt+1 Z 'D(Xt | el t) P t+1| Xt)
l Normalize I }odate }edlct

- fl:t+1 = FORWARD(fl:t ’ et+1)
= Cost per time step: O(|X|?) where |X| is the number of states

" Time and space costs are constant, independent of t

= O(|X]?) is infeasible for models with many state variables

= Will introduce approximate filtering algorithms soon



Summary: Filtering

Filtering is the inference process of finding a distribution over X; given e, through e; :
P(Xr | epy)

We first compute P( X, | e;): P(z1]e1) o< P(x1) - P(e1|z1)

Foreachtfrom2to T, we have P( X, ; | €1.t.1)

Elapse time: compute P( X, | €1.1)

P(mt‘elzt—l) — Z P(ﬂ7t—1‘€1:t—1) ' P(%’ﬂ?t—l)

Lt—1

Observe: compute P(X; | €1...1, €) =P( X, | €14)

P(xlers) o< Plxglers—1) - Peg]xy)



Example: Weather HMM (

P(s1|wg) = .6 =.5%.9+5*3 P(s,|w;) = 0.45 = 25%.9 + .75 * 3
P(ri|wp) = .4 =5%1+5%7 P(ry|w;) =0.55=.25%1+.75+*7
predict dat
update :

g predict Update W, | P(W,IW,,)
f(sun) = 0.5 f(sun) = 0.25 = .2*.6/(.2*.6 + .9*.4) f(sun) = 0.154 = 2*45/(.2* 45 + 9*55) sun rain
f(rain) =0.5 f(rain) = 0.75 = .9*.4/(.2*.6 + .9*.4) f(rain) = 0.846 = .9%.55/(.2* 45+ .9*.55) | sun | 0.9 0.1

rain 0.3 0.7
W, P(U,|W,)

P(W,) true false
. sun 0.2 0.8

sun rain

0.5 0.5 rain 0.9 0.1

P(Xt+1 | el:t+1) = P(et+1 |Xt+1) th 'D(Xt | el:t) P(Xt+1| Xt)
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Most Likely Explanation
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Inference tasks

" Filtering: P(X,|e.;)

» pelief state—input to the decision process of a rational agent
" Prediction: P(X;,.|e,.;) fork>0

= evaluation of possible action sequences; like filtering without the evidence
" Smoothing: P(X,|eq.,) forO< k<t

" better estimate of past states, essential for learning

Most likely explanation: arg max, P(x..| e;)

" speech recognition, decoding with a noisy channel




Most likely explanation = most probable path*

State trellis: graph of states and transitions over time

< sun

rain

Xo

sun

rain

X1

sun

rain

sun

rain

AT

Each arc represents some transition x;_; — X;

arg maxy, P(xq. | eq.4)
= arg max,, o P(xq., €1.)
=arg max,, . P(X.t, €1:¢)

= arg max,, . P(xp) Ht Px; | x.1) Pleg | x¢)

Each arc has weight P(x; | x;_1) P(e; | x;) (arcs to initial states have weight P(x) )

The product of weights on a path is proportional to that state sequence’s probability

Forward algorithm computes sums of paths, Viterbi algorithm computes best paths



Forward / Viterbi algorithms*

< sun sun
rain rain

Xo X1

Forward Algorithm (sum)

For each state at time t, keep track of
the total probability of all paths to it

f1..s1 = FORWARD(fy.; , €444)
= P(et+1 | Xt+1) th P(Xt+1| Xt) f1:t

sun

rain

sun

rain
Xt

Viterbi Algorithm (max)

For each state at time t, keep track of
the maximum probability of any path to it

M1 = VITERBI(M .y , €441)
= P(ep1] Xiyy) maXy, P(Xeea | Xe) My



Particle Filtering




We need a new algorithm!

= When | X]| is grows, exact inference becomes infeasible
= O(|X]?) cost per time step
" (e.g., 3 ghostsin a 10x20 world, continuous domains)

OaOnOn Ol




Particle Filtering

= Represent belief state by a set of samples
= Samples are called particles
= Time per step is linear in the number of samples
= But: number needed may be large

= This is how robot localization works in practice

01| o
0 | 02
02 | 05
O
o0
00 | o




Representation: Particles

= Qur representation of P(X) is now a list of N << | X| particles

" P(x) approximated by number of particles with value x
= So, many x may have P(x) =0 |
" More particles => more accuracy (cf. frequency histograms)

= Usually we want a low-dimensional marginal
= E.g., “Where is ghost 1?” rather than “Are ghosts 1,2,3 in [2,6], [5,6], and [8,11]?”

Particles:
(1,2)
(2,3)
(2,3)
(3,2)
(3,2)
(3,3)
(3,3)
(3,3)
(3,3)
(3,3)




Particle Filtering: Prediction step

Particles:
. . . (1,2)
= Particle j in state x;// samples a new state directly (23

from the transition model: g;;

o%)

o Xt+1(j) ~ 'D(Xt+1 | Xt(j)) 8;; ®

—

= Here, most samples move clockwise, but some move in 82;

another direction or stay in place (3,3)
(3,3)

" For example: Pa(r;ic?’l)es:

Xpe1 "~ PXpgq | xgoem) = <P((3,3) | (3,3)), P((2,3) | (3,3)), P((3,2) | (3,3))> (2,2)

=<1/3,1/3,1/3> (2,3) O
(2,3)

. (3,1)
(What if the transition model is almost deterministic?) (3,2)

(3,2)
(3,2)

(3,3)
(3,3)



Particle Filtering: Update step

Particles:
(1,2)
= After observing e, : (2,3) °
(2,3) ® O
. . . . . . (3,2) ®
= As in likelihood weighting, weight each (3,2) Oq
sample based on the evidence 82;
: . ’ @
- W(j) - P(et+1| Xt+1(j)) (33)
(3,3)
(3,3)
®" Normalize the weights: particles that fit particles.
the data better get higher weights, (1,3) w=.1
others get lower weights (2,2) w=.4 ~
(2,3) w=.2 ® ®
" For example, say e,.; = (3,2) (2,3) w=.2
- _ _ (3,1) w=.4
W(green) - P((312)| (3/2)) - 9 (3,2) w=.9
= withe) =P((3,2)] (2,3)) = .2 (32) w=s -
(3,2) w=.9
(3,3) w=.4




Particle Filtering: Resample

= Rather than tracking weighted samples, we

resample

= NN times, we choose from our weighted sample

distribution

- Xt+1(j) ~ N(Xt+1| el:t) / N=a W(Xt+1| el:t)

= (i.e., draw with replacement)

= Now the update is complete for this time step,
continue with the next one (with weights reset

to 1)

.02 .08 17
0 .08 .56
0 0 .08

routine weighted-sample:
return random() in @ W(X:.1| €1.)

Particles:

(New) Particles:
(2,2)

e’




Summary: Particle Filtering

= Particles: track samples of states rather than an explicit distribution

Prediction Update/Weight
e o ——

o 0% Ear R

o - o |52

O

Particles: Particles: Particles:

(1,2) (1,3) (1,3) w=.1
(2,3) (2,2) (2,2) w=.4
(2,3) (2,3) (2,3) w=.2
(3,2) (2,3) (2,3) w=.2
(3,2) (3,1) (3,1) w=.4
(3,3) (3,2) (3,2) w=.9
(3,3) (3,2) (3,2) w=.9
(3,3) (3,2) (3,2) w=.9
(3,3) (3,3) (3,3) w=.4
(3,3) (3,3) (3,3) w=.4

Resample

(New) Particles:
(2,2)
(2,3)
(3,1)
(3,1)
(3,2)
(3,2)
(3,2)
(3,2)
(3,2)
(3,3)



Robot Localization

= |nrobot localization:
= We know the map, but not the robot’s position

= QObservations may be vectors of range finder readings DIRECTORY

= State space and readings are typically continuous so we
cannot usually represent or compute an exact posterior

= Particle filtering is a main technique




Particle Filter Localization (Sonar)

Global localization with
© SONAr SENSOrs '




Robot Mapping

= SLAM: Simultaneous Localization And Mapping
= Robot does not know map or location
= State x," consists of position+orientation, map!

= (Each map usually inferred exactly given sampled
position+orientation sequence)

r o ‘\

}:]! :

CH; & 1_
S
by | ]k
S L L |

DP-SLAM, Ron Parr

[Demo: PARTICLES-SLAM-mappingl-new.avi]



Particle Filter SLAM — Video

[Demo: PARTICLES-SLAM-fastslam.avi]



Dynamic Bayes’ Nets




Dynamic Bayes Nets (DBNs)

We want to track multiple variables over time, using ( °
multiple sources of evidence %%ﬁ O oo
|dea: Repeat a fixed Bayes net structure at each time ' Zj/@
Variables at time t can have parents at time t-1 \
t=1 t=2 t=3 P2/
G,? G, Gy® k------ ——-»
G | G, | Gsb _::::t____,




DBNs and HMMs

= Every HMM is a single-variable DBN

= Every discrete DBN is an HMM
= HMM state is Cartesian product of DBN state variables

= Sparse dependencies => exponentially fewer parameters in DBN

= E.g., 20 state variables, 3 parents each;
DBN has 20 x 23 = 160 parameters, HMM has 220 x 220 =~ 102 parameters



Exact Inference in DBNs

= Variable elimination applies to dynamic Bayes nets
= Offline: “unroll” the network for T time steps, then eliminate variables to find P(X;|e;.7)

t=1 t=2 t=3

—
@ @O @6

= Online: eliminate all variables from the previous time step; store factors for current time only

= Problem: largest factor contains all variables for current time (plus a few more)
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Application: ICU monitoring

" State: variables describing physiological state of patient

" Evidence: values obtained from monitoring devices

" Transition model: physiological dynamics, sensor dynamics

" Query variables: pathophysiological conditions (a.k.a. bad things)

68



Toy DBN: heart rate monitoring

pa rameter
variable time t+1 time t42 ...

state
variable

patien

moveme

sensor
variable

sensor state
variable




The enhanced heart-rate DBN's inferences on data from a healthy 40-year-old man

1 | ] |
Inferred current heart rate +
160 - Inferred resting heart rate -~~~
Sensed heart rate from ECG --------
Sensed pulse rate from pulse oximeter -
140 |k Inferred probability of patient movement -
Inferred probability of ECG artifact/disconnection --------
120 |
1 00 - . . ‘ | A_-.Q —
g 7, | " t ‘q; | E
2 et T3 EEEER LT FT L3 Ml | B
= 80 | 1 e S S s o A TR A x 12
L4 ' ': I ] ] ] b_
<+ :; ; [
) ; | i
o o i
= 60 - ' | -
40 11
20 F T s T e — -0
0 1 1 L 1
o) 5 10 15 20 25

minute



ICU data: 22 variables, 1min avg.
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[858)

acetaminophen (650)
fentanyl (43)

indomethacin (25)

cefepime (2)

celtraxone (1000)
metronidazole (Flagyl) (500)
vancomycin ( 1000)

Zosyn (piperacillin-tazobactam) (4)
phenylephrine (167)
furosemide (20)

dextrose 50%% (50)

regular insulin (4; 14)

phenyvtoin (143)

ascorbic acid (Vitamin C) (300)
bisacodyl (10)

docusate sodium (250)
Gastrogratin (400)
KCl(12)

KPO4 (18)

magnesium sulfate (2)
NaCl (3)

NaPO4 (2)

ProMaod (3)

retinol (Vitamin A) (25000)
sodium phosphate (22)
vecuronium (10)

ZnSO4 (220)

famotidine (20)

heparin (5000)
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