
CSE 473: Artificial Intelligence
Machine Learning

slides adapted from
Stuart Russel, Dan Klein, Pieter Abbeel from ai.berkeley.edu
And Hanna Hajishirzi, Jared Moore, Dan Weld

Machine Learning

§ Up until now: how use a model to make optimal decisions

§ Machine learning: how to acquire a model from data / experience
§ Learning parameters (e.g. probabilities)
§ Learning structure (e.g. BN graphs)
§ Learning hidden concepts (e.g. clustering)

§ Today: model-based classification with Naive Bayes

Classification

Example: Spam Filter

§ Input: an email
§ Output: spam/ham

§ Setup:
§ Get a large collection of example emails, each labeled

“spam” or “ham”
§ Note: someone has to hand label all this data!
§ Want to learn to predict labels of new, future emails

§ Features: The attributes used to make the ham /
spam decision
§ Words: FREE!
§ Text Patterns: $dd, CAPS
§ Non-text: SenderInContacts
§ …

Dear Sir.

First, I must solicit your confidence in
this transaction, this is by virture of its
nature as being utterly confidencial and
top secret. …

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, I know it was
working pre being stuck in the corner,
but when I plugged it in, hit the power
nothing happened.

Example: Digit Recognition

§ Input: images / pixel grids
§ Output: a digit 0-9

§ Setup:
§ Get a large collection of example images, each labeled with a digit
§ Note: someone has to hand label all this data!
§ Want to learn to predict labels of new, future digit images

§ Features: The attributes used to make the digit decision
§ Pixels: (6,8)=ON
§ Shape Patterns: NumComponents, AspectRatio, NumLoops
§ …

0

1

2

1

??

Other Classification Tasks

§ Classification: given inputs x, predict labels (classes) y

§ Examples:
§ Spam detection (input: document,

classes: spam / ham)
§ OCR (input: images, classes: characters)
§ Medical diagnosis (input: symptoms,

classes: diseases)
§ Automatic essay grading (input: document,

classes: grades)
§ Fraud detection (input: account activity,

classes: fraud / no fraud)
§ Customer service email routing
§ … many more

§ Classification is an important commercial technology!

Model-Based Classification

Model-Based Classification

§ Model-based approach
§ Build a model (e.g. Bayes’ net) where

both the label and features are
random variables

§ Instantiate any observed features
§ Query for the distribution of the label

conditioned on the features

§ Challenges
§ What structure should the BN have?
§ How should we learn its parameters?

Naïve Bayes for Digits

§ Naïve Bayes: Assume all features are independent effects of the label

§ Simple digit recognition version:
§ One feature (variable) Fij for each grid position <i,j>
§ Feature values are on / off, based on whether intensity

is more or less than 0.5 in underlying image
§ Each input maps to a feature vector, e.g.

§ Here: lots of features, each is binary valued

§ Naïve Bayes model:

§ What do we need to learn?

Y

F1 FnF2

General Naïve Bayes

§ A general Naive Bayes model:

§ We only have to specify how each feature depends on the class
§ Total number of parameters is linear in n
§ Model is very simplistic, but often works anyway

Y

F1 FnF2

|Y| parameters

n x |F| x |Y|
parameters

|Y| x |F|n values

Inference for Naïve Bayes

§ Goal: compute posterior distribution over label variable Y
§ Step 1: get joint probability of label and evidence for each label

§ Step 2: sum to get probability of evidence

§ Step 3: normalize by dividing Step 1 by Step 2

+

General Naïve Bayes

§ What do we need in order to use Naïve Bayes?

§ Inference method (we just saw this part)
§ Start with a bunch of probabilities: P(Y) and the P(Fi|Y) tables
§ Use standard inference to compute P(Y|F1…Fn)
§ Nothing new here

§ Estimates of local conditional probability tables
§ P(Y), the prior over labels
§ P(Fi|Y) for each feature (evidence variable)
§ These probabilities are collectively called the parameters of the model

and denoted by q
§ Up until now, we assumed these appeared by magic, but…
§ …they typically come from training data counts: we’ll look at this soon

Example: Conditional Probabilities

1 0.1
2 0.1
3 0.1
4 0.1
5 0.1
6 0.1
7 0.1
8 0.1
9 0.1
0 0.1

1 0.01
2 0.05
3 0.05
4 0.30
5 0.80
6 0.90
7 0.05
8 0.60
9 0.50
0 0.80

1 0.05
2 0.01
3 0.90
4 0.80
5 0.90
6 0.90
7 0.25
8 0.85
9 0.60
0 0.80

Naïve Bayes for Text

§ Bag-of-words Naïve Bayes:
§ Features: Wi is the word at positon i
§ As before: predict label conditioned on feature variables (spam vs. ham)
§ As before: assume features are conditionally independent given label
§ New: each Wi is identically distributed

§ Generative model:

§ “Tied” distributions and bag-of-words
§ Usually, each variable gets its own conditional probability distribution P(F|Y)
§ In a bag-of-words model

§ Each position is identically distributed
§ All positions share the same conditional probs P(W|Y)
§ Why make this assumption?

§ Called “bag-of-words” because model is insensitive to word order or reordering

Word at position
i, not ith word in
the dictionary!

Example: Spam Filtering

§ Model:

§ What are the parameters?

§ Where do these tables come from?

the : 0.0156
to : 0.0153
and : 0.0115
of : 0.0095
you : 0.0093
a : 0.0086
with: 0.0080
from: 0.0075
...

the : 0.0210
to : 0.0133
of : 0.0119
2002: 0.0110
with: 0.0108
from: 0.0107
and : 0.0105
a : 0.0100
...

ham : 0.66
spam: 0.33

Spam Example

Word P(w|spam) P(w|ham) Tot Spam Tot Ham
(prior) 0.33333 0.66666 -1.1 -0.4
Gary 0.00002 0.00021 -11.8 -8.9
would 0.00069 0.00084 -19.1 -16.0
you 0.00881 0.00304 -23.8 -21.8
like 0.00086 0.00083 -30.9 -28.9
to 0.01517 0.01339 -35.1 -33.2
lose 0.00008 0.00002 -44.5 -44.0
weight 0.00016 0.00002 -53.3 -55.0
while 0.00027 0.00027 -61.5 -63.2
you 0.00881 0.00304 -66.2 -69.0
sleep 0.00006 0.00001 -76.0 -80.5

P(spam | w) = 98.9

Training and Testing

Important Concepts

§ Data: labeled instances, e.g. emails marked spam/ham
§ Training set
§ Held out set
§ Test set

§ Features: attribute-value pairs which characterize each x

§ Experimentation cycle
§ Learn parameters (e.g. model probabilities) on training set
§ (Tune hyperparameters on held-out set)
§ Compute accuracy of test set
§ Very important: never “peek” at the test set!

§ Evaluation
§ Accuracy: fraction of instances predicted correctly

§ Overfitting and generalization
§ Want a classifier which does well on test data
§ Overfitting: fitting the training data very closely, but not

generalizing well
§ We’ll investigate overfitting and generalization formally in a few

lectures

Training
Data

Held-Out
Data

Test
Data

Generalization and Overfitting

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting

Example: Overfitting

2 wins!!

Example: Overfitting

§ Posteriors determined by relative probabilities (odds ratios):

south-west : inf
nation : inf
morally : inf
nicely : inf
extent : inf
seriously : inf
...

What went wrong here?

screens : inf
minute : inf
guaranteed : inf
$205.00 : inf
delivery : inf
signature : inf
...

Generalization and Overfitting

§ Relative frequency parameters will overfit the training data!
§ Just because we never saw a 3 with pixel (15,15) on during training doesn’t mean we won’t see it at test time
§ Unlikely that every occurrence of “minute” is 100% spam
§ Unlikely that every occurrence of “seriously” is 100% ham
§ What about all the words that don’t occur in the training set at all?
§ In general, we can’t go around giving unseen events zero probability

§ As an extreme case, imagine using the entire email as the only feature
§ Would get the training data perfect (if deterministic labeling)
§ Wouldn’t generalize at all
§ Just making the bag-of-words assumption gives us some generalization, but isn’t enough

§ To generalize better: we need to smooth or regularize the estimates

Parameter Estimation

Parameter Estimation

§ Estimating the distribution of a random variable

§ Elicitation: ask a human (why is this hard?)

§ Empirically: use training data (learning!)
§ E.g.: for each outcome x, look at the empirical rate of that value:

§ This is the estimate that maximizes the likelihood of the data

r r b

r b b

r bb
rb b

r bb

r

b

b

Smoothing

Maximum Likelihood?

§ Relative frequencies are the maximum likelihood estimates

§ Another option is to consider the most likely parameter value given the data

????

Unseen Events

Laplace Smoothing

§ Laplace’s estimate:
§ Pretend you saw every outcome

once more than you actually did

§ Can derive this estimate with
Dirichlet priors (see cs281a)

r r b

Laplace Smoothing

§ Laplace’s estimate (extended):
§ Pretend you saw every outcome k extra times

§ What’s Laplace with k = 0?
§ k is the strength of the prior

§ Laplace for conditionals:
§ Smooth each condition independently:

r r b

Estimation: Linear Interpolation*

§ In practice, Laplace often performs poorly for P(X|Y):
§ When |X| is very large
§ When |Y| is very large

§ Another option: linear interpolation
§ Also get the empirical P(X) from the data
§ Make sure the estimate of P(X|Y) isn’t too different from the empirical P(X)

§ What if a is 0? 1?

§ For even better ways to estimate parameters, as well as details of
the math, see cs281a, cs288

Real NB: Smoothing

§ For real classification problems, smoothing is critical
§ New odds ratios:

helvetica : 11.4
seems : 10.8
group : 10.2
ago : 8.4
areas : 8.3
...

verdana : 28.8
Credit : 28.4
ORDER : 27.2
 : 26.9
money : 26.5
...

Do these make more sense?

Tuning

Tuning on Held-Out Data

§ Now we’ve got two kinds of unknowns
§ Parameters: the probabilities P(X|Y), P(Y)
§ Hyperparameters: e.g. the amount / type of

smoothing to do, k, a

§ What should we learn where?
§ Learn parameters from training data
§ Tune hyperparameters on different data

§ Why?
§ For each value of the hyperparameters, train

and test on the held-out data
§ Choose the best value and do a final test on

the test data

Features

Errors, and What to Do

§ Examples of errors

Dear GlobalSCAPE Customer,

GlobalSCAPE has partnered with ScanSoft to offer you the
latest version of OmniPage Pro, for just $99.99* - the regular
list price is $499! The most common question we've received
about this offer is - Is this genuine? We would like to assure
you that this offer is authorized by ScanSoft, is genuine and
valid. You can get the . . .

. . . To receive your $30 Amazon.com promotional certificate,
click through to

http://www.amazon.com/apparel

and see the prominent link for the $30 offer. All details are
there. We hope you enjoyed receiving this message. However, if
you'd rather not receive future e-mails announcing new store
launches, please click . . .

What to Do About Errors?

§ Need more features– words aren’t enough!
§ Have you emailed the sender before?
§ Have 1K other people just gotten the same email?
§ Is the sending information consistent?
§ Is the email in ALL CAPS?
§ Do inline URLs point where they say they point?
§ Does the email address you by (your) name?

§ Can add these information sources as new
variables in the NB model

§ Next class we’ll talk about classifiers which let
you easily add arbitrary features more easily

Baselines

§ First step: get a baseline
§ Baselines are very simple “straw man” procedures
§ Help determine how hard the task is
§ Help know what a “good” accuracy is

§ Weak baseline: most frequent label classifier
§ Gives all test instances whatever label was most common in the training set
§ E.g. for spam filtering, might label everything as ham
§ Accuracy might be very high if the problem is skewed
§ E.g. calling everything “ham” gets 66%, so a classifier that gets 70% isn’t very good…

§ For real research, usually use previous work as a (strong) baseline

Confidences from a Classifier

§ The confidence of a probabilistic classifier:
§ Posterior over the top label

§ Represents how sure the classifier is of the
classification

§ Any probabilistic model will have confidences
§ No guarantee confidence is correct

§ Calibration
§ Weak calibration: higher confidences mean

higher accuracy
§ Strong calibration: confidence predicts accuracy

rate
§ What’s the value of calibration?

Summary

§ Bayes rule lets us do diagnostic queries with causal probabilities

§ The naïve Bayes assumption takes all features to be independent given the class label

§ We can build classifiers out of a naïve Bayes model using training data

§ Smoothing estimates is important in real systems

§ Classifier confidences are useful, when you can get them

Error-Driven Classification

Errors, and What to Do

§ Examples of errors
Dear GlobalSCAPE Customer,

GlobalSCAPE has partnered with ScanSoft to offer you the
latest version of OmniPage Pro, for just $99.99* - the regular
list price is $499! The most common question we've received
about this offer is - Is this genuine? We would like to assure
you that this offer is authorized by ScanSoft, is genuine and
valid. You can get the . . .

. . . To receive your $30 Amazon.com promotional certificate,
click through to

http://www.amazon.com/apparel

and see the prominent link for the $30 offer. All details are
there. We hope you enjoyed receiving this message. However, if
you'd rather not receive future e-mails announcing new store
launches, please click . . .

What to Do About Errors

§ Problem: there’s still spam in your inbox

§ Need more features – words aren’t enough!
§ Have you emailed the sender before?
§ Have 1M other people just gotten the same email?
§ Is the sending information consistent?
§ Is the email in ALL CAPS?
§ Do inline URLs point where they say they point?
§ Does the email address you by (your) name?

§ Naïve Bayes models can incorporate a variety of features, but tend to do
best in homogeneous cases (e.g. all features are word occurrences)

Later On…

Web Search

Decision Problems

Linear Classifiers

Feature Vectors

Hello,

Do you want free printr
cartriges? Why pay more
when you can get them
ABSOLUTELY FREE! Just

free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
...

SPAM
or
+

PIXEL-7,12 : 1
PIXEL-7,13 : 0
...
NUM_LOOPS : 1
...

“2”

Some (Simplified) Biology

§ Very loose inspiration: human neurons

Linear Classifiers

§ Inputs are feature values
§ Each feature has a weight
§ Sum is the activation

§ If the activation is:
§ Positive, output +1
§ Negative, output -1

S
f1
f2
f3

w1

w2

w3
>0?

Weights
§ Binary case: compare features to a weight vector
§ Learning: figure out the weight vector from examples

free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
...

free : 4
YOUR_NAME :-1
MISSPELLED : 1
FROM_FRIEND :-3
...

free : 0
YOUR_NAME : 1
MISSPELLED : 1
FROM_FRIEND : 1
...

Dot product positive
means the positive class

Decision Rules

Binary Decision Rule

§ In the space of feature vectors
§ Examples are points
§ Any weight vector is a hyperplane
§ One side corresponds to Y=+1
§ Other corresponds to Y=-1

BIAS : -3
free : 4
money : 2
... 0 1

0

1

2

free
m

on
ey

+1 = SPAM

-1 = HAM

Weight Updates

Learning: Binary Perceptron

§ Start with weights = 0
§ For each training instance:

§ Classify with current weights

§ If correct (i.e., y=y*), no change!

§ If wrong: adjust the weight vector

Learning: Binary Perceptron

§ Start with weights = 0
§ For each training instance:

§ Classify with current weights

§ If correct (i.e., y=y*), no change!
§ If wrong: adjust the weight vector by

adding or subtracting the feature
vector. Subtract if y* is -1.

Examples: Perceptron

§ Separable Case

Multiclass Decision Rule

§ If we have multiple classes:
§ A weight vector for each class:

§ Score (activation) of a class y:

§ Prediction highest score wins

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron

§ Start with all weights = 0
§ Pick up training examples one by one
§ Predict with current weights

§ If correct, no change!
§ If wrong: lower score of wrong answer,

raise score of right answer

Example: Multiclass Perceptron

BIAS : 1
win : 0
game : 0
vote : 0
the : 0
...

BIAS : 0
win : 0
game : 0
vote : 0
the : 0
...

BIAS : 0
win : 0
game : 0
vote : 0
the : 0
...

“win the vote”

“win the election”

“win the game”

Properties of Perceptrons

§ Separability: true if some parameters get the training set
perfectly correct

§ Convergence: if the training is separable, perceptron will
eventually converge (binary case)

§ Mistake Bound: the maximum number of mistakes (binary
case) related to the margin or degree of separability

Separable

Non-Separable

Examples: Perceptron

§ Non-Separable Case

Improving the Perceptron

Problems with the Perceptron

§ Noise: if the data isn’t separable,
weights might thrash
§ Averaging weight vectors over time

can help (averaged perceptron)

§ Mediocre generalization: finds a
“barely” separating solution

§ Overtraining: test / held-out
accuracy usually rises, then falls
§ Overtraining is a kind of overfitting

Fixing the Perceptron

§ Idea: adjust the weight update to mitigate these effects

§ MIRA*: choose an update size that fixes the current
mistake…

§ … but, minimizes the change to w

§ The +1 helps to generalize

* Margin Infused Relaxed Algorithm

Minimum Correcting Update

min not t=0, or would not have
made an error, so min will be
where equality holds

Maximum Step Size

§ In practice, it’s also bad to make updates that are too large
§ Example may be labeled incorrectly
§ You may not have enough features
§ Solution: cap the maximum possible value of t with some

constant C

§ Corresponds to an optimization that assumes non-separable data
§ Usually converges faster than perceptron
§ Usually better, especially on noisy data

Linear Separators

§ Which of these linear separators is optimal?

Support Vector Machines

§ Maximizing the margin: good according to intuition, theory, practice
§ Only support vectors matter; other training examples are ignorable
§ Support vector machines (SVMs) find the separator with max margin
§ Basically, SVMs are MIRA where you optimize over all examples at once

MIRA

SVM

Classification: Comparison

§ Naïve Bayes
§ Builds a model training data
§ Gives prediction probabilities
§ Strong assumptions about feature independence
§ One pass through data (counting)

§ Perceptrons / MIRA:
§ Makes less assumptions about data
§ Mistake-driven learning
§ Multiple passes through data (prediction)
§ Often more accurate

Web Search

Extension: Web Search

§ Information retrieval:
§ Given information needs, produce information
§ Includes, e.g. web search, question answering,

and classic IR

§ Web search: not exactly classification, but
rather ranking

x = “Apple Computers”

Feature-Based Ranking

x = “Apple Computer”

x,

x,

Perceptron for Ranking

§ Inputs
§ Candidates
§ Many feature vectors:
§ One weight vector:

§ Prediction:

§ Update (if wrong):

Case-Based Learning

Non-Separable Data

Case-Based Reasoning

§ Classification from similarity
§ Case-based reasoning
§ Predict an instance’s label using similar instances

§ Nearest-neighbor classification
§ 1-NN: copy the label of the most similar data point
§ K-NN: vote the k nearest neighbors (need a weighting

scheme)
§ Key issue: how to define similarity
§ Trade-offs: Small k gives relevant neighbors, Large k gives

smoother functions

http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html

Parametric / Non-Parametric

§ Parametric models:
§ Fixed set of parameters
§ More data means better settings

§ Non-parametric models:
§ Complexity of the classifier increases with data
§ Better in the limit, often worse in the non-limit

§ (K)NN is non-parametric Truth

2 Examples 10 Examples 100 Examples 10000 Examples

Nearest-Neighbor Classification

§ Nearest neighbor for digits:
§ Take new image
§ Compare to all training images
§ Assign based on closest example

§ Encoding: image is vector of intensities:

§ What’s the similarity function?
§ Dot product of two images vectors?

§ Usually normalize vectors so ||x|| = 1
§ min = 0 (when?), max = 1 (when?)

0

1

2

0

1

2

Similarity Functions

Basic Similarity

§ Many similarities based on feature dot products:

§ If features are just the pixels:

§ Note: not all similarities are of this form

Invariant Metrics

§ Better similarity functions use knowledge about vision
§ Example: invariant metrics:

§ Similarities are invariant under certain transformations
§ Rotation, scaling, translation, stroke-thickness…
§ E.g:

§ 16 x 16 = 256 pixels; a point in 256-dim space
§ These points have small similarity in R256 (why?)

§ How can we incorporate such invariances into our similarities?

This and next few slides adapted from Xiao Hu, UIUC

Rotation Invariant Metrics

§ Each example is now a curve in R256

§ Rotation invariant similarity:

s’=max s(r(), r())

§ E.g. highest similarity between images’
rotation lines

Template Deformation

§ Deformable templates:
§ An “ideal” version of each category
§ Best-fit to image using min variance
§ Cost for high distortion of template
§ Cost for image points being far from distorted template

§ Used in many commercial digit recognizers

Examples from [Hastie 94]

A Tale of Two Approaches…

§ Nearest neighbor-like approaches
§ Can use fancy similarity functions
§ Don’t actually get to do explicit learning

§ Perceptron-like approaches
§ Explicit training to reduce empirical error
§ Can’t use fancy similarity, only linear
§ Or can they? Let’s find out!

Non-Linearity

Non-Linear Separators

§ Data that is linearly separable works out great for linear decision rules:

§ But what are we going to do if the dataset is just too hard?

§ How about… mapping data to a higher-dimensional space:

0

0

0

x2

x

x

x

This and next few slides adapted from Ray Mooney, UT

Non-Linear Separators

§ General idea: the original feature space can always be mapped to some higher-
dimensional feature space where the training set is separable:

Φ: x→ φ(x)

Recap: Classification

§ Classification systems:
§ Supervised learning
§ Make a prediction given evidence
§ We’ve seen several methods for this
§ Useful when you have labeled data

Clustering

§ Clustering systems:
§ Unsupervised learning
§ Detect patterns in unlabeled data

§ E.g. group emails or search results
§ E.g. find categories of customers
§ E.g. detect anomalous program executions

§ Useful when don’t know what you’re
looking for

§ Requires data, but no labels
§ Often get gibberish

Clustering

Clustering

§ Basic idea: group together similar instances
§ Example: 2D point patterns

§ What could “similar” mean?
§ One option: small (squared) Euclidean distance

K-Means

K-Means

§ An iterative clustering
algorithm
§ Pick K random points as cluster

centers (means)
§ Alternate:

§ Assign data instances to closest
mean

§ Assign each mean to the average of
its assigned points

§ Stop when no points’
assignments change

K-Means Example

K-Means as Optimization

§ Consider the total distance to the means:

§ Each iteration reduces phi

§ Two stages each iteration:
§ Update assignments: fix means c, change assignments a
§ Update means: fix assignments a, change means c

points
assignments

means

Phase I: Update Assignments

§ For each point, re-assign to
closest mean:

§ Can only decrease total
distance phi!

Phase II: Update Means

§ Move each mean to the average
of its assigned points:

§ Also can only decrease total
distance… (Why?)

§ Fun fact: the point y with
minimum squared Euclidean
distance to a set of points {x} is
their mean

Initialization

§ K-means is non-deterministic
§ Requires initial means
§ It does matter what you pick!
§ What can go wrong?

§ Various schemes for preventing
this kind of thing: variance-based
split / merge, initialization
heuristics

K-Means Getting Stuck

§ A local optimum:

Why doesn’t this work out like the
earlier example, with the purple
taking over half the blue?

K-Means Questions

§ Will K-means converge?
§ To a global optimum?

§ Will it always find the true patterns in the data?
§ If the patterns are very very clear?

§ Will it find something interesting?

§ Do people ever use it?

§ How many clusters to pick?

Agglomerative Clustering

Agglomerative Clustering

§ Agglomerative clustering:
§ First merge very similar instances
§ Incrementally build larger clusters out of

smaller clusters

§ Algorithm:
§ Maintain a set of clusters
§ Initially, each instance in its own cluster
§ Repeat:

§ Pick the two closest clusters
§ Merge them into a new cluster
§ Stop when there’s only one cluster left

§ Produces not one clustering, but a family of
clusterings represented by a dendrogram

Agglomerative Clustering

§ How should we define “closest” for clusters with
multiple elements?

§ Many options
§ Closest pair (single-link clustering)
§ Farthest pair (complete-link clustering)
§ Average of all pairs
§ Ward’s method (min variance, like k-means)

§ Different choices create different clustering
behaviors

