CSE 473: Artificial Intelligence

Markov Decision Processes

slides adapted from
Stuart Russel, Dan Klein, Pieter Abbeel from ai.berkeley.edu
And Hanna Hajishirzi, Jared Moore, Dan Weld

Non-Deterministic Search

Example: Grid World

= A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

= Noisy movement: actions do not always go as planned

= 80% of the time, the action North takes the agent North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

= |f thereis a wall in the direction the agent would have
been taken, the agent stays put

= The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad) 0.8

» Goal: maximize sum of rewards 0.1 0.1

Grid World Actions

Deterministic Grid World Stochastic Grid World

Markov Decision Processes

= An MDP is defined by:

m Asetofstatess €S
m AsetofactionsacA

= A transition function T(s, a, s’)
= Probability that a from s leads to s, i.e., P(s’| s, a)
= Also called the model or the dynamics

/T(sll, E, ... \

0
=0.8 Tis a Big Table!
= 8-% 11 X 4x 11 = 484 entries

/ For now, we give this as input to the agent

Markov Decision Processes

= An MDP is defined by:

m Asetofstatess €S
m AsetofactionsacA

= A transition function T(s, a, s’)
= Probability that a from s leads to s, i.e., P(s’| s, a)
= Also called the model or the dynamics

= Areward function R(s, a, s')
= Sometimes just R(s) or R(s’)

4 N

R(S32, .I.\.I, 533) = '0.01 1

Cost of breathing

R(s35, N, 54,) =-1.01 R is also a Big Table!
R(ss3, E, S43) = 0.99

- For now, we also give this to the agent

Markov Decision Processes

An MDP is defined by:

= Asetofstatess €S

= AsetofactionsaeA

= A transition function T(s, a, s’)
= Probability that a from s leads to s, i.e., P(s’| s, a)
= Also called the model or the dynamics

A reward function R(s, a, s’)
= Sometimes just R(s) or R(s’)

A start state

Maybe a terminal state

MDPs are non-deterministic search problems
= One way to solve them is with expectimax search
= We'll have a new tool soon

What is Markov about MDPs?

= “Markov” generally means that given the present state, the
future and the past are independent

= For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(St—i—l = Sl\St — StaAt = Ay, Si—1 = St—1,At—1, ...50 = So)

Andrey Markov
P(St_|_1 = S"St = S¢, At = Clt) (1856-1922)

= This is just like search, where the successor function could only
depend on the current state (not the history)

Policies

In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

For MDPs, we want an optimal
policy m*:S > A

= A policy t gives an action for each state

= An optimal policy is one that maximizes
expected utility if followed

Optimal policy when R(s, a, s’) =-0.4 for
all non-terminals s

= An explicit policy defines a reflex agent

Optimal Policies

o N
T Il
= ©
I~ o

Example: Racing

Example: Racing

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

Going faster gets double reward 0.5

Slow

Overheated

Racing Search Tree

MDP Search Trees

= Each MDP state projects an expectimax-like search tree

(s,a,s) called a transition
T(s,a,s") = P(s” |s,a)

R(s,a,s”)

Utilities of Sequences

Utilities of Sequences
= What preferences should an agent have over reward sequences?
= Moreorless? [1,2,2] or [2,3,4]

= Now or later? [0, O, 1] or [1,0,0]

Discounting

" |t’s reasonable to maximize the sum of rewards
" |t’s also reasonable to prefer rewards now to rewards later
= One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

= How to discount?

= Each time we descend a level, we
multiply in the discount once

* Why discount?

= Think of it as a gamma chance of
ending the process at every step

= Also helps our algorithms converge

= Example: discount of 0.5
= U([1,2,3])=1*1+0.5*2 + 0.25*3
= U([1,2,3]) < U([3,2,1])

Given:

Quiz: Discounting

10

1

a

b

C

d

e

= Actions: East, West, and Exit (only available in exit states a, e)

= Transitions: deterministic

Quiz 1: For y =1, what is the optimal policy?
Quiz 2: For y=0.1, what is the optimal policy?

Quiz 3: For which y are West and East equally good when in state d?

1y=10 73

10

10

Infinite Utilities?!

" Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:

= Finite horizon: (similar to depth-limited search)
= Terminate episodes after a fixed T steps (e.g. life)
= Policy m depends on time left

= Discounting:use0O<y<1

Ulros- 1)) = > 4try < Remax/(1 —7)
t=0

= Smaller y means smaller “horizon” — shorter term focus
Y

= Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Recap: Defining MDPs

" Markov decision processes:
= Set of states S
= Start state s,
= Set of actions A
= Transitions P(s’|s,a) (or T(s,a,s’))
= Rewards R(s,a,s’) (and discount vy) 5,8

= MDP quantities so far:

= Policy = Choice of action for each state
= Utility = sum of (discounted) rewards

Solving MDPs

MDP Search Trees

= Each MDP state projects an expectimax-like search tree

(s,a,s) called a transition
T(s,a,s") = P(s” |s,a)

R(s,a,s”)

Optimal Quantities

"= The value (utility) of a state s:

V*(s) = expected utility starting in s and s is a
acting optimally state
a” (s, a)is a
" The value (utility) of a g-state (s,a): P < g-state
Q’*(s,a) = expected utility starting out o N
having taken action a from state s and (s,a,8") is a
transition

(thereafter) acting optimally

=" The optimal policy:
n'(s) = optimal action from state s

Snapshot Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Snapshot of Gridworld Q Values

Values of States (Bellman Equations)

= Fundamental operation: compute the (expectimax) value of a state

= Expected utility under optimal action
= Average sum of (discounted) rewards
" This is just what expectimax computed!

= Recursive definition of value: ,
V*i(s) = max Q*(s,a) e

Q*(s,a) = ZT(S,CL, s {R(S,CL, s + ’)/V*(S/)}

V*i(s) = ma?XZT(s, a,s) {R(s,a, s") + ny*(s’)}

S

Racing Search Tree

Racing Search Tree

A

LIETImEL]

LIEEINEL

I

FIETTME TR L]

Racing Search Tree

We're doing way too much
work with expectimax!

Problem: States are repeated

= |dea quantities: Only compute
needed once

Problem: Tree goes on forever

= |dea: Do a depth-limited
computation, but with increasing
depths until change is small

= Note: deep parts of the tree
eventually don’t matterify<1

NEE RN

R CHER TR

———

—

—

-

W

FIETIRELL

LIETImEL]

Time-Limited Values

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends
in k more time steps
= Equivalently, it’'s what a depth-k expectimax would give from s

&

foa T
CR AL

3 N

VALUES AFTER O ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 4 ITERATIONS NPise =0.2
Discount = 0.9

Living reward =0

k=5

Cridworld Display

.

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=6

Gridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=7

Gridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Nf’ise =0.2
Discount = 0.9

Living reward =0

k=9

Gridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=11

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Computing Time-Limited Values

.A.AA 'A 'AA s

NN N RN RN

VT T T | O O i VT T O O O e VOO O |

llIIIIl' I "I I1I|l||xll' - llllllll . Illllljl I|III| . III'IIA' I lxIl'

(=
(=
(=
(=

VT CRERREERI TR TR TR T

Example: y=0.9, living

Bel I mMan U pd ates reward=0, noise=0.2

‘/'H-l (3) = mgx Z T(Sa a, 3’) [R(Sa a, S’) + ’Y‘/z (S,)] = m(?'x Qi+1 (Sa a’)

Q1((3,3), right) =) ~T'((3,3), right, s') [R((3, 3), right, s") + yV;(s')]

= 0.8 % [0.0 + 0.9 % 1.0] + 0.1 % [0.0 4 0.9 % 0.0] + 0.1 [0.0 + 0.9 % 0.0]

Value lteration

Solving MDPs

Value lteration

Start with Vy(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) < mC?XZT(S,a,, s") {R(s,a, s + *ka(s/)}

Repeat until convergence

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Example: Value Iteration

Fast 05 +2

0.5 Overheated

+2

S: 1
Vi | B 5%24.5%=0

Assume no discount!

Yo [0 0 0] Vig1(s) < max Y T(s,a,s") |R(s,a,5") + 7 V(s

S

Example: Value Iteration

Fast 05 +2

0.5 Overheated

+2

. 5 S: 5*1+.5%1=1
1 F:-10

Assume no discount!

Yo [0 0 0] Vig1(s) < max Y T(s,a,s") |R(s,a,5") + 7 V(s

S

Example: Value Iteration

Fast 05 +2

0.5 Overheated

+2

Assume no discount!

Yo [0 0 0] Vig1(s) < max Y T(s,a,s") |R(s,a,5") + 7 V(s

S

Example: Value Iteration

Fast 05 +2

0.5 Overheated

+2

Assume no discount!

Yo [0 0 0] Vig1(s) < max Y T(s,a,s") |R(s,a,5") + 7 V(s

S

Example: Value Iteration

Fast 05 +2

0.5 Overheated

+2

Assume no discount!

Yo [0 0 0] Vig1(s) < max Y T(s,a,s") |R(s,a,5") + 7 V(s

S

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

The Bellman Equations

= Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values 7

V*(s) = max Q*(s, a)

Q*(s,a) =3 T(s,a,5) {R(S, a,s’) + ’yV*(s’)} o

V*(s) = mO?XZT(S,a, s") {R(s,a, s + ny*(s')}

" These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

Value lteration

= Bellman equations characterize the optimal values:

V*i(s) = mO?XZT(S, a,s) {R(s, a,s’) + ny*(s/)}

S

= Value iteration computes them:

Viet1(s) <+ mC?XZT(s, a,s) {R(s, a,s’) + nyk(s/)}

S

= Value iteration is just a fixed point solution method

= ... though the V, vectors are also interpretable as time-limited values

Convergence®

How do we know the V, vectors are going to converge?

Vi(s) Vit1(s)

Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

Case 2: If the discount is less than 1

= Sketch: For any state V| and V,,1 can be viewed as depth
k+1 expectimax results in nearly identical search trees

= The difference is that on the bottom layer, V., has actual
rewards while V| has zeros

= That last layer is at best all Ryjax

= |tisat worst Ryn / \ /

= But everything is discounted by yk that far out
= So V, and V,; are at most y* max|R| different
= So as kincreases, the values converge

Policy Methods

Problems with Value Iteration

= Value iteration repeats the Bellman updates:

Vi41(s) < mC?XZT(S,a, s") [R(s,a, s + ’ka(s’)]

S

= Problem 1: It’s slow — O(S2A) per iteration

= Problem 2: The “max” at each state rarely changes

= Problem 3: The policy often converges long before the values

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Policy Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

= Repeat steps until policy converges

= This is policy iteration
= |t’s still optimal!

= Can converge (much) faster under some conditions

Policy Evaluation

Fixed Policies

Do the optimal action Do what 7 says to do

T A

= Expectimax trees max over all actions to compute the optimal values

= |f we fixed some policy 1t(s), then the tree would be simpler — only one action per state
= .. though the tree’s value would depend on which policy we fixed

Utilities for a Fixed Policy

Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy m:
V™(s) = expected total discounted rewards starting in s and following &t

Recursive relation (one-step look-ahead / Bellman equation):

VT(s) =) T(s,m(s),s)R(s,7(s),8) +~V"(s)]

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Evaluation

How do we calculate the V’s for a fixed policy ©?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

VOW(S) =0 ,S;"&(S),S’
.

ka—l—l(s) — ZT(S, 7(s),s)[R(s,7(s),s) + ’YV]CW(S,)]

S

Efficiency: O(S?) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
= Solve with Matlab (or your favorite linear system solver)

Policy Extraction

1

Computing Actions from Values

" Let’s imagine we have the optimal values V*(s)

= How should we act?
= |t’s not obvious!

= We need to do a mini-expectimax (one step)

m*(s) = arg Cl;naXZT(s, a,s)[R(s,a,s) +~V*(s)]

S

= This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

qb:: ei:\agine we have the optimal ij
= How should we act? M-

= Completely trivial to decide!

" (s) = argmaxQ*(s,a) %

" |mportant lesson: actions are easier to select from g-values than values!

Policy Iteration

Policy Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

= Repeat steps until policy converges

= This is policy iteration
= |t’s still optimal!

= Can converge (much) faster under some conditions

Policy Iteration

= Evaluation: For fixed current policy =, find values with policy evaluation:
= |terate until values converge:

Vit 1 (s) < Y. T(s,mi(s),s') |R(s,mi(s),s") + v V(s

= |mprovement: For fixed values, get a better policy using policy extraction
= One-step look-ahead:

mi4+1(s) = arg maXZT(S, a,s) {R(s, a,s’) + nyWi(S/)}

S

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:

= Every iteration updates both the values and (implicitly) the policy
= We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

= We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

= After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
" The new policy will be better (or we’re done)

Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

= S0 you want to....
= Compute optimal values: use value iteration or policy iteration
= Compute values for a particular policy: use policy evaluation
" Turn your values into a policy: use policy extraction (one-step lookahead)

" These all look the same!
* They basically are —they are all variations of Bellman updates
" They all use one-step lookahead expectimax fragments
» They differ only in whether we plug in a fixed policy or max over actions

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

