CSE 473: Artificial Intelligence

Markov Decision Processes

slides adapted from
Stuart Russel, Dan Klein, Pieter Abbeel from ai.berkeley.edu
And Hanna Hajishirzi, Jared Moore, Dan Weld
Non-Deterministic Search
Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent’s path

- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put

- The agent receives rewards each time step
 - Small “living” reward each step (can be negative)
 - Big rewards come at the end (good or bad)

- Goal: maximize sum of rewards
Grid World Actions

Deterministic Grid World

Stochastic Grid World
Markov Decision Processes

- An MDP is defined by:
 - A set of states \(s \in S \)
 - A set of actions \(a \in A \)
 - A transition function \(T(s, a, s') \)
 - Probability that \(a \) from \(s \) leads to \(s' \), i.e., \(P(s'| s, a) \)
 - Also called the model or the dynamics

\[
\begin{align*}
T(s_{11}, E, ...) \\
... \\
T(s_{31}, N, s_{11}) &= 0 \\
... \\
T(s_{31}, N, s_{32}) &= 0.8 \\
T(s_{31}, N, s_{21}) &= 0.1 \\
T(s_{31}, N, s_{41}) &= 0.1 \\
...
\end{align*}
\]

\(T \) is a Big Table!

\(11 \times 4 \times 11 = 484 \) entries

For now, we give this as input to the agent
Markov Decision Processes

- An MDP is defined by:
 - A set of states \(s \in S \)
 - A set of actions \(a \in A \)
 - A transition function \(T(s, a, s') \)
 - Probability that \(a \) from \(s \) leads to \(s' \), i.e., \(P(s' \mid s, a) \)
 - Also called the model or the dynamics
 - A reward function \(R(s, a, s') \)
 - Sometimes just \(R(s) \) or \(R(s') \)

\[
\begin{align*}
R(s_{32}, N, s_{33}) &= -0.01 \\
R(s_{32}, N, s_{42}) &= -1.01 \\
R(s_{33}, E, s_{43}) &= 0.99 \\
\end{align*}
\]

Cost of breathing

R is also a Big Table!

For now, we also give this to the agent
Markov Decision Processes

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions $a \in A$
 - A transition function $T(s, a, s')$
 - Probability that a from s leads to s', i.e., $P(s' | s, a)$
 - Also called the model or the dynamics
 - A reward function $R(s, a, s')$
 - Sometimes just $R(s)$ or $R(s')$
 - A start state
 - Maybe a terminal state

- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - We’ll have a new tool soon
What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent.

- For Markov decision processes, "Markov" means action outcomes depend only on the current state:

 \[P(S_{t+1} = s'|S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \ldots S_0 = s_0) = P(S_{t+1} = s'|S_t = s_t, A_t = a_t) \]

- This is just like search, where the successor function could only depend on the current state (not the history).

Andrey Markov
(1856-1922)
In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal.

For MDPs, we want an optimal policy \(\pi^* : S \rightarrow A \):

- A policy \(\pi \) gives an action for each state.
- An optimal policy is one that maximizes expected utility if followed.
- An explicit policy defines a reflex agent.

Optimal policy when \(R(s, a, s') = -0.4 \) for all non-terminals \(s \).
Optimal Policies

\[R(s) = -2.0 \]

\[R(s) = -0.4 \]

\[R(s) = -0.03 \]

\[R(s) = -0.01 \]
Example: Racing
Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- Going faster gets double reward

```
<table>
<thead>
<tr>
<th>State</th>
<th>Slow</th>
<th>Fast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cool</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Warm</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Overheated</td>
<td>-10</td>
<td>+2</td>
</tr>
</tbody>
</table>
```

Reward values:
- Slow: +1
- Fast: +2
- Overheated: -10
Each MDP state projects an expectimax-like search tree

- (s, a, s') is a transition
- $T(s, a, s') = P(s' | s, a)$
- $R(s, a, s')$
Utilities of Sequences
Utilities of Sequences

- What preferences should an agent have over reward sequences?

- More or less? \([1, 2, 2]\) or \([2, 3, 4]\)

- Now or later? \([0, 0, 1]\) or \([1, 0, 0]\)
Discounting

- It’s reasonable to maximize the sum of rewards
- It’s also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Worth Now

Worth Next Step

Worth In Two Steps
Discounting

- **How to discount?**
 - Each time we descend a level, we multiply in the discount once

- **Why discount?**
 - Think of it as a gamma chance of ending the process at every step
 - Also helps our algorithms converge

- **Example: discount of 0.5**
 - $U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3$
 - $U([1,2,3]) < U([3,2,1])$
Quiz: Discounting

- **Given:**
 - Actions: East, West, and Exit (only available in exit states a, e)
 - Transitions: deterministic

- **Quiz 1:** For $\gamma = 1$, what is the optimal policy?
 - $10 \leftarrow \leftarrow \leftarrow 1$

- **Quiz 2:** For $\gamma = 0.1$, what is the optimal policy?
 - $10 \leftarrow \leftarrow \rightarrow 1$

- **Quiz 3:** For which γ are West and East equally good when in state d?
 - $1 = 10 \gamma^3$
Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?

- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Policy π depends on time left
 - Discounting: use $0 < \gamma < 1$
 \[
 U([r_0, \ldots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \leq R_{\text{max}} / (1 - \gamma)
 \]
 - Smaller γ means smaller “horizon” – shorter term focus
 - Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like “overheated” for racing)
Recap: Defining MDPs

- **Markov decision processes:**
 - Set of states S
 - Start state s_0
 - Set of actions A
 - Transitions $P(s' | s, a)$ (or $T(s, a, s')$)
 - Rewards $R(s, a, s')$ (and discount γ)

- **MDP quantities so far:**
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards
Solving MDPs
Each MDP state projects an expectimax-like search tree

\[(s, a, s') \text{ called a transition}\]

\[T(s, a, s') = P(s' | s, a)\]

\[R(s, a, s')\]
Optimal Quantities

- The value (utility) of a state s:
 \[V^*(s) = \text{expected utility starting in } s \text{ and acting optimally} \]

- The value (utility) of a q-state (s,a):
 \[Q^*(s,a) = \text{expected utility starting out having taken action } a \text{ from state } s \text{ and (thereafter) acting optimally} \]

- The optimal policy:
 \[\pi^*(s) = \text{optimal action from state } s \]
Snapshot Gridworld V Values

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Snapshot of Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Q-VALUES AFTER 100 ITERATIONS
Values of States (Bellman Equations)

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!

- Recursive definition of value:
 \[V^*(s) = \max_a Q^*(s, a) \]
 \[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]
 \[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]
Racing Search Tree
Racing Search Tree
We’re doing way too much work with expectimax!

Problem: States are repeated
- Idea quantities: Only compute needed once

Problem: Tree goes on forever
- Idea: Do a depth-limited computation, but with increasing depths until change is small
- Note: deep parts of the tree eventually don’t matter if $\gamma < 1$
Key idea: time-limited values

Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps

- Equivalently, it’s what a depth-k expectimax would give from s
$k=0$

VALUES AFTER 0 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=1$

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=2

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Bellman Updates

Example: $\gamma=0.9$, living reward=0, noise=0.2

\[
V_{i+1}(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right] = \max_a Q_{i+1}(s, a)
\]

\[
Q_1(\langle 3, 3 \rangle, \text{right}) = \sum_{s'} T(\langle 3, 3 \rangle, \text{right}, s') \left[R(\langle 3, 3 \rangle, \text{right}, s') + \gamma V_i(s') \right]
\]

\[
= 0.8 \times [0.0 + 0.9 \times 1.0] + 0.1 \times [0.0 + 0.9 \times 0.0] + 0.1 \times [0.0 + 0.9 \times 0.0]
\]
k=3
k=4

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=6

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k = 7

VALUES AFTER 7 ITERATIONS

0.62 0.74 0.85 1.00
0.50 0.57 -1.00
0.34 0.36 0.45 0.24

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=8$

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=9

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
<table>
<thead>
<tr>
<th></th>
<th>0.64</th>
<th>0.74</th>
<th>0.85</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.56</td>
<td>-</td>
<td>0.57</td>
<td>-1.00</td>
</tr>
<tr>
<td>2</td>
<td>0.48</td>
<td>0.42</td>
<td>0.47</td>
<td>0.27</td>
</tr>
</tbody>
</table>

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11
\[k = 12 \]

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=100

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Computing Time-Limited Values

\[V_4(\text{车}) \quad V_4(\text{车}) \quad V_4(\text{车}) \]

\[V_3(\text{车}) \quad V_3(\text{车}) \quad V_3(\text{车}) \]

\[V_2(\text{车}) \quad V_2(\text{车}) \quad V_2(\text{车}) \]

\[V_1(\text{车}) \quad V_1(\text{车}) \quad V_1(\text{车}) \]

\[V_0(\text{车}) \quad V_0(\text{车}) \quad V_0(\text{车}) \]
Value Iteration
Solving MDPs
Value Iteration

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero

- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

 $$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence

- Complexity of each iteration: $O(S^2A)$

- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do
Example: Value Iteration

\[V_0 = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \]

\[V_1 \]

S: 1
F: \(0.5 \times 2 + 0.5 \times 2 = 2 \)

\[V_2 \]

Assume no discount!

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]
Example: Value Iteration

\[V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

Assume no discount!

<table>
<thead>
<tr>
<th></th>
<th>V_2</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>V_1</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>S: 0.51 + 0.51 = 1</td>
<td>F: -10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>V_0</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Example: Value Iteration

Assume no discount!

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]
Example: Value Iteration

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

<table>
<thead>
<tr>
<th>(V_2)</th>
<th>(s: 1+2=3)</th>
<th>(F: .5(2+2)+.5(2+1)=3.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_1)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(V_0)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Assume no discount!
Example: Value Iteration

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

Assume no discount!

\[
\begin{array}{ccc}
V_2 & 3.5 & 2.5 & 0 \\
V_1 & 2 & 1 & 0 \\
V_0 & 0 & 0 & 0 \\
\end{array}
\]
The Bellman Equations

How to be optimal:

Step 1: Take correct first action
Step 2: Keep being optimal
The Bellman Equations

- Definition of “optimal utility” via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

\[V^*(s) = \max_a Q^*(s, a) \]

\[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

\[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

- These are the Bellman equations, and they characterize optimal values in a way we’ll use over and over
Value Iteration

- Bellman equations characterize the optimal values:

\[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

- Value iteration computes them:

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

- Value iteration is just a fixed point solution method
 - though the \(V_k \) vectors are also interpretable as time-limited values
How do we know the V_k vectors are going to converge?

Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values

Case 2: If the discount is less than 1
- Sketch: For any state V_k and V_{k+1} can be viewed as depth $k+1$ expectimax results in nearly identical search trees
- The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
- That last layer is at best all R_{MAX}
- It is at worst R_{MIN}
- But everything is discounted by γ^k that far out
- So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different
- So as k increases, the values converge
Policy Methods
Problems with Value Iteration

- Value iteration repeats the Bellman updates:
 \[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

- Problem 1: It’s slow – \(O(S^2A) \) per iteration

- Problem 2: The “max” at each state rarely changes

- Problem 3: The policy often converges long before the values
k=100

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges

- This is policy iteration
 - It’s still optimal!
 - Can converge (much) faster under some conditions
Policy Evaluation
Fixed Policies

- Expectimax trees max over all actions to compute the optimal values.
- If we fixed some policy \(\pi(s) \), then the tree would be simpler – only one action per state.
 - ... though the tree’s value would depend on which policy we fixed.

Do the optimal action

Do what \(\pi \) says to do
Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state \(s \) under a fixed (generally non-optimal) policy

- Define the utility of a state \(s \), under a fixed policy \(\pi \):
 \[V^\pi(s) = \text{expected total discounted rewards starting in } s \text{ and following } \pi \]

- Recursive relation (one-step look-ahead / Bellman equation):
 \[
 V^\pi(s) = \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V^\pi(s')]
 \]
Example: Policy Evaluation

Always Go Right

Always Go Forward
Example: Policy Evaluation

Always Go Right

Always Go Forward
Policy Evaluation

- How do we calculate the V’s for a fixed policy \(\pi \)?

- **Idea 1:** Turn recursive Bellman equations into updates (like value iteration)

 \[
 V_0^\pi(s) = 0
 \]

 \[
 V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_k^\pi(s')]
 \]

 - **Efficiency:** \(O(S^2) \) per iteration

- **Idea 2:** Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)
Policy Extraction
Computing Actions from Values

- Let’s imagine we have the optimal values \(V^*(s) \)
- How should we act?
 - It’s not obvious!
- We need to do a mini-expectimax (one step)

\[
\pi^*(s) = \arg\max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]
\]

- This is called policy extraction, since it gets the policy implied by the values
Computing Actions from Q-Values

- Let’s imagine we have the optimal q-values:

- How should we act?
 - Completely trivial to decide!
 \[\pi^*(s) = \arg \max_a Q^*(s, a) \]

- Important lesson: actions are easier to select from q-values than values!
Policy Iteration
Policy Iteration

- Alternative approach for optimal values:
 - **Step 1: Policy evaluation**: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - **Step 2: Policy improvement**: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges

- **This is policy iteration**
 - It’s still optimal!
 - Can converge (much) faster under some conditions
Policy Iteration

- **Evaluation**: For fixed current policy \(\pi \), find values with policy evaluation:
 - Iterate until values converge:
 \[
 V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]
 \]

- **Improvement**: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:
 \[
 \pi_{i+1}(s) = \arg \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]
 \]
Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)

- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don’t track the policy, but taking the max over actions implicitly recomputes it

- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we’re done)

- Both are dynamic programs for solving MDPs
Summary: MDP Algorithms

- So you want to....
 - Compute optimal values: use value iteration or policy iteration
 - Compute values for a particular policy: use policy evaluation
 - Turn your values into a policy: use policy extraction (one-step lookahead)

- These all look the same!
 - They basically are – they are all variations of Bellman updates
 - They all use one-step lookahead expectimax fragments
 - They differ only in whether we plug in a fixed policy or max over actions
The Bellman Equations

How to be optimal:
Step 1: Take correct first action
Step 2: Keep being optimal