CSE 473: Artificial Intelligence

Markov Decision Processes

slides adapted from
Stuart Russel, Dan Klein, Pieter Abbeel from ai.berkeley.edu
And Hanna Hajishirzi, Jared Moore, Dan Weld
Non-Deterministic Search
A maze-like problem
- The agent lives in a grid
- Walls block the agent’s path

Noisy movement: actions do not always go as planned
- 80% of the time, the action North takes the agent North (if there is no wall there)
- 10% of the time, North takes the agent West; 10% East
- If there is a wall in the direction the agent would have been taken, the agent stays put

The agent receives rewards each time step
- Small “living” reward each step (can be negative)
- Big rewards come at the end (good or bad)

Goal: maximize sum of rewards
Grid World Actions

Deterministic Grid World

Stochastic Grid World
Markov Decision Processes

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions $a \in A$
 - A transition function $T(s, a, s')$
 - Probability that a from s leads to s', i.e., $P(s' | s, a)$
 - Also called the model or the dynamics

\[
\begin{align*}
T(s_{11}, E, \ldots) \\
\vdots \\
T(s_{31}, N, s_{11}) &= 0 \\
\vdots \\
T(s_{31}, N, s_{32}) &= 0.8 \\
T(s_{31}, N, s_{21}) &= 0.1 \\
T(s_{31}, N, s_{41}) &= 0.1 \\
\vdots
\end{align*}
\]

T is a Big Table!

$11 \times 4 \times 11 = 484$ entries

For now, we give this as input to the agent
Markov Decision Processes

- An MDP is defined by:
 - A set of states \(s \in S \)
 - A set of actions \(a \in A \)
 - A transition function \(T(s, a, s') \)
 - Probability that \(a \) from \(s \) leads to \(s' \), i.e., \(P(s' | s, a) \)
 - Also called the model or the dynamics
 - A reward function \(R(s, a, s') \)
 - Sometimes just \(R(s) \) or \(R(s') \)

\[
\begin{align*}
R(s_{32}, N, s_{33}) &= -0.01 \\
R(s_{32}, N, s_{42}) &= -1.01 \\
R(s_{33}, E, s_{43}) &= 0.99
\end{align*}
\]

Cost of breathing

R is also a Big Table!

For now, we also give this to the agent
Markov Decision Processes

- An MDP is defined by:
 - A set of states \(s \in S \)
 - A set of actions \(a \in A \)
 - A transition function \(T(s, a, s') \)
 - Probability that \(a \) from \(s \) leads to \(s' \), i.e., \(P(s'| s, a) \)
 - Also called the model or the dynamics
 - A reward function \(R(s, a, s') \)
 - Sometimes just \(R(s) \) or \(R(s') \)
 - A start state
 - Maybe a terminal state

- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - We’ll have a new tool soon
What is Markov about MDPs?

- “Markov” generally means that given the present state, the future and the past are independent.

- For Markov decision processes, “Markov” means action outcomes depend only on the current state.

\[
P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \ldots S_0 = s_0) = P(S_{t+1} = s' | S_t = s_t, A_t = a_t)
\]

- This is just like search, where the successor function could only depend on the current state (not the history).

Andrey Markov (1856-1922)
In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal.

For MDPs, we want an optimal policy π^*: $S \rightarrow A$

- A policy π gives an action for each state
- An optimal policy is one that maximizes expected utility if followed
- An explicit policy defines a reflex agent

Optimal policy when $R(s, a, s') = -0.4$ for all non-terminals s.
Optimal Policies

\[R(s) = -2.0 \]

\[R(s) = -0.4 \]

\[R(s) = -0.03 \]

\[R(s) = -0.01 \]
Example: Racing
Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- Going faster gets double reward

<table>
<thead>
<tr>
<th>State</th>
<th>Slow</th>
<th>Fast</th>
<th>Overheated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cool</td>
<td>0.5</td>
<td>+1</td>
<td>1.0</td>
</tr>
<tr>
<td>Warm</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Overheated</td>
<td>0.5</td>
<td>0.5</td>
<td>-10</td>
</tr>
</tbody>
</table>

Rewards: Cool: 0.5, Warm: 0.5, Overheated: -10
Each MDP state projects an expectimax-like search tree

- (s, a) is a state

- (s, a, s') is a transition

- $T(s, a, s') = P(s' | s, a)$

- $R(s, a, s')$
Utilities of Sequences

- What preferences should an agent have over reward sequences?

- More or less? \([1, 2, 2]\) or \([2, 3, 4]\)

- Now or later? \([0, 0, 1]\) or \([1, 0, 0]\)
Discounting

- It’s reasonable to maximize the sum of rewards
- It’s also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

\[
\begin{align*}
\text{Worth Now} & : 1 \\
\text{Worth Next Step} & : \gamma \\
\text{Worth In Two Steps} & : \gamma^2
\end{align*}
\]
Discounting

- **How to discount?**
 - Each time we descend a level, we multiply in the discount once

- **Why discount?**
 - Think of it as a gamma chance of ending the process at every step
 - Also helps our algorithms converge

- **Example: discount of 0.5**
 - $U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3$
 - $U([1,2,3]) < U([3,2,1])$
Quiz: Discounting

- Given:
 - Actions: East, West, and Exit (only available in exit states a, e)
 - Transitions: deterministic

- Quiz 1: For $\gamma = 1$, what is the optimal policy?
 - 10 -> -> -> 1

- Quiz 2: For $\gamma = 0.1$, what is the optimal policy?
 - 10 -> -> -> 1

- Quiz 3: For which γ are West and East equally good when in state d?
 - $1_\gamma = 10 \gamma^3$
Infinite Utilities?!

- **Problem:** What if the game lasts forever? Do we get infinite rewards?

- **Solutions:**
 - **Finite horizon:** (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Policy π depends on time left
 - **Discounting:** use $0 < \gamma < 1$

 $$U([r_0, \ldots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \leq R_{\text{max}}/(1 - \gamma)$$
 - Smaller γ means smaller “horizon” – shorter term focus
 - **Absorbing state:** guarantee that for every policy, a terminal state will eventually be reached (like “overheated” for racing)
Recap: Defining MDPs

- **Markov decision processes:**
 - Set of states S
 - Start state s_0
 - Set of actions A
 - Transitions $P(s' | s,a)$ (or $T(s,a,s')$)
 - Rewards $R(s,a,s')$ (and discount γ)

- **MDP quantities so far:**
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards
Solving MDPs
Each MDP state projects an expectimax-like search tree

(s, a, s') called a transition

\[T(s, a, s') = P(s' \mid s, a) \]

\[R(s, a, s') \]
Optimal Quantities

- The value (utility) of a state s:
 $V^*(s) = \text{expected utility starting in } s \text{ and acting optimally}$

- The value (utility) of a q-state (s,a):
 $Q^*(s,a) = \text{expected utility starting out having taken action } a \text{ from state } s \text{ and (thereafter) acting optimally}$

- The optimal policy:
 $\pi^*(s) = \text{optimal action from state } s$
Snapshot Gridworld V Values

VALUES AFTER 100 ITERATIONS

0.64 0.74 0.85 1.00

0.57 0.57 -1.00

0.49 0.43 0.48 0.28

Noise = 0.2
Discount = 0.9
Living reward = 0
Snapshot of Gridworld Q Values

- Noise = 0.2
- Discount = 0.9
- Living reward = 0

Q-VALUES AFTER 100 ITERATIONS
Values of States (Bellman Equations)

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!

- Recursive definition of value:
 \[V^*(s) = \max_a Q^*(s, a) \]
 \[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]
 \[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]
Racing Search Tree
Racing Search Tree
We’re doing way too much work with expectimax!

Problem: States are repeated
- Idea quantities: Only compute needed once

Problem: Tree goes on forever
- Idea: Do a depth-limited computation, but with increasing depths until change is small
- Note: deep parts of the tree eventually don’t matter if $\gamma < 1$
Time-Limited Values

- Key idea: time-limited values
- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it’s what a depth-k expectimax would give from s
k=0

VALUES AFTER 0 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=1

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=2

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=3$

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=5

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.51</td>
<td>0.72</td>
<td>0.84</td>
<td>1.00</td>
</tr>
<tr>
<td>0.27</td>
<td></td>
<td>0.55</td>
<td>-1.00</td>
</tr>
<tr>
<td>0.00</td>
<td>0.22</td>
<td>0.37</td>
<td>0.13</td>
</tr>
</tbody>
</table>

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=6

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=7

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=8$

VALUES AFTER 8 ITERATIONS

Gridworld Display

Noise = 0.2
Discount = 0.9
Living reward = 0
$k = 9$

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
VALUES AFTER 10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k = 12

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=100

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Computing Time-Limited Values

\[V_4(V_4(V_4(V_4)))\]

\[V_3(V_3(V_3))\]

\[V_2(V_2(V_2))\]

\[V_1(V_1(V_1))\]

\[V_0(V_0(V_0))\]
Bellman Updates

\[V_{i+1}(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right] = \max_a Q_{i+1}(s, a) \]

\[Q_1(\langle 3, 3 \rangle, \text{right}) = \sum_{s'} T(\langle 3, 3 \rangle, \text{right}, s') \left[R(\langle 3, 3 \rangle, \text{right}, s') + \gamma V_i(s') \right] \]

\[= 0.8 \times [0.0 + 0.9 \times 1.0] + 0.1 \times [0.0 + 0.9 \times 0.0] + 0.1 \times [0.0 + 0.9 \times 0.0] \]
Value Iteration
Solving MDPs
Value Iteration

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero

- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

 $$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence

- Complexity of each iteration: $O(S^2A)$

- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do
Example: Value Iteration

Assume no discount!

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]
Example: Value Iteration

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

Assume no discount!

\[S: 0.5*1 + 0.5*1 = 1 \]
\[F: -10 \]
Example: Value Iteration

Assume no discount!

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]
Example: Value Iteration

\[
V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
\]

Assume no discount!

<table>
<thead>
<tr>
<th>S:</th>
<th>1+2=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>F:</td>
<td>(.5\times(2+2)+.5\times(2+1)=3.5)</td>
</tr>
</tbody>
</table>

\[
V_2
\begin{array}{c|c|c|c}
\hline
& 1 & 2 & 3 \\
\hline 0 & 0 & 0 & 0 \\
\hline
\end{array}
\]

\[
V_1
\begin{array}{c|c|c|c}
\hline
& 1 & 2 & 3 \\
\hline 0 & 0 & 0 & 0 \\
\hline
\end{array}
\]

\[
V_0
\begin{array}{c|c|c|c}
\hline
& 1 & 2 & 3 \\
\hline 0 & 0 & 0 & 0 \\
\hline
\end{array}
\]
Example: Value Iteration

<table>
<thead>
<tr>
<th></th>
<th>V_0</th>
<th>V_1</th>
<th>V_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3.5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Assume no discount!

$$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$
The Bellman Equations

How to be optimal:

Step 1: Take correct first action
Step 2: Keep being optimal
The Bellman Equations

- Definition of “optimal utility” via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

\[V^*(s) = \max_a Q^*(s, a) \]

\[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

\[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

- These are the Bellman equations, and they characterize optimal values in a way we’ll use over and over
Value Iteration

- Bellman equations characterize the optimal values:

\[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

- Value iteration computes them:

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

- Value iteration is just a fixed point solution method
 - ... though the V_k vectors are also interpretable as time-limited values
How do we know the V_k vectors are going to converge?

Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values.

Case 2: If the discount is less than 1

- Sketch: For any state V_k and V_{k+1} can be viewed as depth $k+1$ expectimax results in nearly identical search trees.
- The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros.
- That last layer is at best all R_{MAX}.
- It is at worst R_{MIN}.
- But everything is discounted by γ^k that far out.
- So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different.
- So as k increases, the values converge.
Policy Methods
Problems with Value Iteration

- Value iteration repeats the Bellman updates:
 \[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left(R(s, a, s') + \gamma V_k(s') \right) \]

- Problem 1: It’s slow – \(O(S^2A) \) per iteration

- Problem 2: The “max” at each state rarely changes

- Problem 3: The policy often converges long before the values
$k=12$

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=100$

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Policy Iteration

- Alternative approach for optimal values:
 - **Step 1: Policy evaluation:** calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - **Step 2: Policy improvement:** update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges

- **This is policy iteration**
 - It’s still optimal!
 - Can converge (much) faster under some conditions
Policy Evaluation
Fixed Policies

- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler – only one action per state
 - ... though the tree’s value would depend on which policy we fixed
Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state \(s \) under a fixed (generally non-optimal) policy

- Define the utility of a state \(s \), under a fixed policy \(\pi \):
 \[V^\pi(s) = \text{expected total discounted rewards starting in } s \text{ and following } \pi \]

- Recursive relation (one-step look-ahead / Bellman equation):
 \[V^\pi(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^\pi(s')] \]
Example: Policy Evaluation

Always Go Right

Always Go Forward
Example: Policy Evaluation

Always Go Right

Always Go Forward
Policy Evaluation

- How do we calculate the V’s for a fixed policy π?
 - Idea 1: Turn recursive Bellman equations into updates (like value iteration)
 \[
 V_0^\pi(s) = 0 \\
 V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_k^\pi(s')]
 \]
 - Efficiency: $O(S^2)$ per iteration
 - Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)
Policy Extraction
Let’s imagine we have the optimal values $V^*(s)$

How should we act?
- It’s not obvious!

We need to do a mini-expectimax (one step)

$$\pi^*(s) = \arg \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

This is called **policy extraction**, since it gets the policy implied by the values
Let’s imagine we have the optimal q-values:

How should we act?
 - Completely trivial to decide!

\[\pi^*(s) = \arg \max_a Q^*(s, a) \]

Important lesson: actions are easier to select from q-values than values!
Policy Iteration
Policy Iteration

- Alternative approach for optimal values:
 - **Step 1: Policy evaluation:** calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - **Step 2: Policy improvement:** update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges

- This is policy iteration
 - It’s still optimal!
 - Can converge (much) faster under some conditions
Policy Iteration

- **Evaluation**: For fixed current policy π, find values with policy evaluation:
 - Iterate until values converge:
 \[
 V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]
 \]

- **Improvement**: For fixed values, get a better policy using policy extraction:
 - One-step look-ahead:
 \[
 \pi_{i+1}(s) = \arg \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]
 \]
Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:
- Every iteration updates both the values and (implicitly) the policy
- We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:
- We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
- After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
- The new policy will be better (or we’re done)

Both are dynamic programs for solving MDPs
Summary: MDP Algorithms

- So you want to....
 - Compute optimal values: use value iteration or policy iteration
 - Compute values for a particular policy: use policy evaluation
 - Turn your values into a policy: use policy extraction (one-step lookahead)

- These all look the same!
 - They basically are – they are all variations of Bellman updates
 - They all use one-step lookahead expectimax fragments
 - They differ only in whether we plug in a fixed policy or max over actions
The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal