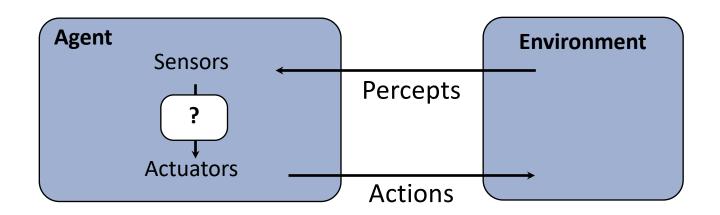
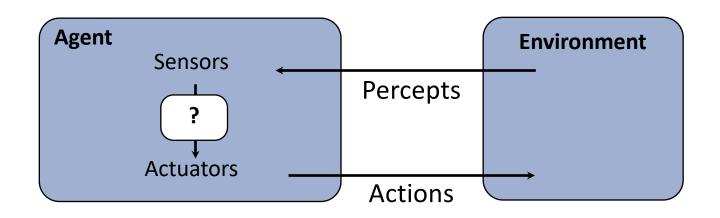
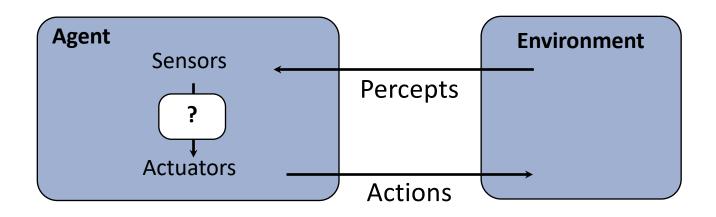

CSE 473: Artificial Intelligence


Agents and environments

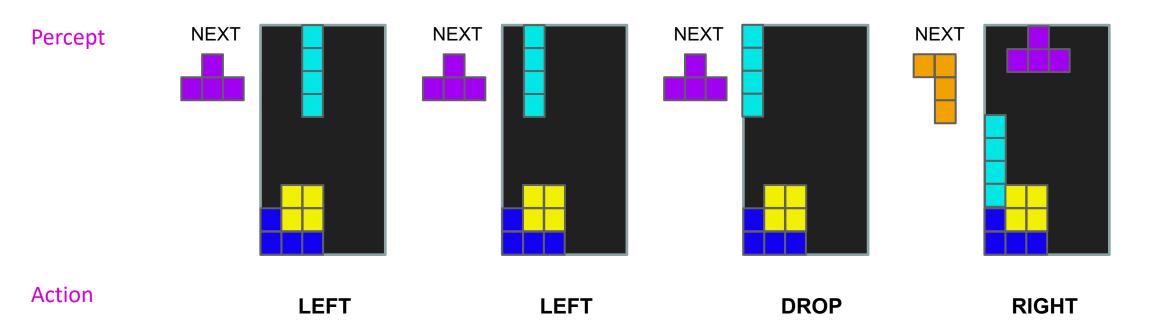

slides adapted from Stuart Russel, Dan Klein, Pieter Abbeel from ai.berkeley.edu And Hanna Hajishirzi, Jared Moore, Dan Weld

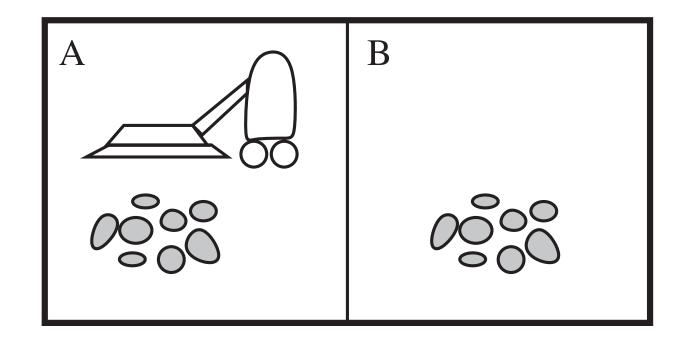
Outline


- Agents and environments
- Rationality
- PEAS (Performance measure, Environment, Actuators, Sensors)
- Environment types
- Agent types


 An agent perceives its environment through sensors and acts upon it through actuators (or effectors, depending on whom you ask)

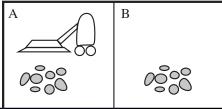
- Are humans agents?
- Yes!
 - Sensors = vision, audio, touch, smell, taste, proprioception
 - Actuators = muscles, secretions, changing brain state


- Are pocket calculators agents?
- Yes!
 - Sensors = key state sensors
 - Actuators = digit display


 Al is more interested in agents with large computational resources and environments that require nontrivial decision making

Agent functions

- The agent function maps from percept histories to actions:
 - $\bullet f: \mathcal{P}^* \to \mathcal{A}$
 - I.e., the agent's actual response to any sequence of percepts



Example: Vacuum world

- Percepts: [location,status], e.g., [A,Dirty]
- Actions: Left, Right, Suck, NoOp

Vacuum cleaner agent

Agent function

Agent program

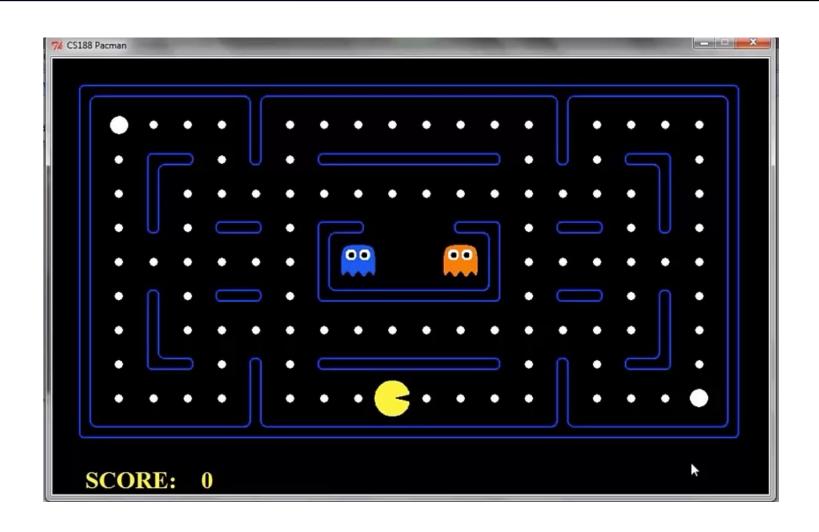
Percept sequence	Action
[A,Clean]	Right
[A,Dirty]	Suck
[B,Clean]	Left
[B,Dirty]	Suck
[A,Clean],[B,Clean]	Left
[A,Clean],[B,Dirty]	Suck
etc	etc

function Reflex-Vacuum-Agent([location,status])
returns an action
if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

What is the *right* agent function?

Can it be implemented by a small agent program?

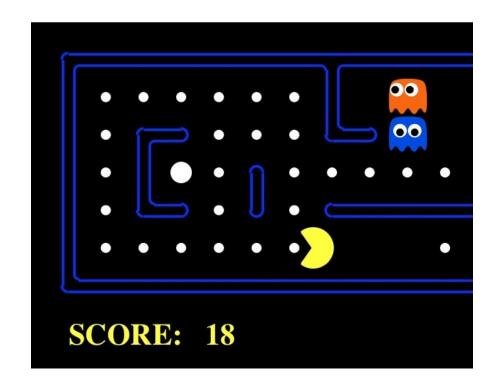
Rationality


- A fixed *performance measure* evaluates the environment sequence
 - one point per square cleaned up?
 - Basically, but details matter: agent can dump dirt then clean, repeatedly
 - Add large penalty for dumping dirt? Add small penalty for moving?
- A rational agent chooses whichever action maximizes the expected value of the performance measure
 - given the percept sequence to date and prior knowledge of environment

Does Reflex-Vacuum-Agent implement a rational agent function? Yes, if movement is free, or new dirt arrives frequently

Rationality, contd.

- Are rational agents *omniscient*?
 - No they are limited by the available percepts
- Are rational agents *clairvoyant*?
 - No they may lack knowledge of the environment dynamics
- Do rational agents explore and learn?
 - Yes in unknown environments these are essential
- Do rational agents make mistakes?
 - No but their actions may be unsuccessful / suboptimal
- Are rational agents *autonomous* (i.e., transcend initial program)?
 - Yes as they learn, their behavior depends more on their own experience


A human agent in Pacman

The task environment - PEAS

Performance measure

- -1 per step; + 10 food; +500 win; -500 die;ghost
- Environment
 - Pacman dynamics (incl ghost behavior)
- Actuators
 - Left Right Up Down
- Sensors
 - Entire state is visible / observable (except power pellet duration)

Pacman agent contd.

- Can we (in principle) extend this reflex agent to behave well in all standard Pacman environments?
 - No Pacman is not quite fully observable (power pellet duration)
 - Otherwise, yes we can (<u>in principle</u>) make a lookup table.....

PEAS: Automated taxi

Performance measure

 Income, happy customer, vehicle costs, fines, insurance premiums

Environment

 US streets, other drivers, customers, weather, police...

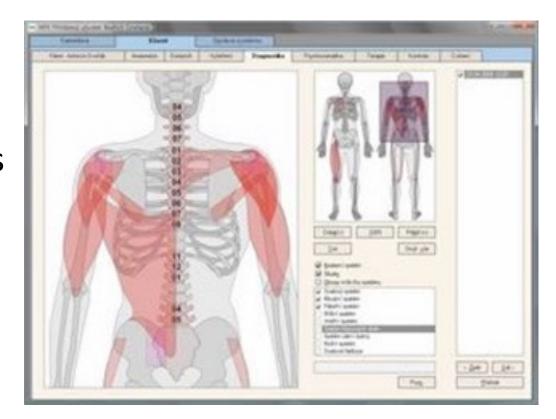
Actuators

Steering, brake, gas, display/speaker

Sensors

 Camera, radar, accelerometer, engine sensors, microphone, GPS

Image: http://nypost.com/2014/06/21/how-google-might-put-taxi-drivers-out-of-business/


PEAS: Backgammon

- Performance measure
 - Move all checkers home first
- Environment
 - Game board, other player?
- Actuators
 - Roll dice, decide how to move pieces
- Sensors
 - See the full board

PEAS: Medical diagnosis system

- Performance measure
 - Patient health, cost, reputation
- Environment
 - Patients, medical staff, insurers, courts
- Actuators
 - Screen display, email
- Sensors
 - Keyboard/mouse, test results

Environment types

	Pacman	Backgammon	Diagnosis	Taxi
Fully or partially observable	F*	F	Р	Р
Single-agent or multiagent	M	М	S	M
Deterministic or stochastic	D	S	D*	S
Static or dynamic	D	D	S	D
Discrete or continuous	D	D	С	С
Known physics?	Υ	Υ	N	Υ
Known perf. measure?	Υ	Υ	N	γ*

Agent design

- The environment type largely determines the agent design
 - Partially observable => agent requires memory (internal state)
 - Stochastic => agent may have to prepare for contingencies
 - Multi-agent => agent may need to behave randomly
 - Static => agent has time to compute a rational decision
 - Continuous time => continuously operating controller
 - Unknown physics => need for exploration
 - Unknown perf. measure => observe/interact with human principal

Summary

- An agent interacts with an environment through sensors and actuators
- The agent function describes what the agent does in all circumstances
- Rational agents choose actions that maximize their expected utility
- PEAS descriptions define task environments; precise PEAS specifications are essential and strongly influence agent designs
- More difficult environments require more complex agent designs and more sophisticated representations