
CSE 473: Artificial Intelligence
Adversarial Search

slides adapted from
Stuart Russel, Dan Klein, Pieter Abbeel from ai.berkeley.edu
And Hanna Hajishirzi, Jared Moore, Dan Weld

Outline

§ History / Overview

§ Minimax for Zero-Sum Games

§ α-β Pruning

§ Games with chance elements

A brief history
§ Checkers:

§ 1950: First computer player.
§ 1959: Samuel’s self-taught program.
§ 1994: First computer world champion: Chinook defeats Tinsley
§ 2007: Checkers solved! Endgame database of 39 trillion states

§ Chess:
§ 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon,

McCarthy.
§ 1960s onward: gradual improvement under “standard model”
§ 1997: Deep Blue defeats human champion Gary Kasparov
§ 2021: Stockfish rating 3551 (vs 2870 for Magnus Carlsen).

§ Go:
§ 1968: Zobrist’s program plays legal Go, barely (b>300!)
§ 1968-2005: various ad hoc approaches tried, novice level
§ 2005-2014: Monte Carlo tree search -> strong amateur
§ 2016-2017: AlphaGo defeats human world champions

§ Pacman

§ Game = task environment with > 1 agent

§ Axes:
§ Deterministic or stochastic?
§ Perfect information (fully observable)?
§ One, two, or more players?
§ Turn-taking or simultaneous?
§ Zero sum?

§ Want algorithms for calculating a contingent plan (a.k.a. strategy or policy)
which recommends a move for every possible eventuality

Types of Games

“Standard” Games

§ Standard games are deterministic, observable,
two-player, turn-taking, zero-sum

§ Game formulation:
§ Initial state: s0

§ Players: Player(s) indicates whose move it is
§ Actions: Actions(s) for player on move
§ Transition model: Result(s,a)
§ Terminal (goal) test: Terminal-Test(s)
§ Terminal values: Utility(s,p) for player p

§ Or just Utility(s) for player making the decision at root

Zero-Sum Games

§ Zero-Sum Games
§ Agents have opposite utilities
§ Pure competition: what is better for one

player is worse for the other

§ General Games
§ Agents have independent utilities
§ Cooperation, indifference, competition,

shifting alliances, and more are all possible

Adversarial Search

Single-Agent Trees

8

2 0 2 6 4 6… …

Utility (value) of a State

8

2 0 2 6 4 6… …

Utility of a state:
The best achievable

outcome (value)
from that state

Terminal States:
U(s) = known

Non-Terminal States:
U(s) = max U(s’)

s’ Î successors(s)

Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8

Minimax Values

+8-10-5-8

-8 -10

-8

MAX nodes: under Agent’s control
U(s) = max U(s’)

s’ Î successors(s)

Terminal States:
U(s) = known

MIN nodes: under Opponent’s control
U(s) = min U(s’)

s’ Î successors(s)

Tic-Tac-Toe Game Tree

Adversarial Search (Minimax)

§ Deterministic, zero-sum games:
§ Tic-tac-toe, chess, checkers
§ One player maximizes result
§ The other minimizes result

§ Minimax search:
§ A state-space search tree
§ Players alternate turns
§ Compute each node’s minimax value:

the best achievable utility against a
rational (optimal) adversary

8 2 5 6

max

min2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

Implementation

function minimax_value(s) returns a value
if Terminal-Test(s) then return Utility(s)
if Player(s) = MAX then return maxa in Actions(s) minimax_value(Result(s,a))
if Player(s) = MIN then return mina in Actions(s) minimax_value(Result(s,a))

function minimax-decision(s) returns an action
return the action a in Actions(s) with the highest
minimax_value(Result(s,a))

Video of Demo Min vs. Exp (Min)

Video of Demo Min vs. Exp (Exp)

Minimax Efficiency

§ How efficient is minimax?
§ Just like (exhaustive) DFS
§ Time: O(bm)
§ Space: O(bm)

§ Example: For chess, b » 35, m » 100
§ Exact solution is completely infeasible
§ Humans can’t do this either, so how do

we play chess?

Game Tree Pruning

Minimax Example

12 8 5 23 2 144 6

3 2 2

3

Alpha-Beta Example

12 8 5 23 2 14

α =3 α =3

α = best option so far from any
MAX node on this path

The order of generation matters: more pruning
is possible if good moves come first

3

3

Alpha-Beta Quiz

Alpha-Beta Quiz

Alpha-Beta Quiz 2

Alpha-Beta Quiz 2

10

10

>=100 2

<=2

Alpha-Beta Pruning

§ General case (pruning children of MIN node)
§ We’re computing the MIN-VALUE at some node n
§ We’re looping over n’s children

§ n’s estimate of the childrens’ min is dropping
§ Who cares about n’s value? MAX
§ Let α be the best value that MAX can get so far at any

choice point along the current path from the root

§ If n becomes worse than α, MAX will avoid it, so we can
prune n’s other children (it’s already bad enough that it
won’t be played)

§ Pruning children of MAX node is symmetric
§ Let β be the best value that MIN can get so far at any

choice point along the current path from the root

MAX

MIN

MAX

MIN

a

n

Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor, α, β))
if v ≥ β

return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor, α, β))
if v ≥ β

return v
α = max(α, v)

return v

function minimax-decision(s) returns an action
return the action a in Actions(s) with the highest
max-value(Result(s,a), -∞, +∞)

Alpha-Beta Pruning Properties

§ Theorem: This pruning has no effect on minimax value computed for the root!

§ Good child ordering improves effectiveness of pruning
§ Iterative deepening helps with this

§ With “perfect ordering”:
§ Time complexity drops to O(bm/2)

§ Square root!
§ Doubles solvable depth!

§ This is a simple example of metareasoning (reasoning about reasoning)

§ For chess: only 3550 instead of 35100! Yay!

10 10 0

max

min

Resource Limits

Resource Limits

§ Problem: In realistic games, cannot search to leaves!

§ Solution: Depth-limited search
§ Instead, search only to a limited depth in the tree
§ Replace terminal utilities with an evaluation function for non-

terminal positions

§ Example:
§ Suppose we have 100 seconds, can explore 10K nodes / sec
§ So can check 1M nodes per move
§ a-b reaches about depth 8 – decent chess program

§ Guarantee of optimal play is gone

§ More plies makes a BIG difference

§ Use iterative deepening for an anytime algorithm
? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Evaluation Functions

Video of Demo Thrashing (d=2)

Why Pacman Starves

§ A danger of replanning agents!
§ He knows his score will go up by eating the dot now (west, east)
§ He knows his score will go up just as much by eating the dot later (east, west)
§ There are no point-scoring opportunities after eating the dot (within the horizon, two here)
§ Therefore, waiting seems just as good as eating: he may go east, then back west in the next

round of replanning!

Video of Demo Thrashing -- Fixed (d=2)

Evaluation Functions
§ Evaluation functions score non-terminals in depth-limited search

§ Ideal function: returns the actual minimax value of the position
§ In practice: typically weighted linear sum of features:

§ e.g. f1(s) = (num white queens – num black queens), etc.

Evaluation for Pacman

Depth Matters

§ Evaluation functions are always
imperfect

§ The deeper in the tree the
evaluation function is buried, the
less the quality of the evaluation
function matters

§ An important example of the
tradeoff between complexity of
features and complexity of
computation

Video of Demo Limited Depth (2)

41

Video of Demo Limited Depth (10)

Synergies between
Alpha-Beta and Evaluation Function

§ Alpha-Beta: amount of pruning depends on expansion ordering
§ Evaluation function can provide guidance to expand most promising nodes

first

§ Alpha-beta:
§ Value at a min-node will only keep going down
§ Once value of min-node lower than better option for max along path to

root, can prune
§ Hence, IF evaluation function provides upper-bound on value at min-node,

and upper-bound already lower than better option for max along path to
root THEN can prune

43

