
CSE 473 AU22 Homework 5: Bayes’ Nets

Q1. Particle Filtering
This pseudocode outlines the particle filtering algorithm discussed in lecture. The variable 𝑥 represents a list of

𝑁 particles, while 𝑤 is a list of 𝑁 weights for those particles.

1: procedure PARTICLE FILTERING(𝑇 ,𝑁) ⊳ 𝑇 : number of time steps, 𝑁 : number of sampled particles
2: 𝑥 ← sample 𝑁 particles from initial state distribution 𝑃 (𝑋0) ⊳ Initialize
3: for 𝑡 ← 0 to 𝑇 − 1 do ⊳ 𝑋𝑡: hidden state, 𝐸𝑡: observed evidence
4: 𝑥𝑖 ← sample particle from 𝑃 (𝑋𝑡+1|𝑋𝑡 = 𝑥𝑖) for 𝑖 = 1,… , 𝑁 ⊳ Time Elapse Update
5: 𝑤𝑖 ← 𝑃 (𝐸𝑡+1|𝑋𝑡+1 = 𝑥𝑖) for 𝑖 = 1,… , 𝑁 ⊳ Evidence Update
6: 𝑥 ← resample 𝑁 particles according to weights w ⊳ Particle Resampling
7: return 𝑥

1. Here, we consider the unweighted particles in 𝑥 as approximating a distribution.

(a) After executing line 2, which distribution do the particles 𝑥 represent?

○ 𝑃 (𝑋𝑡+1|𝐸1∶𝑡) ○ 𝑃 (𝑋0) ○ 𝑃 (𝑋𝑡+1|𝐸1∶𝑡+1) ○ None

(b) After executing line 5, which distribution do the weights w alone represent?

○ 𝑃 (𝑋𝑡+1|𝑋𝑡, 𝐸1∶𝑡+1) ○ 𝑃 (𝑋1∶𝑡+1|𝐸1∶𝑡+1) ○ 𝑃 (𝑋𝑡+1|𝐸1∶𝑡+1) ○ None
2. The particle filtering algorithm should return a sample-based approximation to the true posterior distribution

𝑃 (𝑋𝑇 ∣ 𝐸1∶𝑇 ). The algorithm is consistent if and only if the approximation converges to the true distribution
as 𝑁 → ∞. In this question, we present several modifications to Algorithm ??. For each modification, indicate
if the algorithm is still consistent or not consistent, and if it is consistent, indicate whether you expect it to
be more accurate in general in terms of its estimate of 𝑃 (𝑋𝑇 ∣ 𝐸1∶𝑇 ) (i.e., you would expect the estimated
distribution to be closer to the true one) or less accurate. Assume unlimited computational resources and
arbitrary precision arithmetic.

(a) Replace lines 4–6 as follows:
4′: Compute 𝑃 (𝑋𝑡 = 𝑞|𝐸1∶𝑡), for all states 𝑞.
5′: Exactly calculate 𝑃 (𝑋𝑡+1|𝐸1∶𝑡+1).
6′: Resample 𝑁 particles according to 5′. Assign to 𝑥.
This algorithm is:

○ Consistent and More Accurate
○ Consistent and Less Accurate

○ Not consistent

Briefly explain why:

(b) We modify line 6 to uniformly sample a random number of particles in the range [1, 𝑁] according to
the weights at each time step (as opposed to a fixed number of particles 𝑁 at every time step). You can
assume that the sensor model is not deterministic. You should consider the limit as both 𝑇 → ∞ and
𝑁 → ∞ in your analysis rather than letting 𝑇 be fixed. This algorithm is:

○ Consistent and More Accurate
○ Consistent and Less Accurate

○ Not Consistent

Briefly explain why:
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(c) We initialize each 𝑤𝑖 to 1 before entering the for loop. Replace lines 5 and 6 with the following update.
Notice that line 6 is now outside of the loop.
5′ 𝑤𝑖 ← 𝑤𝑖 + log2(𝑃 (𝐸𝑡+1|𝑋𝑡+1 = 𝑥𝑖)) for 𝑖 = 1,… , 𝑁 .
6′ 𝑥 ← resample 𝑁 particles according to the exponential of the weights, 2𝑤.
This algorithm is:

○ Consistent and More Accurate
○ Consistent and Less Accurate

○ Not Consistent

Briefly explain why:
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Q2. Probability
(a) {𝑉 , 𝑊 , 𝑋, 𝑌 , 𝑍} are random variables. 𝑉 has domain {𝑣1, 𝑣2, 𝑣3}while the rest are boolean random variables.

(i) Suppose we were to write out the full probability tables for the following distributions. Specify the num-
ber of entries (cells) that would be in the corresponding probability table and the sum of the probabilities
in the table. Write “-” if the answer cannot be determined.

Table Entries Sum
𝐏(𝑋 ∣ 𝑉 = 𝑣,𝑍)

𝐏(𝑉 = 𝑣,𝑊 ,𝑋 ∣ 𝑌 ,𝑍)
𝐏(𝑋, 𝑌 ∣ 𝑉 )

𝐏(𝑋, 𝑌 ,𝑍 ∣ 𝑊 = 𝑤)

(ii) What is the fewest number of parameters (individual probabilities) required to fully specify the distri-
bution 𝐏(𝑊 ∣ 𝑉 , 𝑌 = 𝑦,𝑍)?
(By specify, we mean provide enough information to write out the full table)

(b) Consider the different ways of factoring the joint distribution 𝐏(𝐽 ,𝐾,𝐿) using the chain rule, without making
any independence assumptions. Check the boxes for any expression that is a valid factoring:

□ 𝐏(𝐽 ∣ 𝐾) 𝐏(𝐾 ∣ 𝐿) 𝐏(𝐿)
□ 𝐏(𝐾,𝐿 ∣ 𝐽 ) 𝐏(𝐽 )
□ 𝐏(𝐽 ∣ 𝐾,𝐿) 𝐏(𝐾) 𝐏(𝐿)

□ 𝐏(𝐿 ∣ 𝐽 ) 𝐏(𝐽 ∣ 𝐾) 𝐏(𝐾)

□ 𝐏(𝐿 ∣ 𝐾, 𝐽 ) 𝐏(𝐾 ∣ 𝐽 ) 𝐏(𝐽 )

○ None
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Q3. Independence and D-Separation
(a) Conditional Independence

Consider the following Bayes’ net:

In our notation, 𝐺 ⟂⟂ 𝐻 means “𝐺 is independent of 𝐻 given nothing”, and 𝐺 ⟂⟂ 𝐻 | {𝐼, 𝐽} means “𝐺 is
independent of 𝐻 given 𝐼 and 𝐽 .”
Indicate whether each of the claims below are True or False by filling in the corresponding circle. If you
indicate False, also give an example active triple along the path, e.g. 𝑌 → 𝑈 → 𝑀 . It’s the order that matters
so 𝑌 , 𝑈,𝑀 and 𝑀,𝑈, 𝑌 are also fine.

(i) It is guaranteed that 𝐷 ⟂⟂ 𝐵

○ True ○ False Triple:
(ii) It is guaranteed that 𝐴 ⟂⟂ 𝐶 ∣ 𝐵

○ True ○ False Triple:
(iii) It is guaranteed that 𝐴 ⟂⟂ 𝐸 ∣ 𝐶

○ True ○ False Triple:
(iv) It is guaranteed that 𝐹 ⟂⟂ 𝐵 ∣ {𝐴,𝐶}.

○ True ○ False Triple:
(v) It is guaranteed that 𝐹 ⟂⟂ 𝐶 ∣ 𝐸

○ True ○ False Triple:
(vi) It is guaranteed that 𝐹 ⟂⟂ 𝐸 ∣ {𝐵,𝐷}

○ True ○ False Triple:
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(b) Marginalization and Conditioning
Consider a Bayes’ net encompassing the random variables 𝑉 ,𝑊 ,𝑋, 𝑌 ,𝑍 with the structure shown. Note the
full joint distribution 𝐏(𝑉 ,𝑊 ,𝑋, 𝑌 ,𝑍). In each of these questions think about which conditional indepen-
dence relations the Bayes’ Nets must encode.
The following questions are unrelated, meaning your answer to part(i) should not influence part(ii).

(i) Consider the marginal distribution 𝐏(𝑉 ,𝑊 ,𝑋,𝑍) =
∑

𝑦 𝐏(𝑉 ,𝑊 ,𝑋, 𝑌 = 𝑦,𝑍), where 𝑌 was elimi-
nated. On the diagram below, draw the Bayes’ net structure which represents this marginal distribution
using the fewest arrows possible. Write “No arrows needed” if arrows are not needed.

(ii) Assume we are given this observation: 𝑊 = 𝑤. On the diagram below, draw Bayes’ net structure which
represents the conditional distribution 𝐏(𝑉 ,𝑋, 𝑌 ,𝑍) using the fewest arrows possible. If no arrows are
needed write “No arrows needed.”
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Q4. Variable Elimination

In this problem, carry out variable elimination inference for 𝐏(𝐺|+𝑓 )
in the Bayes’ net 𝑁 (pictured on the right). All variables have binary
domains. Eliminate variables in the order prescribed below.

Answer format: when writing factors made during elimination, in-
clude the factor number, arguments, elimination sum, and joined fac-
tors like so:

𝑓1(𝑋,+𝑦) =
∑

𝑧
𝑃 (𝑧| + 𝑦)𝑃 (𝑋|𝑧)

A B

C D E

F G

Bayes’ Net 𝐍
(a) What factors do we start with after incorporating evidence?

(b) Eliminate 𝐴 to make a new factor 𝑓1:

(c) Eliminate 𝐵 to make a new factor 𝑓2:

(d) Eliminate 𝐶 to make a new factor 𝑓3:

(e) Eliminate 𝐸 to make a new factor 𝑓4:

(f) Eliminate 𝐷 to make a new factor 𝑓5:

(g) Compute 𝑃 (+𝑔| + 𝑓 ) from 𝑓5. (Normalize 𝑓5). Your answer should only be in terms of instantiations of 𝑓5.

𝑃 (+𝑔| + 𝑓 ) =

(h) (i) Amongst 𝑓1, 𝑓2,… , 𝑓5, which is the largest factor generated? (Assume all variables have binary domains)

(ii) How large is this factor? (Assume all variables have binary domains)
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Q5. Hours Worked
(a) How many hours did you spend on this homework? Any reasonable answer (number greater than zero) will

receive credit. This will not affect your score on any other problem.
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