
CSE 473 AU22 Homework 4: Reinforcement Learning

Q1. Reinforcement Learning Background
1. Each True/False question is worth 1 points. Briefly justify your answers.

(i) [true or false] Temporal difference learning is a model-based learning method.

(ii) [true or false] Using an optimal exploration function for Q-learning will not have any regret while learn-
ing the optimal policy.

(iii) [true or false] In a deterministic MDP, Q-learning with a learning rate of 𝛼 = 1 cannot learn the optimal
q-values.

(iv) [true or false] A large 𝛾 (around 1) incentivizes greedy behavior.

(v) [true or false] A living reward less than 0 encourages policies that maximize the probability of reaching
terminal states.

(vi) [true or false] Every 𝛾 < 1 can be rewritten using a mathematically equivalent negative living reward.

2. Properties of reinforcement learning algorithms.

(a) Which algorithm, assuming ample exploration, does not provide enough information to obtain an optimal
policy at the time of convergence? (Select all that apply)

□ Temporal Difference learning to estimate 𝑈 (𝑠).
□ Direct Evaluation to estimate 𝑈 (𝑠).
□ Q-Learning to estimate 𝑄(𝑠, 𝑎).
□ Model-based learning of 𝑇 (𝑠, 𝑎, 𝑠′) and 𝑅(𝑠, 𝑎, 𝑠′).

(b) Assuming we run for infinitely many steps, for which exploration policies is 𝑄-learning guaranteed to
converge to the optimal Q-values for all state-action pairs. Assume we chose reasonable values for 𝛼 and
all states of the MDP are connected via some path. (Select all that apply)

□ A fixed optimal policy.
□ A fixed policy taking actions uniformly at random.
□ An 𝜖-greedy policy
□ A greedy policy.
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Q2. Grid-World Reinforcement
(a) Consider the grid-world given below and Pacman who is trying to learn the optimal policy. If an action re-

sults in landing into one of the shaded states the corresponding reward is awarded during that transition. All
shaded states are terminal states, i.e., the MDP will take the exit action and collect the corresponding reward
once it arrives in a shaded state. The other states have the North, East, South, West actions available, which
deterministically move Pacman to the corresponding neighboring state (or have Pacman stay in place if the
action tries to move out of the grid). Assume the discount factor 𝛾 = 0.5 and the Q-learning rate 𝛼 = 0.5 for
all calculations. Pacman starts in state (1, 3). For this question, Pacman does not have to learn the values for
the terminal (shaded) states, these are given to him and remain fixed.

1. The agent starts from the top left corner and you are given the following episodes from runs of the agent
through this grid-world. Each line in an Episode is a tuple containing (𝑠, 𝑎, 𝑠′, 𝑟).

Episode 1 Episode 2 Episode 3 Episode 4 Episode 5
(1,3), S, (1,2), 0 (1,3), S, (1,2), 0 (1,3), S, (1,2), 0 (1,3), S, (1,2), 0 (1,3), S, (1,2), 0
(1,2), S, (1,1), 0 (1,2), E, (2,2), 0 (1,2), E, (2,2), 0 (1,2), E, (2,2), 0 (1,2), E, (2,2), 0
(1,1), Exit, D, -100 (2,2), E, (3,2), 0 (2,2), E, (3,2), 0 (2,2), N, (2,3), 0 (2,2), E, (3,2), 0

(3,2), E, (4,2), 0 (3,2), S, (3,1), 0 (2,3), Exit, D, +10 (3,2), E, (4,2), 0
(4,2), N, (4,3), 0 (3,1), Exit, D, +30 (4,2), N, (4,3), 0
(4,3), Exit, D, +100 (4,3), Exit, D, +100

Fill in the following Q-values obtained from direct evaluation from the samples (round to three decimal
places):

𝑄((4,2), N) = 𝑄((1,2), E) = 𝑄((2,2), E) =
2. Q-learning is an online algorithm to learn optimal Q-values in an MDP with unknown rewards and tran-

sition function. The update equation is:

𝑄(𝑠𝑡, 𝑎𝑡) = (1 − 𝛼)𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼(𝑟𝑡 + 𝛾 max
𝑎′

𝑄(𝑠𝑡+1, 𝑎′))

where 𝛾 is the discount factor, 𝛼 is the learning rate and the sequence of observations are (⋯ , 𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1, 𝑟𝑡,⋯).
Given the episodes in (1), fill in the episode at which the following Q values first become non-zero. If
the specified Q value never becomes non-zero, write never.

𝑄((1,3), S) = 𝑄((2,2), E) = 𝑄((3,2), E) =
3. What is the value of the optimal value function 𝑉 ∗ at the following states: (Unrelated to answers from

previous parts)

𝑉 ∗(1, 3) = 𝑉 ∗(2, 2) = 𝑉 ∗(3, 2) =
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4. Using Q-Learning updates, what are the following Q-values after the above five episodes:

𝑄((3,2),N) = 𝑄((1,2),S) = 𝑄((2, 2), 𝐸)
=

5. Consider a feature based representation of the Q-value function:

𝑄𝑓 (𝑠, 𝑎) = 𝑤1𝑓1(𝑠) +𝑤2𝑓2(𝑠) +𝑤3𝑓3(𝑎)

𝑓1(𝑠) ∶ The x coordinate of the state 𝑓2(𝑠) ∶ The y coordinate of the state

𝑓3(𝑁) = 1, 𝑓3(𝑊 ) = 2, 𝑓3(𝑆) = 3, 𝑓3(𝐸) = 4, 𝑓3(𝐸𝑥𝑖𝑡) = 5

(a) Given that all 𝑤𝑖 are initially 0, what are their values after the first episode:

𝑤1 = 𝑤2 = 𝑤3 =
(b) Assume the weight vector 𝑤 is equal to (1, 1, 1). What is the action prescribed by the Q-function in

state (2, 2) ?
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Q3. Simple HMM
Consider a Markov Model with a binary state 𝑋 (i.e., 𝑋𝑡 is either 0 or 1). The transition probabilities are given

as follows:

𝑋𝑡 𝑋𝑡+1 𝑃 (𝑋𝑡+1 ∣ 𝑋𝑡)
0 0 0.7
0 1 0.3
1 0 0.6
1 1 0.4

1. The prior belief distribution over the initial state 𝑋0 is uniform, i.e., 𝑃 (𝑋0 = 0) = 𝑃 (𝑋0 = 1) = 0.5. After
one timestep, what is the new belief distribution, 𝑃 (𝑋1)?

𝑋1 𝑃 (𝑋1)

0

1

2. Now, we incorporate sensor readings. For all parts, answer using a decimal rounded to three places.

(a) The sensor model is parameterized as is shown in the table below. Notice the sensor is better at detecting
𝑋1 = 0 than 𝑋1 = 1:

𝑋𝑡 𝐸𝑡 𝑃 (𝐸𝑡 ∣ 𝑋𝑡)
0 0 0.9
0 1 0.1
1 0 0.3
1 1 0.7

At 𝑡 = 1, we get the first sensor reading, 𝐸1 = 0. Use your answer from part (1) to compute 𝑃 (𝑋1 = 1 ∣
𝐸1 = 0):

(b) The sensor model is parameterized by a number 𝛽 ∈ [0, 1]:

𝑋𝑡 𝐸𝑡 𝑃 (𝐸𝑡 ∣ 𝑋𝑡)
0 0 (1 − 𝛽)
0 1 𝛽
1 0 (1 − 𝛽)
1 1 𝛽
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At 𝑡 = 1, we get the first sensor reading, 𝐸1 = 0. Please simplify your answer when possible. Use your
answer from part (1) to compute 𝑃 (𝑋1 = 0 ∣ 𝐸1 = 0):

(c) For what range of values, if any, of 𝛽 will a sensor reading 𝐸1 = 0 increase our belief that 𝑋1 = 0? That
is, what is the range of 𝛽 for which 𝑃 (𝑋1 = 0 ∣ 𝐸1 = 0) > 𝑃 (𝑋1 = 0)? (Use 𝛽 as defined in part (b))

3. Unfortunately, the sensor breaks after just one reading, and we receive no further sensor information. Compute
𝑃 (𝑋∞ ∣ 𝐸1 = 0), the stationary distribution very many timesteps from now.

𝑋∞ 𝑃 (𝑋∞ ∣ 𝐸1 = 0)

0

1

4. How would your answer to part (3) change if we never received the sensor reading 𝐸1, i.e. what is 𝑃 (𝑋∞)
given no sensor information?

𝑋∞ 𝑃 (𝑋∞)

0

1
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Q4. Hours Worked
(a) How many hours did you spend on this homework? Any reasonable answer (number greater than zero) will

receive credit. This will not affect your score on any other problem.
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