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Our Status in CSE473

▪ We’re done with Search and planning

▪ We are done with learning to make decisions


▪ Probabilistic Reasoning

▪ Diagnosis

▪ Speech recognition

▪ Tracking objects

▪ Robot mapping

▪ Genetics

▪ Error correcting codes

▪ … lots more!
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Inference in Ghostbusters

▪ A ghost is in the grid 
somewhere


▪ Sensor readings tell how 
close a square is to the 
ghost

▪ On the ghost: red

▪ 1 or 2 away: orange

▪ 3 or 4 away: yellow

▪ 5+ away: green

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3

▪  Sensors are noisy, but we know P(Color | Distance)
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Video of Demo Ghostbuster
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Uncertainty

▪ General situation:


▪ Observed variables (evidence): Agent knows certain 
things about the state of the world (e.g., sensor readings 
or symptoms)


▪ Unobserved variables: Agent needs to reason about other 
aspects (e.g. where an object is or what disease is present)


▪ Model: Agent knows something about how the known 
variables relate to the unknown variables


▪ Probabilistic reasoning gives us a framework for 
managing our beliefs and knowledge
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Random Variables

▪ A random variable is some aspect of the world about which we 
(may) have uncertainty


▪ R = Is it raining?

▪ T = Is it hot or cold?

▪ D = How long will it take to drive to work?

▪ L = Where is the ghost?


▪ We denote random variables with capital letters


▪ Random variables have domains


▪ R in {true, false}   (often write as {+r, -r})

▪ T in {hot, cold}

▪ D in [0, ∞)

▪ L in possible locations, maybe {(0,0), (0,1), …}
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Probability Distributions

▪ Associate a probability with each outcome


▪ Temperature:

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0

▪ Weather: 
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	 Shorthand notation:


OK if all domain entries are unique


Probability Distributions

▪ Unobserved random variables have distributions


▪ A distribution is a TABLE of probabilities of values


▪ A probability (lower case value) is a single number


▪ Must have:                                                 and

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0
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Joint Distributions

▪ A joint distribution over a set of random variables:

	 specifies a real number for each assignment (or outcome): 


▪ Must obey:


▪ Size of distribution if n variables with domain sizes d?


▪ For all but the smallest distributions, impractical to write out!

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3
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Events

▪ An event is a set E of outcomes


▪ From a joint distribution, we can calculate the 
probability of any event


▪ Probability that it’s hot AND sunny?


▪ Probability that it’s hot?


▪ Probability that it’s hot OR sunny?


▪ Typically, the events we care about are partial 
assignments, like P(T=hot)


 

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3
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Marginal Distributions

▪ Marginal distributions are sub-tables which eliminate variables 

▪ Marginalization (summing out): Combine collapsed rows by adding

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T P
hot 0.5
cold 0.5

W P
sun 0.6
rain 0.4
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Quiz: Marginal Distributions

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

X P
+x
-x

Y P
+y
-y
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Quiz: Marginal Distributions

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

X P
+x .5
-x .5

Y P
+y .6
-y .4
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Conditional Probabilities

▪ A simple relation between joint and conditional probabilities

▪ In fact, this is taken as the definition of a conditional probability

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(b)P(a)

P(a,b)
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Quiz: Conditional Probabilities

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

▪ P(+x | +y) ?


▪ P(-x | +y) ?


▪ P(-y | +x) ?
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Quiz: Conditional Probabilities

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

▪ P(+x | +y) ?


▪ P(-x | +y) ?


▪ P(-y | +x) ?


 

.2/.6=1/3

.4/.6=2/3

.3/.5=.6
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Conditional Distributions

▪ Conditional distributions are probability distributions over 
some variables given fixed values of others

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun
rain

W P
sun
rain

Conditional Distributions Joint Distribution
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Conditional Distributions

▪ Conditional distributions are probability distributions over 
some variables given fixed values of others

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.8
rain 0.2

W P
sun 0.4
rain 0.6

Conditional Distributions Joint Distribution
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Normalization Trick

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.4
rain 0.6
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SELECT the joint 
probabilities 
matching the 

evidence


Normalization Trick

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.4
rain 0.6

T W P
cold sun 0.2
cold rain 0.3

NORMALIZE the 
selection


(make it sum to one)
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Normalization Trick

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.4
rain 0.6

T W P
cold sun 0.2
cold rain 0.3

SELECT the joint 
probabilities 
matching the 

evidence


NORMALIZE the 
selection


(make it sum to one)


▪ Why does this work? Sum of selection is P(evidence)!  (P(T=c), here)
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Quiz: Normalization Trick

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

SELECT the joint 
probabilities 
matching the 

evidence


NORMALIZE the 
selection


(make it sum to one)


▪ P(X | Y=-y) ?
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Quiz: Normalization Trick

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

SELECT the joint 
probabilities 
matching the 

evidence


NORMALIZE the 
selection


(make it sum to one)


▪ P(X | Y=-y) ?

X Y P
+x -y 0.3
-x -y 0.1

X P
+x 0.75
-x 0.25
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▪ (Dictionary) To bring or restore to a normal condition


▪ Procedure:

▪ Step 1: Compute Z = sum over all entries

▪ Step 2: Divide every entry by Z


▪ Example 1

To Normalize

All entries sum to ONE

W P
sun 0.2
rain 0.3 Z = 0.5

W P
sun 0.4
rain 0.6

▪ Example 2

T W P

hot sun 20

hot rain 5

cold sun 10

cold rain 15

Normalize

Z = 50

Normalize
T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.324



The Product Rule

▪ Sometimes have conditional distributions but want the joint
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The Product Rule

▪ Example:

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

D W P

wet sun 0.08

dry sun 0.72

wet rain 0.14

dry rain 0.06
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The Chain Rule

▪ More generally, can always write any joint distribution as an 
incremental product of conditional distributions
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Probabilistic Models

▪ Models describe how (a portion of) the world works


▪ Models are always simplifications

▪ May not account for every variable

▪ May not account for all interactions between variables

▪ “All models are wrong; but some are useful.” 

     – George E. P. Box


▪ What do we do with probabilistic models?

▪ We (or our agents) need to reason about unknown 

variables, given evidence

▪ Example: explanation (diagnostic reasoning)

▪ Example: prediction (causal reasoning)
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Independence
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▪ Two variables are independent if:


▪ This says that their joint distribution factors into a product two simpler 
distributions


▪ Another form:


	 	 


▪ We write: 


▪ Independence is a simplifying modeling assumption


▪ Empirical joint distributions: at best “close” to independent


▪ What could we assume for {Weather, Traffic, Cavity, Toothache}?

Independence
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Example: Independence?

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4
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Example: Independence

▪ N fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5
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Conditional Independence
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Conditional Independence

▪ P(Toothache, Cavity, Catch)


▪ If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache:

▪ P(+catch | +toothache, +cavity) = P(+catch | +cavity)


▪ The same independence holds if I don’t have a cavity:

▪ P(+catch | +toothache, -cavity) = P(+catch| -cavity)


▪ Catch is conditionally independent of Toothache given Cavity:

▪ P(Catch | Toothache, Cavity) = P(Catch | Cavity)

▪ Equivalent statements:

▪ P(Toothache | Catch , Cavity) = P(Toothache | Cavity)

▪ P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)

▪ One can be derived from the other easily

34



Conditional Independence

▪ Unconditional (absolute) independence very rare (why?)


▪ Conditional independence is our most basic and robust form of 
knowledge about uncertain environments.


▪ X is conditionally independent of Y given Z


      if and only if:


      or, equivalently, if and only if
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Conditional Independence

36

▪ What about this domain:

▪ Traffic

▪ Umbrella

▪ Raining


▪ What about this domain:


▪ Fire

▪ Smoke

▪ Alarm



Conditional Independence

▪ What about this domain:


▪ Traffic

▪ Umbrella

▪ Raining
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Conditional Independence

▪ What about this domain:


▪ Fire

▪ Smoke

▪ Alarm

38



Conditional Independence and the Chain Rule

▪ Chain rule: 


▪ Trivial decomposition:


▪ With assumption of conditional independence:


▪ We can represent joint distributions by multiplying these simpler local distributions.

▪ Bayes’nets / graphical models help us express conditional independence assumptions 39



Bayes’Nets: Big Picture
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Bayes’ Nets: Big Picture

▪ Two problems with using full joint distribution tables as our 
probabilistic models:

▪ Unless there are only a few variables, the joint is WAY too big to 

represent explicitly

▪ Hard to learn (estimate) anything empirically about more than a 

few variables at a time


▪ Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities)

▪ More properly called graphical models

▪ We describe how variables locally interact

▪ Local interactions chain together to give global, indirect 

interactions

▪ For about 10 min, we’ll be vague about how these interactions are 

specified
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Example Bayes’ Net: Insurance
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Example Bayes’ Net: Car
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Graphical Model Notation

▪ Nodes: variables (with domains)

▪ Can be assigned (observed) or unassigned 

(unobserved)


▪ Arcs: interactions

▪ Indicate “direct influence” between variables

▪ Formally: encode conditional independence 

(more later)


▪ For now: imagine that arrows mean direct 
causation (in general, they don’t!)
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Example: Coin Flips

▪ N independent coin flips


▪ No interactions between variables: absolute independence

X1 X2 Xn
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Example: Traffic

▪ Variables:

▪ R: It rains

▪ T: There is traffic


▪ Model 1: independence


▪ Why is an agent using model 2 better?

R

T

R

T

 

▪ Model 2: rain causes traffic
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▪ Variables

▪ T: Traffic

▪ R: It rains

▪ L: Low pressure

▪ D: Roof drips

▪ B: Ballgame

▪ C: Cavity

Example: Traffic II
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Example: Alarm Network

▪ Variables

▪ B: Burglary

▪ A: Alarm goes off

▪ M: Mary calls

▪ J: John calls

▪ E: Earthquake!
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Example: Alarm Network

▪ Variables

▪ B: Burglary

▪ A: Alarm goes off

▪ M: Mary calls

▪ J: John calls

▪ E: Earthquake!

Burglary Earthqk

Alarm

John 
calls

Mary 
calls 49



Bayes’ Net Semantics
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Bayes’ Net Semantics

▪ A set of nodes, one per variable X


▪ A directed, acyclic graph


▪ A conditional distribution for each node


▪ A collection of distributions over X, one for each 
combination of parents’ values


▪ CPT: conditional probability table


▪ Description of a noisy “causal” process

A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities
51



Probabilities in BNs

▪ Bayes’ nets implicitly encode joint distributions


▪ As a product of local conditional distributions


▪ To see what probability a BN gives to a full assignment, multiply all the 
relevant conditionals together:


▪ Example:

=P(-toothache|+cavity)P(+catch|+cavity)P(+cavity) 52



Bayes’ Net Representation

▪ A directed, acyclic graph, one node per random variable


▪ A conditional probability table (CPT) for each node


▪ A collection of distributions over X, one for each combination of 
parents’ values


▪ Bayes’ nets implicitly encode joint distributions


▪ As a product of local conditional distributions


▪ To see what probability a BN gives to a full assignment, multiply 
all the relevant conditionals together:

A1

X

An

53



Probabilities in BNs

▪ Why are we guaranteed that setting


    results in a proper joint distribution?  


▪ Chain rule (valid for all distributions): 


▪ Assume conditional independences: 


      ! Consequence:


▪ Not every BN can represent every joint distribution


▪ The topology enforces certain conditional independencies
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Only distributions whose variables are absolutely independent can be 
represented by a Bayes’ net with no arcs.

Example: Coin Flips

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2 Xn

P(h)P(h)P(t)P(h)
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Example: Traffic

R

T

+r 1/4

-r 3/4

 +r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

P(+r)P(-t|+r) = ¼*1/4 
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Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3

-a +m 0.01

-a -m 0.99

P(M|A)P(J|
A)P(A|B,E)
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Example: Traffic

▪ Causal direction

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16
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Example: Reverse Traffic

▪ Reverse causality?

T

R

+t 9/16

-t 7/16

+t +r 1/3

-r 2/3

-t +r 1/7

-r 6/7

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16
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Causality?

▪ When Bayes’ nets reflect the true causal patterns:


▪ Often simpler (nodes have fewer parents)

▪ Often easier to think about

▪ Often easier to elicit from experts


▪ BNs need not actually be causal


▪ Sometimes no causal net exists over the domain (especially if 
variables are missing)


▪ E.g. consider the variables Traffic and Drips

▪ End up with arrows that reflect correlation, not causation


▪ What do the arrows really mean?


▪ Topology may happen to encode causal structure

▪ Topology really encodes conditional independence
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Bayes Rule
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Bayes’ Rule

▪ Two ways to factor a joint distribution over two variables:


▪ Dividing, we get:


▪ Why is this at all helpful?


▪ Lets us build one conditional from its reverse

▪ Often one conditional is tricky but the other one is simple

▪ Foundation of many systems we’ll see later (e.g. ASR, MT)


▪ In the running for most important AI equation!

That’s my rule!
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Inference with Bayes’ Rule

▪ Example: Diagnostic probability from causal probability:


▪ Example:

▪ M: meningitis, S: stiff neck


▪ Note: posterior probability of meningitis still very small

▪ Note: you should still get stiff necks checked out!  Why?

Example

givens
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Quiz: Bayes’ Rule

▪ Given:


▪ What is P(W | dry) ? 

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3
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Quiz: Bayes’ Rule

▪ Given:


▪ What is P(W | dry) ? 

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

P(sun|dry) ~ P(dry|sun)P(sun) = .9*.8 = .72

P(rain|dry) ~ P(dry|rain)P(rain) = .3*.2 = .06

P(sun|dry)=12/13

P(rain|dry)=1/13
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Ghostbusters, Revisited

▪ Let’s say we have two distributions:

▪ Prior distribution over ghost location: P(G)


▪ Let’s say this is uniform

▪ Sensor reading model: P(R | G)


▪ Given: we know what our sensors do

▪ R = reading color measured at (1,1)

▪ E.g. P(R = yellow | G=(1,1)) = 0.1


▪ We can calculate the posterior distribution 
P(G|r) over ghost locations given a reading 
using Bayes’ rule:

[Demo: Ghostbuster – with probability (L12D2) ]
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Video of Demo Ghostbusters with Probability
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Uncertainty Summary
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BN lecture



Bayes’ Net Representation

▪ A directed, acyclic graph, one node per random variable


▪ A conditional probability table (CPT) for each node


▪ A collection of distributions over X, one for each combination of 
parents’ values


▪ Bayes’ nets implicitly encode joint distributions


▪ As a product of local conditional distributions


▪ To see what probability a BN gives to a full assignment, multiply 
all the relevant conditionals together:
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