CSE 473: Introduction to
Artificial Intelligence

Hanna Hajishirzi
Reinforcement Learning

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer

Reinforcement Learning

Double Bandits

O Actions: Blue, Red

O States: Win, Lose

Double-Bandit MDP

0.25 $0

-

-

No discount

10 time steps

Both states have
the same value

~

J

$1

1.0

Oftline Planning

o Solving MDPs is offline planning 4)

O You determine all quantities through computation No discount

10 t1 t
o You need to know the details of the MDP Hie steps

© You do not actually play the game! - %
/ \ 0.25 $0
Value
Play Red 15
Play Blue 10

- /

Let’s Play!

S2 S2 S0 S2 S2
$2 $2 SO0 SO SO

Online Planning

© Rules changed! Red’s win chance is different.

?2? $0

$1

1.0

Let’s Play!

SO SO S2 SO
S0 S2 S2 SO SO
S0

What Just Happened?

o That wasn’t planning, it was learning!
O Specifically, reinforcement learning
© There was an MDP, but you couldn’t solve it with just computation

O You needed to actually act to figure it out

o Important ideas in reinforcement learning that came up
o Exploration: you have to try unknown actions to get information
o Exploitation: eventually, you have to use what you know
O Regret: even if you learn intelligently, you make mistakes
o Sampling: because of chance, you have to try things repeatedly

o Difficulty: learning can be much harder than solving a known MDP

Reinforcement Learning

o Still assume a Markov decision process (MDP):
O A set of statess €S

O A set of actions (per state) A , ﬁs
o A model T(s,a,s’) \ e :

o A reward function R(s,a,s’)

Overheated

o Still looking for a policy 7t(s)

o New twist: don’t know T or R
o l.e. we don’t know which states are good or what the actions do

o Must actually try actions and states out to learn

Reinforcement Learning

\

Agent

State: s

Reward: r Actions: a

/Environmen

\ t

O Basic idea:
o Receive feedback in the form of rewards
o Agent’s utility is defined by the reward function
0 Must (learn to) act so as to maximize expected rewards
o All learning is based on observed samples of outcomes!

Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER — 40s]

Robotics Rubik Cube

o https: / / www.youtube.com / watch?v=x408pojMFOw
L - 8

https://www.youtube.com/watch?v=x4O8pojMF0w

The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]

Video of Demo Crawler Bot

CSE 473: Introduction to
Artificial Intelligence

Hanna Hajishirzi
Reinforcement Learning

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer

Announcements

o HW2 grades will be released soon.

o PS3 will be released soon (Due; May 12th)
o HW3 will be released on Tue afternoon (Due, May 7th)

o Mid-quarter course evaluations:

o https:/ /uw.iasystem.org/survey /240219

18

https://uw.iasystem.org/survey/240219

Reinforcement Learning

o Still assume a Markov decision process (MDP):
O A set of statess €S

O A set of actions (per state) A , ﬁs
o A model T(s,a,s’) \ e :

o A reward function R(s,a,s’)

Overheated

o Still looking for a policy 7t(s)

o New twist: don’t know T or R
o l.e. we don’t know which states are good or what the actions do

o Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

g

<

Offline Solution Online Learning

Model-Based Learning

Model-Based Learning

0 Model-Based Idea:

O Learn an approximate model based on experiences
O Solve for values as if the learned model were correct

o Step 1: Learn empirical MDP model
o Count outcomes s’ for each s, aT(s, a, S/)
© Normalize to gR(s, a, s’ Ymate of
o Discover each when we experience (s, a, s)

o Step 2: Solve the learned MDP

o For example, use value iteration, as before

Example: Model-Based Learning

Input Policy

Observed Episodes (Training)

Episode 1

4 B, east, C, -1 h

C, east, D, -1
D, exit, x, +10

Assume:y =1

- J

Episode 3

4 E, north, C, -1 h
C,east, D, -1

Episode 2

4 B, east, C, -1 h

C, east, D, -1
D, exit, x, +10

D, exit, x,+10
\§ J

- J

Episode 4

4 E, north, C, -1 h
C, east, A, -1

A, exit, x,-10
_ J

Learned Model

T(s,a,s")

(" T(B, east, C) = 1.00
T(C, east, D) =0.75
T(C, east, A) = 0.25

-

~

J

R(s,a,s")

(" R(B, east, C) = -1
R(C, east, D) =-1
R(D, exit, x) = +10

-

~

J

Model-Free Learning

Direct Evaluation

o Goal: Compute values for each state under «

O Idea: Average together observed sample
values
o Act according to

o Every time you visit a state, write down what the
sum of discounted rewards turned out to be

O Average those samples

o This is called direct evaluation

Input Policy =

Assume:y =1

Example: Direct Evaluation

Observed Episodes (Training)

Episode 1

Episode 2

4)
B, east, C, -1
C, east, D, -1
D, exit, x, +10

\ J

Episode 3

4)
E, north, C, -1
C,east, D, -1
D, exit, x, +10

\ J

4)
B, east, C, -1
C, east, D, -1
D, exit, x, +10

\ J

Episode 4

4)
E, north, C, -1
C, east, A, -1
A, exit, x, -10

\ J

Output Values

If B and E both go to C
under this policy, how can
their values be different?

Problems with Direct Evaluation

o0 What's good about direct evaluation? Output Values

o It’s easy to understand

o It doesn’t require any knowledge of T, R

o It eventually computes the correct average
values, using just sample transitions

o What bad about it?

o It wastes information about state connections

If B and E both go to C
o Each state must be learned separately under this policy, how can

o So, it takes a long time to learn their values be different?

CSE 473: Introduction to
Artificial Intelligence

Hanna Hajishirzi
Reinforcement Learning

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer

The Story So Far: MDPs and

S k1T, R (Known MDPWution 3

RL

-

L — \
Goal Technique
Compute V*, Q*, m* Value / policy iteration
Evaluate a fixed policy i Policy evaluation

ﬂ" 4

- Unknown MDP: ModeI-Basedqg
1“(\ P
TR

Goal Technique

Comput VI/Pl on approx. MDP

Evaluate a fixed policy PE on approx. MDP

o)

Unknown MDP@/IodeI-Free)

-

/Goal

Evaluate a fixed policy «

Technique

direct evaluation

<

——x

J

(Passive Reinforcement Learning
o= =

o Simplified task: policy evaluation

o Input: a fixed policy n(s) "
© You don’t know the transitions T(s,a,s’)
© You don’t know the rewards R(s,a,s’)

o Goal: learn the state values

O In this case:
o Learner is “glong for the ride”
ake

o No choice about what actions to t

o Just execute the policy and learn from experience
o This is NOT offline planning! You actually take actions in the world.

& -

Problems Withcl;)irect Evaluatiorl

o0 What's good about direct evaluation?

o It’s easy to understand
o It doesn’t require any knowledge OQ\T, R)

o It eventually computes the correct average
values, using just sample transitions

o What bad about it?

o It wastes information about state connections

o Each state must be learned separately

o So, it takes_ along time-to learn

Output Values

If B and E both go to C
under this policy, how can
their values be different?

<X

Why Not Use Policy Evaluation?

o Simplified Bellman updates calculate V for a fixed policy: S
o Each round, replace V with a one-step-look-ahead layer over V (s)
JU\S
/’Vg(s)zom T ® s a(s)
/—’ —~————A ,‘/\/' : oy
/ / / 2 U
Vi1 () 35205, 7(s), s, m(s),) + VT (D] Jsrntohs |,
S——r— \ s’ = 19 &~ , A s
o This approach fully exploited the connections between the states
o Unfortunately, we need T and R to do it! S

o Key question: how can we do this update to V without knowing T and R?
o In other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

o We want to improve our estimate of V by computing these averages:
Vi1 (s) e SJr(s,m(s), i RCs w9,) 4V ()

S’

O Idea: Take samples of outcomes s’ (by Saoialn Rl mvr‘ ------- -
rzcs> S +“(
SCmele]_ — R@W(S)@) L Vkﬂ'(1) %@) /)

samples, = }E @ 7 (s) @ 4+ VV/@ (sh) ‘3‘:\ “ N0

samplen = RQm(s),) +1VE(sh)
~—— IV — — \ f

1
V/gr_|_1(8) — - Z sample;
7
G 2

| ot~ - S
— Temporal Difference Learning Cf
/¢.

O Big idea: learn from every experience!
o Update V(s) each time we experience a transition (S,ES', r). Q’) C ‘J

o Likely outcomes s” will contribute updates more often

}) Sarpl=T XV sy RO
(9((T mporal difference learning of values =

’D

o Policy still fixed, still doing evaluation! A s’

o Move values toward value of whatever successor occurs: running averag Ji

(1= o«) (S)]dhSarple

Sample of V(s): sample = R(S m(s), s)

A=o- |
ICdeate to V(s) VW(S) — (‘@Vﬁ(s) “g

Same update: VT(s) « V™(s) + a(sar‘r\zple — VW(S))

—\

-

/Exponentlal Moyving AverageJLf i

[‘\q;éu\~k>y\ d

o The running interpolation update: \Fn j~ 1—a) ZTn-1+ Q- xn

(
o Exponential moving average {

O Makes recentsamples maore important

O ForgetsélmLthgpaeb(distant past values were wrong anyway)

O Decreasing learning rate (al ha) C ive converging averages
8 8 p o d\rt ’é N g
AW R

ouo((\—-d\)* - -

’

Example TemEoral Difference Learmlgg

Saonple =R £ Y AFYSY 9 4 Ix8
_g\io ('-0(30-&0\6 =3

States \/ 7o) =i - ‘*)V 7<) v (‘m%rved Transmons

~_ pewc@) Yewnay

V7(s) + (1 = a)V7(s) + a |R(s,m(s),s) +4V7(s))

Problems with TD Value Learning

o TD value leaning is a model-free way to do policy evaluation,
mimicking Bellman updates with running sample averages

& - . .
o However, if we want to turn values into a (new) policy, we’'re sunk:

= D _,.?;\J &)
@: arg max Q(s,f -
a 7o

Q(s,a) —ZT(S a,s) [R(S a,s’) +~V (s)J

e ¢ —
O Idea: learn é Values/llot values
O Makes actlon selection model-free too!

Active Reinforcement Learning

CSE 473: Introduction to
Artificial Intelligence

Hanna Hajishirzi
Reinforcement Learning

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer

The Story So Far: MDPs and RL

Known MDP: Offline Solution/ /

f(@ Goal Technique

Compute V*, Q*, m* Value / policy iteration
Evaluate a fixed policy @ Policy evaluation
\ J
/[‘(@ Unknown MDP: Model-Based Q% Unknown MDP: ModeI-Free{
(. . . '
Goal Technique Goal Technique
Compute V*, Q*, * VI/PI on approx. MDP Evaluate a fixed policy « Cdirect evaluation7
—_——
Evaluate a fixed policy PE on approx. MDP

_ Y, _ Sl

@Ctivé Reinforcement Learning

o Full reinforcement learning: optimal policies (like value iteration)
o You don’t know the transitions T(s,a,s’)
o You don’t know the rewards R(s,a,s*) -
o You choose the actions now ___ _
o Goal) learn the optimal palicy / values

o In this case: &) S —

o Learner makes choices! f/
o0 Fundamental tradeoff: e;(i oration vs. exploitation

o This is NOT offline planning! You actually take action%n the world and
find out what happens...

Detour: Q-Value Iteration

© S

O Value iteration: find successive (depth-limited) values \

o Start with =0, which we know is right / \

\/ ¢ o Given V,, calculate the depth k+1 values for all states: QA s/2) o~
Vk_|_1(s) <—Z T(s,a,s’) {R(s a,s’) + 7Vk(s

@ s s’ (-
5/ Ar Sf
V(S)

O But Q-values-are more useful, so compute them instead
o Start with Q,(s,a) = 0, which we know is right & 5 , G)

'e) lenﬂ N\ ARl Atalatn HlhAa AAanthh L1101 A x7Ali1h0o fAn A1l A ckAtnce

L Qr(sia) e éT(s a,s') [R<s @.5) + 7 @k<s a')

—A

Q-Learning 5@—-\%

__/.———/\
o Q-Learning: sample-based Q-value iteration

//qQk_H(s,a) <—LZT(S,CL, s [R(s,a, s+~ mngk(sl,a’)]

a

S)

o Learn Q(s,a) values as you go
o Receive a sample (x

o Consider your old estimate: Q(s,a)

o Consider your new sample eEstimate: ; \/"
/1 longer policy
max Q(s',a)

sample = R(s,a,s’) + ~
\ — -

a evaluation!

o Incorporate the new estimate into a running average:

Qs,a) = (1 -@)Q(s,0) + () [sample]

——————

Q-VALUES AFTER 1000 EPISODES

——

Q-Learning Demo

Video of Demo Q-Learning -- Gridworld

e

Video of Demo Q-Learning -- Crawler

T ————

|
© Amazing result: Q-learning converges to optimal policy -- even if

you'Teacting suboptimally!

o This is called off-policy learning \
[

X Q-Learning Properties e

me

S

o Caveats: _
o You have to exm ((—X) Q iy o(SM\G){/O__

o You have to eventually make the learning rate *]

S E

el

small enough
O ... but not decrease it too quickly

o Basically, in the limit, it doesn’t matter how you select actions (!)

—_—

Discussion: Model- Based VS Model Free RL

e

T | ’?\ &V \/7‘} r.L%
© Model-Based vs. Model Free

" (‘L\'_S &‘u«*
O ms Passive

O act according-te- imal (based on Q-Values)

O buta

48

Exploration vs. Exploitation

T tply eapd_ A
.)*’Hp‘ [~

GRAND

T
GO

c ' How to Explore?

o Several schemes for forcing exploration

o Simplest: random actions reedy) |

o Every time step, flip a coi .
o With (small) probability‘g:*l}g:t randomly

o With (large) probability 1-¢, act on current policy

O Problems with randenractions?

© You do eventually explore the space, but keep

Exploration Functlons

P
© When to explore? l ﬁ %Wj"

O Random actions: explore a fixed amount

o Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

o Exploration function i
o0 Takes a value estimate u and &visit count n, and

returns an optimistic utility, e.g.

Regular Q-Update: Q(s,a) +q (sha,s/) + v max(Q(s’, &) jﬂ*@
g “bonte” harl fR ctatoc that load +n 11nlAAT oc ac ATO
o DO PR RO ot Q(s,a) o F(s,a,5) + 7 max QS a), N(s'ay)

— U&‘ am— —.—

Q-Learn Epsilon Greedy 2

Video of Demo Q-learning — Epsilon-Greedy — Crawler

Video of Demo Q-learning — Exploration Function — Crawler

l

Regret

o Even if you learn the optimal policy,
you still make mistakes along the way!

o Regret is a measure of your total
(mistakegost: the difference between
your (expected) rewards and optimal
(expected) rewards ~

—_— .

© Minimizing regret goes beyond
learning to be optimal — it requires
s optimally learning to be optimal /

o Example: random exploration and
exploration functions both end up
optimal, but random exploration has

higher regret

Recap: Q-Learning

o Q-Learning: sample-based Q-value iteration
FQta(s,a) & S T(s,a,8) |R(s,a,5) + 7 ma
4 __J s/

o Learn Q(s,a) values as you go ~ <{C r
o Receive a sample (s,a.,s_’,r-)D ’; C O\

o Consider your old estimate: Q(s,a)

o Consider your new sample estimate: &

sample = R(s,a,s’) + 7 ma Q(s',a") 1o longer policy
=7 - = \ a’ evaluation!

o Incorporate the new estimate into a running average:

Q(s,0) — (1 —a)Q(s,a) + sampZe]

6 S ——

ABProximate Q-Learning

Generalizing Across States

© Basic Q-Learning keeps a table of all g-values

O In realistic situations, we cannot possibly learn
about every single state!

% © Too many states-te-visit them all in training

g © Too many states to hold the g-tables in memory

o Instead, we want to generalize:

o Learn about some small number ofgfﬁng statesTron
experience

o Generalize that experience to new, similar situations

o This is a fundamental idea in machine learning, and
we’ll see it over and over again

[demo — RL pacman]

Video of Demo Q-Learning Pacman —
Tiny — Watch All

Video of Demo Q-Learning Pacman —
Tiny — Silent Train

Video of Demo Q-Learning Pacman —
Tricky — Watch All

Example: Pa&m 1
21

“)

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state: ,§

Feature-Based Representations

o Solution: describe a state using a vector of

features (properties)
o0 Features are functions from o_real numbers

(often 0/1) that capture important properties of the
state

o Example features:
o Distance to closest ghost/

o Distance to closest dot

o Nupaber of ghos _—
g o R

o Is Pacman in a tunnel? (0/1)

(

o Is it the exact state on this slide?
/75 Can also describe aq-state (s, a) with features (e.g.

action moves closer to food)

Linear Value Functions

o Using a feature representation, we can write a £ function (or @

for any state using a few weights:

V(s) = w1f1(s) +wofo(s) 4+ ... +wnfa(s) &
/ T —
/Q(S, a) = w1 f1(8@)+wafa(s,a)+...+wnfn(s,a)

o Advantage: our experience is summed up in a few powerful numbers

o Disadvantage: states may share features but actually be very different in
value!

Approximate Q-Learning

I

—L 0.0 Lonlntuafls o+ +unfais.a)

0 Q-learning with linear Q-functions:

transition = (s,a,r,s’)

/;')dlfference— [r—l—fymaxQ(s a’)] Q(s, a)/
Qs a) @) +(a dlfference] 7 Exact Q's

O Intuitive Interpretation:
o Adjust weights of active features B ._1

o E.g., if something unexpectedly bad happ(g{,blame the features that were on: disprefer all
states with that state’s features

o Formal justification: online least squares T

——

T ———

Example: Q-Pacman

b
/%2(87 a) — 4'OfDOT(87 CL) — 1°OfGST(57 CL)
H\ &5‘—(____--/
fDOT(S, NORTH)
- a = NORTH /

r = —500
fasr(s, NORTH) @ :
- o '/ _

s NORTH) {+1) Cfboo QD=0
’I“-I-’ymE/]XQ(S/,CL/): 500+ 0 S B

(‘ﬁ*/-
e ——

difference = —501 :> wpot <.4.0 "'O@B@)
— wagsT < —1.0 +a[-501] 1.0

Video of Demo Approximate
Q-Learning -- Pacman

Q-Learning and Least Squares

Linear Approximation: Regression

/”‘Prediction: Prediction:
g =wo +wyf1(x) yi = wo + w1 f1(z) + wafo(z)

*/

—

Optimization: Least Squares

. f’ 2
s -2 @4l i
: i ko2 T
O U
Observation Y Error or “residual’
Prediction _

W\ @ W o o e o« o
Minimizing Error v
Imagine we had only one point x, with features f(x), target value y, and weights w:

< . >
k

0 errorr_('w) .

=~ (v - Y wpfi(@) | fm(2)
A (=30

EU;m:— Wm, + — Zwkfk(w)) fm(x)
- &——-%,,

Approximate g update éxpléined:

Wi — wm + a |r+ymaxQ(s',a') = Q(s, a)| fm(s,a)

X N\
\

“target” “prediction”

——7

@Nhy Limiting Capacity Can Help

Summary: MDPs and RL
Known MDP: Offline Solution V/
a2 .)
Goal Technique
Compute V*, Q*, m* Value / policy iteration
Evaluate a fixed policy @ Policy evaluation
\ %
3 %
Unknown MDP:Aviodel-Basec Unknown MDP: Model-Free
/ *use features\ . *use features .
Goal to generalize Technique Goal to generalize Technique
Compute V*, Q*, n* , VI/PI on approx. MDP Compute V*, Q*, m* Q-learning
Evaluate a fixed policy PE on approx. MDP Evaluate a fixed policy i Value Learning
N / - /

Policy Search

Policy Search

o Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best

o E.g. your value functions from project 2 were probably horrible estimates of future rewards,
but they still produced good decisions

0 Q-learning’s priority: get Q-values close (modeling)
o Action selection priority: get ordering of Q-values right (prediction)

o Solution: learn policies that maximize rewards, not the values that predict them

o Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by
nudging each feature weight up and down and see if your policy is better than

before /(

New in Model-Free RL
Playing Atari Games

s

76

Conclusion

(Xl'/gi)

o We’ve seen how Al methods can solve
problems in:
o Search
o Games
o Markov Decision Problems
o Reinforcement Learning

o Next up: Uncertainty and Learning!

