CSE 473: Introduction to
Artificial Intelligence

Hanna Hajishirzi
Markov Decision Processes

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer

Announcements

o HWI1, PS1 grades are released.
o HW2 is released - DUE: Friday, 11:59pm
o PS2 -> DUE: next Wednesday

Review and Outline

= Adversarial Games
= Minimax search
= - search
= Evaluation functions
= Multi-player, non-0-sum
= Stochastic Games
. Expectima)<
= Markov Decision Processes
= Reinforcement Learninb e

3\

Non-Deterministic Search

Example: Grid World

A maze-like problem

= The agent lives in a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as
planned

= 80% of the time, the action North takes the agent

North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

= If there is a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)

= Big rewards come at the end (good or bad)

0.1

0.1

Grid World Actions

Deterministic Grid World/ Stochastic Grid World

Markov Decision Processes

o An MDP is defined by: .,
o0 Asetof statess €S . {\//E(S(W

o Asetof actionsa € A
o A transition function TTs, a, s)

o Probability that a from s leads to s/, i.e.,-l%s’—l—,s,{a.)_)
o Also called the model or the dynamics (s13 /e

r-\/'(gzg / 5‘))ﬁ Ex 1

2

Tisa Big Table!
11 X4 x 11 =484 entries

/ For now, we give thisasinput to the agent

Markov Decision Processes

© An MDP is defined by:
o Asetofstatess&S
o Asetofactionsa& A

o A transition function T(s;a;3’)"

o Probability that a from s leads to s’, i.e., P(s’| s, a)
o Also called the model or the dfhamics

o Areward function R(s; a8’);R (s.on

O Sometimes just R(s) or R(s’)

- B
RS N, 515) = .04

R(s3,, N -1.01 R is also a Big Table!
R(ss3, E, S43) = 0.99

Cost of breathing ! 2 3 4

/ For now, we also give this to the agent

Markov Decision Processes

© An MDP is defined by:

o Asetof statessES

o AsetofactionsaE A

o A transition function T(s, a, s")
O Probability that a from s leads to s, i.e., P(s" | s, a)
o Also called the model or the dynamics

o A reward function R(s, a, s’)
O Sometimes jgsiaR(s) or R(s")

o A start state /

o0 Maybe a terminal state

————
o0 MDPs are non-deterministic search problems
o One way to solve them is with expectimax search
o We'll have a new tool soon

What is Markov about MDPs?

“Markov” generally means that given the present state, the @ture and
the past are independent A

For Markov decision processes, “Markov” means action outcomes
depend only on the current state

P(St—i—l Z@\St :_f_t_aAt = a¢, St—1 = S¢—1,A4—1,...50 = So)
v_ Q ——— —

Andrey Markov
P(St_|_1 = S"St = S¢, At = at) 5@856-1922)

~—— el e
This is just like search, where the successor function could only depend

on the current state (not the history)

Policies «

T o ——

o In deterministic single-agent search

problems, we wanted an gpti S OT
sequence of actions, from start to a goal

pohcy n:S— A

o A policy & gives an action for each state
o An optimal policy is one that m&i&@zes Optimal policy when R(s, a, s’) = -0.4 for
expected utility if followed all hon-terminals s

o An explicit policy defines a reflex agent

Optimal Policies

Example: Racing

O O O O

Example: Racing

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

Going faster gets double reward

Slow

1.0

Con|

Overheate/d

—

Racing Search Tree

MDP Search Trees

o Each MDP state projects an expectimax-like search tree

/- . ~T
As —_—) sisastate

> (s,a,s’) called a transition

T(s,a,s’) = P(s’[s,a)

-

7 QS
P
N\
) .
7z ~
7z ~
7 \\
~
~
.
~
- ~
~
: N\
B ()
R(s,a,s
- / \
P 2SI
- ~
’—’ ~

-~

Utilities of Sequences

Utilities of Sequences

© What preferences should an agent have over reward sequences?

(e[~ rshe C‘a Lo //‘1
oM lpcg? [1,2,2] or [2,3,4] o—

V .~-W_, -

0,0,1] or [1,0,0]

o Now /qff later? ~—:--K(\r/

Discounting

o It’s reasonable to maximize the sum of rewards

O It’s also reasonable to prefer rewards now to rewards later

© One solution: values of rewards decay exponentially
X//(J‘/
v 9 &
2
1 Y. g

Worth Now Worth Next Step Worth In Two Steps

T v {8 Y4

Discounting)/mx -

o How to discount?

N/

o Each time we descend a level, we { g
multiply in the discount once V\ 1 J

—
o Why discount? / ‘K
o Think of it as a gamma chance of / L ~

ending the process at every step

o Also helps our algorithms conyefge

o Example: discount of 0.5
o U([L23])=1"1 + 0.5"2.02353
o U([12,3]) <U([3,2,1]).

o Given:

o Actions: East, West, and Exit (only available in exit states a, e)

—

o0 Transitions: deterministic

Quiz: Discounting

10

1A

a

b

d

e

0 Quiz 1: For y = 1, what is the optimal policy?

0 Quiz 2: Fory _Mhat is the optimal policy?
9 H;

© Quiz 3: For which y are West and East equally good when

1y=10 y3

¢

o< [E[=]1
TR
105 | %=1

io?*@_/s <\l — oD

in state
A

CSE 473: Introduction to
Artificial Intelligence

Hanna Hajishirzi
Markov Decision Processes

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer

Markov Decision Processes

© An MDP is defined by: L

o Asetof statess €S / —

o Asetofactionsa€ A /
o A transition function T(s, a, s")
O Probability that a from s leads to s, i.e., P(s" I |s, a)
o Also called the model or the dyn

y cs
o A reward function R(s, a, s’) 4)] /

o Sometimes just R(s) or R(s)
X O A start state
o0 Maybe a terminal state
S 7
o0 MDPs are non-deterministic search problems
o One way to solve them is with expectimax search

o We’'ll have a new tool soon Q \- &\,\A— %’) QX

Recap: Defining MDPs

© Markov decision processes:
/T* o Set of states S
o Start state s

o Set of actions A
o Transitions P(s’ | s,a) (or T(s,a,s’))
\i/ o Rewards R(s,a,s”) (and discount y)

© MDP quantities so far:
oPoticy="Choice of action for each state
o Utility = sum of (diig)unted) rewards

SNS— \ 2 5

-

“JT Infinite Utilities?! . " ~

S7jj

= Problem: What i

= Solutions:

» Finite horizon:

C« Terminate ep

= Policy n depends on time left

l,&,}(~ -
4t

if the game lasts forever? Do we get infinite rewards?

ilar to depgh-limited search)
isodes after a fixed T steps (e.g. life)

= Discounting:use0<y<1 C 1,2

U(["“o,-

Y 4‘6r,4‘() VL4 ~= -

"“oo])—ZVT <RmaX/(1—VW
t Cl-\-f¢\6 * -

;)

. Absorbing state: guarantee that for every policy, a terminal state W111 eventually be

reached (like “overheated” for racing) /

Solving MDPs

MDP Search Trees @l ftdes 9
—— Sy S Q=

o Each MDP state projects an expectimax-like search tree

Sa

S __—BIS a state

(s,a,s’) called a transition

7’ T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

-~

Optimal Quantities

» The value (utility) of a state s:

*(s) = expected utility starting in s and
acting optimally

» The value (utility) of a g-state (s,a):

Q*(s;a) = expected utility starting out
having\taken-action-e=from state s and

(thereafter) acting optimally

= The optimal policy:
m*{s)}=optimal action from state s

Sisa
state

(s,a)is a
g-state

(s,a,s’) is a
transition

Snapshot of Demo — Gridworld V Values

: Sl/ Gridworld Display
k

Noise =0.2
Discount = 0.9
Living reward =0

Snapshot of Demo — Gridworld Q Values

&/

@(S,m\

& Values of States (Bellman Equations)
V7 Vg T ocken

O Fundamental operation: compute the (expectimax) value of a state
o Expected utility under optimal action

o Average sum of (dis’eeaﬂ%eﬂ’) rewards

© This is just what expectimax compyted!
\‘r(S)i

f\l{ecurswe definition of value:

//w*(s) = max Q*(s,a)

Q*(s,a) = ZT(S, a,s) [R(s, a,s’) + "}/V*(S,)}

-———"

d/ V*(s) =m @a\ZT(SCLS){R(SCLS)—F’YV*(S}

/_\\’A’N m’\o

Racing Search Tree 4 L el

Racing Search Tree

L
)

VEONE VORI CHORE VORI VRN T © L A

Racing Search Tree

o0 We're doing way too much work / &

with expectimax!

&
O Problem: States are repeated
o Idea quantities: Only compute ?A/x
needed once - \

S Os 8

O Problem: Tree goes on forever fl fl fl fl m

o Idea: Do a depth-limited N N
computation~but with increasing a N o N

depths until change is small
o Note: deep parts of the tree

eventually don’t matter if y <1

———

_ EIEUT UL TNEE L T T I TR L]

WL

‘v AA‘

Time-Limited Values
~ N /_\)c e

o Key idea: time-limited values

o Define [\Z&A) be the optimal value ofs.if the game O

ends irm¥emore time steps T
o Equivalently, it's what adepthfeexpectimax would give from
a8

— &)
V Z ('P‘ \AAA
= = =
! A 7T A R 7

[Demo — time-limited values (L8D6)]

N?d\

VALUES AFTER O ITERATIONS N?ise =0.2
Discount =0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

0.u0 -1.00

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

Example: y=0.9, living

B ellman Up d ate S reward=0, noise=0.2

/ Viii(s) —maxZT(s a,s') [R(s a,s') +vVi(s)]- ma.xQHl s, a) /

(3 3), 1ght ZT ({3, 3), right, s)[((3), rlght s')

——

—

I—[OS [00+09*10]3r01*[00+09*00]+01*[00+09*00]
e’

VALUES AFTER 3 ITERATIONS Noise = 0.2

Discount = 0.9_

Living reward =0

VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=5

Cridworld Display

.

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=6

Gridworld Display

0.59) 0.73) 0.85) 1.00

0.31)

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=7

GCridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=9

Gridworld Display

0.40 »i 0.47

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=11

GCridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

VALUES AFTER

100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Computing Time-Limited Values

Vifa) Vi(as) <: 0 T T T I I I B I IO O

VT T T O O i VT T O O O o VO O Y |

llIllIl' I "I l.llll |AII' - Illlllll . III'IIIl Illll' . llI'lllI I |AI1|

Vo(@) Vo(4as) @,, I TR O T T T TR L T TR

] .A.AA .A'AA A

Recap: MDPs

O Search problems-in uncertain environments
. . » . TCSas)
0 Model uncertainty with transition function 2

o Assign utility to states. How? Usingeward functions K [S/4 g)

o Decision making and sea%DPs <-- Find a sequence of actions
that maximize expected S ewards —

o Solving MDPs: Finding the best pglicy or,
mapping of actions to states

Optimal Quantities

= The value (utility) of a state s:

_V*(s) = expected utility starting in s and A ;‘;tae
acting optimally
is a
= The value (utility) of a g-state (s,a): fstate
Q*(s,a}= expected utility starting out oo
having taken action a from state s and e ition

(thereafter) acting optimally

= The optimal policy:
_xX(s) = optimal action from state s

The Bellman Equations

\/{5) V(S')
How to be optimal: ’

{ia Step 1: Take correct first action

N

/

\\ ~k Step 2yKeep being optimal
©

N— 5 ak |
DO

Nt
=

The Bellman Equations

: A O\ (S)a)
o Definition of “optimal utility” via expectimax recurrent 5|mplg~\ —5 +

one-step lookahead relationship amongst optimal ut|I|ty values

A’)”

_ X p
/P'V*(s) — maXQ (s,a) Q

(s a)—ZT(sas)[R(sas)—l-’yV (3

OThESV*(S) — m Xg(s a, S,) {R(S a S/)+%)’— ZT(S)O!/S) ~

valuc. oo [‘2(54,5 e b V(!)

—

Solving MDPs
Approach 1: Value Iteratio;;t

¥
Vo . @ Steps aﬂ.}[@lue Itqgation J

o Start with V (s) = 0: no time steps left means an expected reward sum of zero

o Given vector of Vk(s) values, do one ply of expectimax from each state:

Vk+1(s)
QV;H_lgS) ma ZT{:] @ R(S a,s’) k(s’)} ;

o Repeat until convergence

————

—

o Complexity of each iteration: O(S2A)

| HS

0 Theorem: will converge to u?{ique optimal \lﬁ S
O Basic idea: approximations get refined towards optimal values V
O Policy may converge long before values do ~/

Example: Value Iteration

Q: 1
F: 5*2+.5"2=2

Vo
7 -~

Overheated
\

Assume no discount!

o

0 0 Vi41(s) @ZT.Q“’) [R(s,a,8) 47 Vi(s))]
V, 7T g s[1tx61%05Tee] = 2
S« 1

Example: Value Iteration

S: .5*1+.5%1=1
" [2 EF: -10)]
Assume no discount!
Vo [O O O] Vk+1(8) <— @@(& a, Sl) [R(*S) a, 8,) + 8 Vk(sl)]

(: — s -
S

Overheated

Example: Value Iteration

A o~
) $ \ by

Assume 110 discount! .
0 0] Vk—i—l(s) — maxZT(s a s) [R(S a, 8)+7Vk(8)]
S T[4t +4x2]| = S

F‘ 5 5 [:2_‘_1*2]_*0 5[2&_34'1;] 5.9

Example: Value Iteration

Overheated

Assume no discount!

S

Example: Value Iteration

Overheated

Assume no discount!

Vo [0 0 0] Viet1(8) méaxZT(s,a,S') [R(S,aa s") + VVk(SI)]

S

Value lteration

o Bellman equations characterize the optimal values:

—

V*i(s) = mC?XZT(S,a,, s") {R(s,a, s") + ny*(s/)}

S

o Value iteration computes them:

Viet1(s) <+ mC?XZT(S, a,s) {R(s, a,s’) + ’ka(s/)}

——— S

———

o Value iteration is just a fixed point solution method

o ..though the V, vectors are also interpretable as time-limited values

Convergence®

How do we know the V| vectors are going to converge?

Case 1: If the tree has maximum depth M, then V,, holds the

actual untruncated values

Case 2: If the discount is Ies)é than1 J Y

O

@)

O O O O

Sketch: For any state V, and V|, can be viewed as depth k+1
expectimax results in nearly identical search trees

The difference is that on the bottom layer, V, ., has actual rewards

k+1
while V, has zeros

That last layer is at best all RM©
It is at worst m
But everything i unted by yk that far out

SoV,andV,,, are at most yk max|R| different

k+1
So as k increases, the values converge

<

€

Vi+1(8)

—

/5 00 -

\ﬁ/ngvéﬂﬂaAK

v

@,

A
. Ko

- \V,

Outcome of Value Iteration?

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Policy Methods

o Compute Values for Policies

o Compute Actions from Values

~—————

o Directly search for policies
J—

Policy Evaluation

Fixed Policies

Do the optimal action Do what m says to do
a—

o Expectimax trees max over all actions to compute the optimal values

o If we fixed some policy ni(s), then the tree would be simpler — only one action per state

o ... though the tree’s value would depend on which policy we fixed

Utilities for a Fixed Policv.

O Another basic operation: compute the utility of a state s

under a fixed (generally non-optimal) policy
/06) ,%’\\ﬁ
\

Define the utility of a state s, under a fixed policy = b A i(s)
;?;2 expected total discounted rewards starting in s and
following m 5 J'IS(S) s’ , L
O Recursive relatlgr‘{z 132 ste oolr“}ﬁgdrhlﬁgllgl}ﬁ?@/ L) 'g) ‘”/ Vo j
equation):

T(s) =2 (s,w(s),s’)[(sym(s)\) + V7 ()]
7 qs’T R N

Example: Policy Evaluation,s”~

Always Go Right Always Go Forward Z

Example: Policy Evaluation

Always o Right Always Go Forward

-10.00 -10.00

o~
-10.00 70.20 ‘10.00!
N
-10.00 48.74
o~
-10.00 33.30

-7.88 }II—l0.00

Vaﬂ/;%;ﬂ P"O’SD Q’ohcy Evaluation

o How do we calculate the V’s for a fixed policy m? R —A s
/

n(s)

S—

o Idea 1: Turn recursive Bellman equations into updates

(like value iteration)
\—

L&’VO(S)—O ’\1,

VE 1 (s) jz T(s,m(5),) R(s, 7(),8) + 1 VE ()]

— = 31) 583

o Efficiency: Of~ feration
\f (Sh\) =
o Idea 2: Withoutthe-maxes, the Bellman equati

0761@? just a linear system

o Solve with Matlab (or your favorite linear system solver)
b - E

— yT(Sz)

Solving MDPs

o Finding the best policy 2 mapping @5

o So far, we have talked about two methods
o Policy evaluation: computes the value of afixed-peticy

L ———

O Vatue-iteration: computes theseptimral-vatues of states
L

Let’s think...

volinn

o Take a minute, think about value iteniation and policy
evaluation

o Write down the biggest questions you %ave about them.

ol

C_Iiohg Extrac‘uon5

—(x
0 Let’s imaginewe have the optimal values V*(s)

© How should we act? oes |l s OO
o It’s not obvious!
0.92 |« 0.91
© We need to do a m1n1 expectlmax (one step)

ZT<sas>[R<sas>+vv__*__<_s_>q /R\

is ca?led pohcy extraction, since it gets the policy implied by the values
u —F"

@ puting Actions from Values
>

S ORDY

/ Co/rgputmg Actions from Q-Vah;\%sw 5 @j}“ :

S 5
o Let’s imagine we have the optimal

g-values:

ok
© How should we act? A A

o Completely trivial to decjde v v v v

ORI | <<

o ITmportant lesson: a¢tiens are easier to selec£ from g-values than values!
>
®\ —a> QA.A/_

78

Recap: MDPs and Bellman Updates

© Markov decisiczgprocesses:
O Set of states S
o Start states,

O Set of actions A
o Transitions P(s” I s,a) (or T(s,a,s’))
0 Rewards R(s,a,‘SQ (¢+~A Ao -mTTT—

<ﬂ/'

How to be optimal:

S —
Step 1: Take correct first action

—————————

Bellman Equations

Recap: Computations

o Compute Values for Policies
o Optimal poilcy: Value Iteration
/er&ed policy: Policy ®vatuation

/ —

o Compute Actions from Values

o Policy extraction ,

G— -
o Directly search for policies

& T——

Recap: Computing values for policies

- o Compute values for a fixed policy: ')oog\,(g -WM e

j Vg(s) =0
Vk—|—1(3) — ZT(S 7w(s),s)[R(s,7(s),s) + WVkW(s’)]

o

&O Compute values for optimal pohcy Valie 1 et

o(S
Vk—l—l(s) <—T(8 a,s) R(s a,s) + v V(s)}

Computing Actions from Values

A/
n
‘ 0-89
o It’s not obvious!
0.92 |« 0.91 0.80
o0 We need to do a mini-expectimax (one step) .

7 (s) Z@ZT(S, a,s)[R(s,a,s) +~V*(s)]
C - s/

o This is called policy extraction, since it gets the policy implied by the values

0 Let’s imagine we have the optimal values V*(s)

o How should we act?

Policy Iteration

Problems with Value Iteration

O Value iteration repeats the Bellman updates:

vk+1<f(> @ T(s,a,s') [R(s,a,s") + 7 Vi(s)

O Problem 1:4sslew — O(S2A) per iteration

© Problem 2: The “max” at each state rarely changes,
policy often converges long before the values

k=12

Gridworld Display /

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=100

Gridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Policy Iteration Fred pelly [P ennd)

o Alternative approach for optimal values:

tep 1: Pelicy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence ﬁl

&Step 2: Poliey-smprovement: update policy Lg_s-ing one-step look-ahead w

resulting converged (but not optimal!) tilit;] (Z 14\

O Repeat steps=smti-polreycomverges—
O This is policy iteration ifev)
o It’s still opti ' ﬂe?‘ qL (
I ptimal! /"v
o Can Convefge—émﬁeh-)iaster under some conditions SJ—LPZ ‘ "\’f dele

Policy Iteration

o Evaluation: For fixed current policy =, find values with policy evaluation:
o Iterate until values converge: A (1,

/@s) 72 T(s,mi(s),s") [R(s,mi(s),s") +~ V()]

o Improvement: For fixed values, get a better policy using policy extraction
0 One-step look-ahead:

mi4+1(s) = arg maXZT(S, a,s) {R(s, a,s’) + ’yVWi(S/)}

— &——* N

&

Comparison

o Both value iteration and policy iteration compute the same thing (all optimal values)

——

o In value iteration: e
o Every iteration updates both the values and (implicitly) the policy

o We don’t track the policy, but taking the max over actions implicitly recomputes it
G)&L % e ahnd
O" We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not af-ef-thenr) \
o After the policy is evaluated, :iﬁvv—Pﬂ‘th fschosen (slow like a value iteration pass)

o) @p new policy will be better. (or $ve’re done) ’%_{

et

O/%h are dynamic programs for sd%-n g MDPs 5

o In policy iteration:

Summary: MDP Algorithms

O 50 you want to..

o Compute op.tlm.ahza.]_ue-s— use value 1terat10% oerohcy iteration |
0 Compute valuesfora particularpolicy: usgpolicy evaluation »
o Turn)@Wlicy: use palicy extraction (one-step lookahead)

D\[}w\/—?d&ﬂv@

o0 These all look the same!

o T]
o T]

hey differ onlybiﬂ@%}\’evfmwwmg in a%ﬁd’pﬁ'ﬁ@’"or (axoveractions—

oT

ney basically are — they are all variations of Bellman updates

hey all use one-step lookahead expectimax fragments

[an

L(S) D «

The Bellman Equat%

+ How to be optimal:

Step 1: Take correct first action
7 {ia
\\ ~___\; Step 2yKeep being optimal
\ To\—p———
& \)‘/ ’
N

Nt
=

Next Topic: Reinforcement Learning!

