CSE 473: Introduction to
Artificial Intelligence

Hanna Hajishirzi

Search
(Un-informed, Informed Search)

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettelmoyer

Announcements

o HW1 is released
O Due: Friday 6pm

o PS1 is due: Next Wednesday (April 14th)

Recap: Search

o Search problem: /

o States (configurations of the world)
O Actions-and costs

O Sueccessor-funetion (world dynamics)
o Start state and goal test

7

o Search tree:
o Nodes: represent plans for reaching states

o bearch algorithm: —— /

o Systematically builds a search tree

o Chooses an ordering of the fringe (unexplored nodes)
o @pﬁ?n'al: finds least-cost plans

Informed Search

O Uninformed Search » Informed Search /

o DEFS = Heuristics
o BFS i = Greedy Search
o UCS = A* Search

= Graph Search

NOPE. - GoAL!

Uniform Cost Issues

o Remember: UCS explores increasing cost
contours

——

0 The good: UCS is complete and optimal!

—-—'---’

o The bad:

o Explores options in every “direction”
o No information about goal location

o We'll fix that soon!

Search Heuristics

» A heuristic is:

A function that estimates how close a state is to a goal
Designed for a particular search problem
Pathing?

Examples: Manhattan distance, Euclidean distance for

Heuriski—Tron

[é-@

<>

Heuristi — Tron

a

Greedy Search

o Expand the node that seems closest...

[] Mehadia

Dobreta []
Eforie

329

380 193

366

253 0

o Is it optimal?
© No. Resulting path to Bucharest is not the shortest!

Greedy Search

O Strategy: expand a node that you think is
closest to a goal state

o Heuristic: estimate of distance to nearest goal
for each state

O A common case:
O Best-first takes you straight to the (wrong) goal

O Worst-case: like a badly-guided DFS

Video of Demo Contours Greedy (Empty)

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

—_—

A* Search
JC S

Combining UCS and Greedy Jth

o Uniform-cost orders by path cost, or backward cost g(n) \
o Greedy orders by goal proximity, or forward cost h(n) [‘

o A* Search orders by the sum: f(n) Eg(n) + h(n)

Example: Teg Grenager

Questions

When should A* terminate?

o Should we stop when we enqueue a goal?

aQ
-
+

\UJ

l) SN SRR o
)2

Vg

A
v
>
V
@

[

m\/

v Y

N O1

- O: T GD
j -

|

Is A* Optimal?

© What went wrong?

o Actual bad goal cost f_? estimated good goal cost
o Weneed estimates to be leg than actual costs!

gh +
> 077
QS—>A 167
l8=G 505\

chlea:%dmissii)_i}ity \

Heuristi - Tron @

Inadmissible (pessimistic) heuristics Admissible (optimistic) heuristics
/ break optimality by trapping/ slow down bad plans but

good plans on the fringe never outweigh true costs

Admissible Heuristics

O A heuristic / isza_dmissible (optimistic) if:

-
o<h@<h*(n) L - o

—~

where h*(n)18 the true cost to a nearest goal

o Examples:

0.0

Ve

/

o Coming up with admissible heuristics is most of what’s involved in

using A* in practice.

Properties of A™

Uniform-Cost A~
/%Jf’ b

UCS vs A* Contours

o Uniform-cost expands equally in
all “directions”

0 A* expands mainly toward the

I, but does hedge its bets t
goal, but does hedge its bets to S/@Goal

ensure optimality

Comparison

SCORE: 0 SCORE: 0

Uniform Cost A*

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) — A*

UCS vs. A*

SCORE: 0 SCORE: _0

Video of Demo Empty Water Shallow /Deep
— Guess Algorithm

2 Pydev - [chipsa e = S|

File Edit Navigate Search Project Run Window |elp

[a~ -0 ~-Q~ £ v ¥ - v v v T [Pyder | & Team
1 search -- plan Lny astar

2 search - plan tny ucs

3 search demo empty

4 search -- Contours greedy vs ucs (greedy
S search -« cantours greedy vs ucs (ucs)

6 search -- contours greedy vs ucs (astar)
[vearch -« greedy bad

8 search -« greedy good

9 search demo maze

search «1 0 COsty
3

Run As »

TEELL LI

Run Corfigurations

Organize Favorites

F |
! /
—_—
J Console ~— ® | T ~ 2~ <
<terminated> L 5
Tozal cost: 27 3
Nunbery of nocdea expanded: 182
Nunber of unigue nodes expanded: 182
es victorious! Sceoze: 573
(0], 'reaulta': ['Win'), "numMovean': [27], ‘'scorea’': [573

[l " ST P

CSE 473: Introduction to
Artificial Intelligence

Hanna Hajishirzi

Search
(Un-informed, Informed Search)

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettelmoyer

A*: Summary

A”: Summary

o A* uses both&ackward costsgnd (estimates of) forward
costs J

0 Asds=sptimal-with admissible (optimistie) heuristics

o0 Heuristic design is key: often use relaxed problems

=
& 2 @% o
— = Sk -— e ——— s — ———

Creating Heuristics

YOu GOT

HEURISTILC
UFGRADE!

Creating Admissible Heuristics

0 Most of the work in solving hard search problems optimally is in coming up with
admissible heuristics

o Often, admissible heuristics are solutions to relaxed problems, where new actions are

available o —

I

| 2 |4 3171
5 N N2/4[5

-7

3 yo-k-1 K4

/ Start State Actions

WJC Example 8 Puzzle |

o What are the states? T q X Qe - - % j r R
© How many states? - o
o What are the actions? Admissible

o How many successors from the start state? f i
o0 What should the costs be? \ hQUI'ISthS ’ J

hs v 8 Puzzle 1

O Heuristic: Number of tiles misplaced
o Why is it admissible?
O h(start) _S

O This is a relaxed-problem heuristic

Start State Goal State

Average nodes expanded when
the optimal path has...

(4 stepy .@té@ (12 step?’i

112 6,300 lib X 106 J
13 | 39 22
N

Statistics from Andrew Moore

.o‘<“_f\’\, < Jig <C§ Puzzle II

o0 What if we had an easier 8-puzzle
where any tile could slide any direction
at any time, ignoring other tiles?

o Total-Manhattan-distance Start State Goal State
© Why is it admissible? Average nodes expanded when
..=18 the optimal path has...
o h(start) = .4 steps |...8 steps |...12 steps
/-:?TILES 13 39 ‘ 227
m 12 25 /3

8 Puzzle III

© How about using the actual cost as a heuristic?
o Would #-be admissible?

o Would we save on nodes expanded? 'I m
0 Wha¥sSrrormmg-with it? =

O % ;*: actrade-off between quatityof estimate and work per node

O As heuristics get closer to the true cost, you will expand fewer nodes but
usually do more work per node to compute the heuristic itself

Example: Pancake Problem

o Action: Flip over top n pancakes

—N_

v Vv

o Cast: Number of pancakes

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

o Dominance: h_ > h_if

//
Vn : ha(n) > he(n)
= —

O Heuristics form a semi-lattice:

o Max of admissible heuristics is admissible

h(n) = max(ha(n), hp(n))

o Trivial heuristics

o Bottom of lattice is the zero heuristic (what
does this give us?)

o Top of lattice is the exact heuristic

A0o) < gz Chan Y —

Ck

exracte——
|

Optimality of A* Tree Search

Optimality of A* Tree Search
e Do Lalelr 1n\

o Ais an optimal goal node

o B is a suboptimal goal node

o his admissible

Proof Sketch:

o All ancestors of A will exit the fringe

before B (n < S va .)(\n (

0 Because f(n) < f(B) ch C h\ ‘.
o A will exit th&fringe before B—<_%(&)

-—

Graph Search

Tree Search: Extra Work!

O Failure to detect repeated states can cause exponentially more work.

7<?, State Graph \ / Search Tree \
A

‘

Graph Search

o In BFS, for example, we shouldn’t bother expanding the circled nodes
(why?)

O

O

Graph Search

Idea: never expand a state twice

How to implement:

; :)
o Tree search + set of expanded states (“closed set”)

<

o E;pand the search tree node-by-node, but...

o Before expanding a node, check to make sure its state has never been
expanded before

o If not new, skip it, if new add to closed set

Important: store the closed set as a set, not a list

n
Can graph meck completeness? cghy / why not?

How about optimality?

’

A* Graph Search Gone Wrong?

State space graph Search tree

51052)
o
7@ B(1+1)
GG0) \algan

——

h=0 Closed ‘E" A

Consistency of Heuristics

O Main idea: estimated heuristic costs < actual costs
o Admissibility: heuristic cost < actual cost to goal
h(A) <lactual cost from A to G
o Consistemey=heuristic “arc” ¢Ost < actual cost foreach ayé

h(A) - h(C) < cost(A to C)
o Consequentes of consisterey:

o Thé&#fyalue along a path neyer decreases
h(A) < cost(A to C) + h(C)

o A* graph search is optimal

A* Graph Search

o Sketch: consider what A* does with a
consistent heuristic

@n t(g} search, A* expands nodes in

increasing total f value (f-contours)

o Eact 2: For every state s, nodes that reach s
optimally are expanded before nodes that
reach s suboptimally

o Result: A* graph search is optimal

Optimality of A* Search

o With a admissible heuristic, Tree A* is optimal.

a—

o With a consistent heuristic, Graph A* is optimal.

o With h=0, the same proof shows that UCS is optimal.

e /

Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure
fringe - INSERT(MAKE-NODE(INITIAL-STATE[problem]|), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node|) then return node

for child-node in EXPAND(STATE|node|, problem) do
fringe < INSERT(child-node, fringe)
end
end

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed <— an empty set
fringe <— INSERT(MAKE-NODE(INITIAL-STATE(problem]), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node|) then return node

if STATE[node| is not in closed then
add STATE[node| to closed
for child-node in EXPAND(STATE[node|, problem) do
fringe <— INSERT(child-node, fringe)
end
end

A* Applications
© Video games / S
o Pathing / routing problems O/
o Resource planning problems
© Robot motion planning el
o Language analysis /
© Machine translation /

o Speech recognition

O ...

A*in Recent Literature

o Joint A* CCG Parsing and ING

Semantic Role Labeling (EMLN’15) P\

S\NP (S\NP)/NP (S\NP)/NP
| Xt |
A &

- Food Web Food Web
o Diagram L5 | e Y| = S
Understanding (ECCV’17)/(>7/ <8 "

o b)
1ML
nkage N Mose dowr
. e
4 '5.
™ bor d web diag it ead to ase po
Multiph = Quastion: of on b| decre 4 ease in fon ba

Search and Models

O Search operates over
models of the world
O The agent doesn’t
actually try all the plans
out in the real world!
o Planning is all “in
simulation”

© Your search is only as
good as your models...

Search Gone Wrong?

—YTTT - -
R . P
- MAPQVEST.[= Bl | bt =% MapPomt
§ sle ¢ ICELAND |-|'I§nd‘ "~.
. \"
.r RUSSIA :
<" He kl TVB"
esmg L3 :
Smalenako ;
Vil mus s "H.-'

Blalq'stok@‘; BELARUS A

POLAND /" Kiev: o
7 UKRAINE
W cmgma

\ i
.' ROMAHIA =

km 500 1000
mi 200 400 600

N £ ’: Start: Haugesund, Rogaland, Norway
» 2005 MapQ ’ st.com, Inc. End: Trondheim, Ser-Trendelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

nrk. no./'allridmo'ro

