CSE 473:
Intro to Artificial Intelligence

Hanna Hajishirzi

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer

Today & Friday

o Agents that Plan Ahead

o Search Problems

o Uninformed Search Methods

0 Depth-First Search

/

o Breadth-First Search

O Uniform-Cost Search

Agents that Plan

Retlex Agents

O Reflex agents: .~

o Choose action based on current percept (and
maybe memory)

o May have memory or a model of the ,yérld’s
current state

o Do not consider the future conseguences of

their actions
o Considerhoewthesaorld IS

O (Can a reflex agent be rational?

Optimal

SCORE:

11:21 AM
8/28/2012

Planning Agents

o Planning agenti,/
o Ask “whatif” ' _ »

o Decisions based on (hypothesized)
consequences of actions

o Must have a model of how the world evolves
in response to actions

o Must formulate a goal (test)
o Consider how the werld-AWOULD-BE-

?’gﬂﬁmﬁ @hmmng

o Planning vs. re planning

SCORE: 0

—— 11:24 AM
G R AL
8/28/2012

e

Search Problems.—

Search Problems

0 A search problem consists of:
O A state space m u@ .

O A successor function
(with actions, costs)

= a
o A start state and a goal test

e

A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

Search: it is not just for agents

Route Hardware Planning optimal
Planning verification repair sequences

R ® @B F £ 4 x K

o Clvic Center, San Francisco, CA 94102

@ Presidio of San Francisco, San Francis:

o Search:
Modeling the world

[Oradea

Example: Traveling in Romania

Eforie

O

O

sw

13a tate space:
SCuétieen

Successor function:

o Roads: Go to adjacent city with
cost = distance

Start state:
o Arad

Goal test:

o Is state == Bucharest?

Solution?

What's in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

O Problem: Pathing / o Problem: Eat-All-Dots
_—— -——m
o States: (x,y) location o States: {(x,y), q
o Actions: NSEW o Actions: NSEW

O Successor: update location O Successor: upsatelecation

only and possibly a dot boolean
o Goal test: i@END o Goal test: dots all false

~» o otate Space Sizes?
(20v 2 A (Z,YL\ \

o World state:
Agent positions: 120
Food count: 30

o
o

o Ghost positions:—r_ﬁp
o Agent facing: NSE

————

———

© How many
o World states?

/Z\ 120x(230)x(122)x4
o States for pathing?

120
o States fOT ERTAT=NOLS?
120x(230)

AL

Recap: Search Problems

o A search problem consists of:

o 1T L.ITT
/7

. “N”, 1.0
O A successor fggctlon)u
(with actions, costs) 7

\A !
E) 1-0

o A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

State Representation

o Real-world applications:

O Requires approximations and heuristics

o Need to design state representation so that search is feasible

© Only focus onSmrportarnt aspects of the state
o E.g., Use features to represent world states

What's in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

O Problem: Pathing o ProblemijEat-All-Dots \
o States: _(}_ng location_— o States: ‘(ﬁx,y), dot boolea;l‘s—}_’\

At SkpS umkl pader e oA

Safe Passage

(,\59) ’PMMJ 6"»35"

Lo |e e Do wnaw Pai\ek broloam

o What does the state space have to specify?

o Problem: mﬂe @tbe ghosts perma-scared l ‘(-

o (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

e
State Space Graphs 7

—

O State space graph: A mathematical

A ‘
‘ v

representation of a search problem

o Nodes are (abstracted) world configurations \
O Arcs represent successors (action results) u

o The goal test is a set of goal nodes (maybe only one) .
o In a state space graph, each state occurs only o
B W

e
0 We can rarely build this full graph in @ !
|

/
N
=
N
\

memory (it's too big), but it's a useful idea

/
&

State Space Graphs

O State space graph: A mathematical
representation of a search problem
o Nodes are (abstracted) world configurations

O Arcs represent successors (action results)

o The goal test is a set of goal nodes (maybe only one)

o In a state space graph, each state occurs only

once!
Tiny search graph for a tiny
search problem

0 We can rarely build this full graph in
memory (it's too big), but it's a useful idea

Search(Tree@

This is now / start

IINAV
<
-

I

Possible futures

O A search tree:
o The startstate is the root node
o Children correspond to successors
o Nodes show states, but correspond to PLANS that achieve those states

o For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

\
/State Sp?a e Graph\

o F
=

/

Each NODE in in
the search tree is
an entire PATH in
the state space
graph.

We construct both
on demand — and
we construct as
little as possible.

\

-

Search Tree
S
/d\ /e\ ;ID
1
b C e h r q
| | /7 \ / \ |
a h r p q f
/ \ | 7\
p q f q C G
I 1\ -
q cC G &

State Space Graphs vs. Search Trees

o Nodes in state space graphs are problem states
o Represent an abstracted state of the world
o Have successors, can be goal / non-goal, have multiple predecessors

o Nodes in search trees are plans
o Represent a plan (sequence of actions) which results in the node’s state
o Have a problem state and one parent, a path length, a depth & a cost
o The same problem state may be achieved by multiple search tree nodes

Search Nodes /

Parent
.. Depth 5

ActifV
Yook Q Node Depth 6

X Problem States

State Space Graphs vs. Search Trees

Consider this 4-state graph: lgw)big is its search tree (from S)?

State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

Important: Lots of repeated structure in the search tree!

Tree Search

Search Example: Romania

] Oradea

Sibiu 99 Fagaras

M} Vaslui

Hirsova

86

Dobreta [

Eforie

Searching with a Search Tree

—

Arad
~
s Sibiu - Cimisoarad~~ CZerind >
¢ Y L __ — e

—

Oradea ‘

o Search:
o Expand out potential plans (tree nodes)

© Maintain a f partial plans under consideration

o Try to expand as few tree nodes as possible

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure

initialize the search tree using the initial state of problem

JE—

loop do
if there are no candidates for expansion then return failure

choose a leaf node for expansion according to[strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

end

O Important ideas:

o Fringe — e

o Expansion Ve
o Exploration strategy

© Main question: which fringe nodes to explore?

Example: Tree Search

Example: Tree Search

 SDERFG

r
| /NG PN | s> d? b
a @ @ p q f s> d—2> c
PN | | N s> d—=2> e
p q (O q ¢ G s> d> e3> h
I /
S>> gd—=>—e=>—7
q @E{ a

| s> d=2 e> r> f
a s> d—> e—> r—o 2> c

Search Algorithms

O Uninformed Search Methods

" o Depth-First Search

" 0 Breadth-First Search

— 0 Uniform-Cost Search

o Heuristic Search Methods
o Best First / Greedy Search
o A*

Depth-First Search

. Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

Search Algorithm Properties

Search Algorithm Properties

\
\ o Complete: Guaranteed to find a solution if one exists?

0 Optimal: Guaranteed to find the least cost path? —

o Time complexity? ("/

d? Space complexity? 1 node
b nodes

o Cartoon of search tree: 2 nodes

o b is the branching factor m tiers

d
0 m is the maximum depth
o solutions at various depths
b des

o Number of nodes in entire tree?
o 1+b+b2+....bm=0(bm)

CL{—b_J—bl-&-- —+ 5

Depth-First Search (DFS) Properties

o What nodes DFS expand?

o Some left prefix of the tree. [1 node
o Could process the whole tree! b nodes
o If m is finite, takes time O(bm
b2 nodes
o How much space does the fringe take? m tiers <
o Only has siblings on path to root, so O(bm)
o Is it complete?
bm nodes

o m could be infinite, so only if we prevent cycles (more
later)

o Is it optimal?
o No, it finds the “leftmost” solution, regardless of depth
or cost

CSE 473:
Intro to Artificial Intelligence

Hanna Hajishirzi

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer

Announcements

o Website:

o Office hours are released

o Try this search visualization tool
o http:/ / giao.github.io /PathFinding.js/ visual / /

o PS1 on the website
o Start ASAP

o Submission: Canvas

http://qiao.github.io/PathFinding.js/visual/

Recap: Search

o Search problem: A/

O configurations of the world)
.
o ﬁm

O Sueeesserfunction (world dynamics)
o Startstate and goal test.

o Search tree:
o Nodes: represent plans for reaching states

/{%earch algorithm:

o Systematically builds a search-tiee
o Chetses an ordering of the fringe (unexplored nodes)

o Optimal: finds least-cost plans

1 node
b nodes
b2 nodes
. =
m tiers <
“-
bm nodes
i
Algorithm Complete [Optimal [Time Space
DFS |With Y if finite N O(b™) O(bm)

checking for
cycles

Breadth-First Search

Breadth-First Search

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

—

Search

Tiers ‘

O

O

Breadth-First Search (BFS) Properties

What nodes does BFS expand?

o Processes all nodes above shallowest solution

o Let depth of shallowest solution be s
o Search takes time O(bs)

How much space does the fringe take?

o Has roughly the last tier, so O(bs)

Is it complete?

o s must be finite if a solution exists, so yes!

Is it optimal?

o Only if costs are all 1 (more on costs later)

s tiers
—-——"’"—"

1 node

__b nodes

~— D2 nodes

v_ps nodes

bm nodes

O

BFS

Algorithm Complete |Optimal |[Time Space
/ Path
DFS eang | Y N O(bn) O(bm)
BFS Y Y/ O(bs) O(bs)
e
b 1 node
_ = b nodes
d tiers < b2 nodes
x X / ?\ bs nodes
\ N\
O
bm nodes

o When is BFS optimal?

C

Quiz: DFS vs BFS

Video of Demo Maze Water DFS/BFS (part 1)

Video of Demo Maze Water DFS/BFS (part 2)

N)

Iterative Deepening—

O Idea: get DFS’s space advantage with

BFS’s time / shallow-solution advantages
0 Run a DFS with depth limit 1. If no solution...

0 Run a DFS with depth limit 2. If no solution

0 Run a DFS with depth limit 3.

o Isn’t that wastefully redundant?

o Generally most work happens in the lowest
level searched, so not so bad!

1N

m—

// N\~
Y, /ryb

Cost-Sensitive Search

2 a 2 @
(22 () —
2
1 8
2 (e

o {4

9 8\,
START
1 4 2

4

q

BFS finds thef_/_\

shortest path in terms of number of actions.

[t does not find the least-cest-path-- We will now cover How?

a similar algorithm which does find the least-cost path.

CUniform Cost Searcb

Strategy: expand a
cheapest node first:

Fringe is a priority queue

/\(priority: cumulative cost)
o

Uniform Cost Search.—

-

Cost
contours

Uniform Cost Search (UCS) Properties

X
o What nodes does UCS expand? C

o Processes all nodes with cost less than cheapest solution! o

o If that solution costs C* agd ar§s cost at least ¢ , then the “effective
depth” is roughly C*/

o Talges time Q(bCe) (exponential in effectiveidepth) @tlers <

o How much space Joes the fringe take?
o Has roughly the last tier, so O(bC*¢)

. —N
o Is it complete?
o Assuming best solution has a finite cost and minimum arc cost is
positive, yes! Cr
&—

o Is it optimal?

o Yes! (Proof next lecture via A*)

e

Uniform Cost Issues

o Remember: UCS explores increasing cost
contours

0 The good: UCS is complete and optimal!

it

a—

o The bad:

o Explores options in every “direction”
o No information about goal location

-

o We'll fix that soon!

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
3)

U

The One Queue

o All these search algorithms are the
same except for fringe strategies LQ | \3{\}5—\,\‘@,\- \ﬂ

o Conceptually, all fringes are priority
queues (i.e. collections of nodes with
attached priorities)

O Practically, for D ou can
avoid the log(n) m an
actual priority queue, by using stacks
and queues

o Can even code one implementation
that takes a variable queuing object

Up next: Informed Search

o0 Uninformed Search » Informed Search/
o DEFS = Heuristics
o BFS = Greedy Search
_ouUCs __ : » A* Search

= Graph Search

noPe. [\ GoAl!

Example: Pancake Problem

—_—

- =

{

|

Cost: Number of pancakes flipped

Example: Pancake Problem

)

\

BOUNDS FOR SORTING BY PREFIX REVERSAL

P

William H. GATES
Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*T
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January
Revised 28 August 1978

For a permutation o of the integers from 1 to n, let f(o) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(o)
for all ¢ in (the symmetric group) S,. We show that f(n)=(5n +5)/3, and that f(n)=17n/16 for
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2—-1=g(n)=2n+3.

Example: Pancake Problem

- - State space graph with costs as weights @ ‘

S X3 p2
AL . ==
2 | 3
_I p— ‘\3)
% \4 — —
7 — ‘ \,2
— 37\ — 2
]2 —~

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy

else expand the node and add the resulting nodes to the search tree
end

if the node contains a goal state then return the corresponding solution

2\ (-
Action: flip top two S — S A Path to reach goal:
Cost: 2 i — i Flip four, flip three
\ I_:._______________________ - TOtal costi/
. . 14 \\\\ ’

Search Heuristics «

» A heuristic is:

A function that estimates how close a state is to a goal

Designed for a particular search problem
Pathing?

anhattan distance, Euclidean distance for

Heuristi — Tron J

Example: Heuristic Function

Straight—line distance
to Bucharest

Arac 2
Bucharest 0
Craiova 160
Dobreta 242
Arad Eforie 161
92 Fagaras 178
99 Fagaras Giurgiu 77
118 ™ Vaslui Hirsova 151
lasi 226
Rimnicu Vilcea Lugoj 244
Mehadia 241
Pitesti Neamt 234
Oradea 380
98 . Pitesti 98
] Hirsova . . 7ol o, \
] Mehadia Urziceni Rimnicu Vilcea 193
75 86 Sibiu 253
Bucharest Timisoara 329
Dobreta [Urziceni 80
.) Eforie Vaslui 199
™ Giurgiu Zerind 374

h(x)
=

Q Example: Heuristic Function

uristic: the number of the largest pancake that is sﬁ%@ﬁutw&ﬁ%‘e
- I pantan ot Rondhe ondg,

45/’ = h(x)
L N
/ }: X : f()i:' ’

Greedy Search

Greedy Search

Sibiu 99 Fagaras

Rimnicu Vilcea

Timisoara

o Expand the node that seems closest...

[] Hirsova
[[] Mehadia
75 86

Dobreta []

Eforie
— [Giurgiu

S—— _—

366 380 193

253 0

o Is it optimal?
© No. Resulting path to Bucharest is not the shortest!

Greedy Search

O Strategy: expand a node that you think is
closest to a goal state

o Heuristic: estimate of distance to nearest goal
for each state

O A common case:
O Best-first takes you straight to the (wrong) goal

O Worst-case: like a badly-guided DFS

