CSE 473: Introduction to Artificial Intelligence

Hanna Hajishirzi HMMs Inference, Particle Filters

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettelmoyer

Recap: Reasoning Over Time

Inference: Find State Given Evidence

We are given evidence at each time and want to know

Belief
$$B_t(X) = P(X_t | e_{1:t})$$

- Idea: start with $P(X_1)$ and derive B_t in terms of B_{t-1}
 - equivalently, derive B_{t+1} in terms of B_t

Inference: Base Cases

Inference: Base Cases $= \frac{1}{2} P(Ram, G(d) + i)$ $= \frac{1}{2} P(Xi)$ Plotar P(Ram) - 2 $P(X \ge |X|)$ (\hat{X}_1) X_2 $\sum_{T} P(X_2, x_1)$ $= \sum_{x_1} P(x_1) P(x_2|_{26})$ $=\sum P(x_1, x_2)$ $\sum P(x_1)P(x_2|x_1)$

Passage of Time

• With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

As time passes, uncertainty "accumulates"

(Transition model: ghosts usually go clockwise)

Inference: Base Cases

Observation

Example: Observation

• As we get observations, beliefs get reweighted, uncertainty "decreases"

The Forward Algorithm

 $\sum_{t=1}^{t} P(x_t | x_{t-1}) P(x_{t-1}, e_{1:t-1})$

We are given evidence at each time and want to know

$$B_t(X) = P(X_t | e_{1:t})$$

 $= P(e_t | x_{t+1})$

• We can derive the following updates $P(x_t|e_{1:t}) \propto_X P(x_t, e_{1:t})$ $= \sum_{x_{t-1}} P(x_{t-1}, x_t, e_{1:t})$ $= \sum_{x_{t-1}} P(x_{t-1}, e_{1:t-1}) P(x_t|x_{t-1}) P(e_t|x_t)$ We can want to step, of the step of the

We can normalize as we go if we want to have P(x|e) at each time step, or just once at the end...

Filtering: P(X_t | evidence_{1:t})

Example: Weather HMM

Pacman – Sonar (P4)

CSE 473: Introduction to Artificial Intelligence

Hanna Hajishirzi HMMs Inference, Particle Filters

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettelmoyer

Approximate Inference

- Sometimes |X| is too big for exact inference
 - |X| may be too big to even store B(X)
 - E.g. when X is continuous
 - |X|² may be too big to do updates
- Solution: approximate inference by sampling
- How robot localization works in practice

Approximate Inference: Sampling

Sampling

- Sampling is a lot like repeated simulation
 - Predicting the weather, basketball games, ...
- Basic idea
 - Draw N samples from a sampling distribution S
 - Compute an approximate probability

- Why sample?
 - Learning: get samples from a distribution you don't know
 - Inference: getting a sample is faster than computing the right answer

Sampling

Sampling from given distribution

- Step 1: Get sample *u* from uniform distribution over [0, 1)
 - E.g. random() in python
- Step 2: Convert this sample *u* into an outcome for the given distribution by having each target outcome associated with a sub-interval of [0,1) with sub-interval size equal to probability of the outcome

Example

6 ົ 0.3 $\leq u < 0.6, \rightarrow C = red$ $0.6 \leq u < 0.7, \rightarrow C = green$ $\rightarrow C = blue$

Particle Filtering

Representation: Particles

Our representation of P(X) is now a list of N particles (samples)

- Generally, N << |X|
- Storing map from X to counts would defeat the point $P(X = (2, 1) = \frac{3}{10})$

P(x) approximated by number of particles with value x

- So, many x may have P(x) = 0!
- More particles, more accuracy

• For now, all particles have a weight of 1

Particle Filtering: Elapse Time

Each particle is moved by sampling its next position from the transition model

$$x' = \operatorname{sample}(P(X'|x))$$

- Samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

(3,3) (2,3)(3,3) (3,2) (3,3)(3, 2)(1,2)(3,3)

(3,3) (2,3)

(3,2) (2,3) (3,2)

(3,1)

(3,3) (3,2)

(1,3)

(2,3) (3,2) (2,2)

Particle Filtering: Observe

- Slightly trickier:
 - Don't sample observation, fix it
 - Downweight samples based on the evidence

 As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of P(e))

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

Particles:

(3,2) w=.9

(2,3) w=.2 (3,2) w=.9 (3,1) w=.4

(3,3) w=.4

(3,2) w=.9 (1,3) w=.1

(2,3) w=.2 (3,2) w=.9 (2,2) w=.4

Recap: Particle Filtering $(X_{z}^{(3,2)} | X_{z}^{(2,2)})$

Particles: track samples of states rather than an explicit distribution

Video of Demo – Moderate Number of Particles

Video of Demo – Huge Number of Particles

Which Algorithm?

Particle filter, uniform initial beliefs, 25 particles

Which Algorithm?

Exact filter, uniform initial beliefs

Which Algorithm?

Particle filter, uniform initial beliefs, 300 particles

Robot Localization

In robot localization:

- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- Particle filtering is a main technique

Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi]

Particle Filter Localization (Laser)

Our Status in 473

- Done with Search and Planning
- Done with Decision Making Under Uncertainty
- Done with Probabilistic Inference
- Next Topic: Machine Learning and Neural Networks (Briefly)
 - Recommend to take CSE 446 for more