CSE 473: FINAL REVIEW LIST
OPEN BOOK, NOTES, CALCULATOR, INTERNET, IN-CLASS EXAM

1. Search
 - Be able to generate part of a search tree for a given model, either depth-first or
 breadth-first.
 - Be able to answer questions about the completeness and complexity of the various
 search variants given in Chapter 3.

2. Informed Search
 - Be able to explain the use of a heuristic function in a search or to give an example
 of one for a stated problem.
 - Be able to apply any of the following search methods to a well-stated problem
 and show a portion of the search.
 - best-first search/A* algorithm
 - Be able to describe the simulated annealing approach and its advantages/disadvantages
 and variants.
 - Be able to answer questions about complexity, completeness, and optimality for
 the above algorithms.

3. Game Playing
 - Be able to develop a utility function for a given game or show how a given one
 works.
 - Be able to show how a basic minimax search works for some given example.
 - Be able to show how the alpha-beta procedure works for some given example.
 - Be able to show how shallow search might be used to improve the alpha-beta
 procedure.

4. Constraint Satisfaction Problems
 - Be able to formalize a constraint satisfaction problem by specifying the sets of
 variables, possible values, and constraints.
 - Be able to explain or illustrate how a backtracking tree search for a constraint
 satisfaction problem would work: alone or with forward checking.

5. Logic and Reasoning
 - Be able to interpret predicate calculus formulas in English.
• Be able to give the clause form equivalent of a SIMPLE set of formulas.
• Be able to show how to produce a resolvent on a SMALL set of SIMPLE formulas.
• Be able to explain what is going on in a given small resolution proof.

6. Machine Learning
• Be able to show how a decision tree is constructed using entropy on a simple example.
• Be able to show how Adaboost would work on a simple example or answer questions about how it works.
• Be able to show how a neural net computes its result (ie. just going forward from input to output) for a simple example.
• Be able to answer questions on neural net learning with just one layer and back propagation with multiple layers.
• Be able to answer questions about how SVMs work with support vectors.
• Be able to show how K-means would work on a simple 2D example.
• Be able to answer questions about how K-means generalizes to the EM clustering algorithm.

7. Computer Vision
• Be able to answer questions on color histograms, the LBP texture operator, and how they can be used to retrieve images, ie. HW 4.
• Be able to answer questions on how relational indexing works in the RIO system.
• Be able to answer questions on the pyramid approach to detecting faces in Rowley’s neural net face detector.
• Be able to answer questions about the difference between the two EM-based methods that Yi Li developed: 1) the one that trained one Gaussian per object in color space. 2) the one that had a two-phase learning methodology.
• In the two-phase learning methodology, be able to explain where the feature vectors used by the neural net come from.
• Be able to answer questions about the HOG operator for pedestrian detection and how it was generalized in the Deformable Parts Model.
• Be able to answer questions about how CNNs differ from classical neural nets. Be able to define the different layers that CNNs can have and what they DO.
• Be able to simulate a simple CNN by performing convolutions, pooling or ReLU operations on small images.