
1

Solving Problems by

Searching

2

Terminology

• State

• State Space

• Initial State

• Goal Test

• Action

• Step Cost

• Path Cost

• State Change Function

• State-Space Search

3

Formal State-Space Model

Problem = (S, s, A, f, g, c)

S = state space

s = initial state

A = set of actions

f = state change function

g = goal test function

c = cost function

x y
a

c(a)

State-Space Model (cont)
Problem = (S, s, A, f, g, c)

• How do we define a solution?

• How about an optimal solution?

4

5

3 Coins Problem

A Very Small State Space Problem

• There are 3 (distinct) coins: coin1, coin2, coin3.

• The initial state is H H T

• The legal operations are to turn over exactly one coin.
– 1 (flip coin1), 2 (flip coin2), 3 (flip coin3)

• There are two goal states: H H H

T T T

What are S, s, A, f, g, c ?

3 Coins Problem: Get from HHT to either

HHH or TTT via operators: flip coin 1, flip

coin 2, and flip coin 3 (flip = turn over)

• S

• s

• A

• f

• g

• c

6

7

State-Space Graph

HTT

TTT

THH

HHH

HHT THT

TTH HTH

1

2

1

3

1

2

1

3

3

3

2

2

• What are some solutions?

• What if the problem is changed to allow only 3 actions?

8

Modified State-Space Problem

• How would you define a state for the new

problem requiring exactly 3 actions?

• How do you define the operations (1, 2, 3)

with this new state definition?

Modified State-Space Problem

• What do the paths to the goal states look

like now?

• (H,H,T,0) ->

9

10

How do we build a search tree for

the modified 3 coins problem?

initial

state
1 2 3

11

The 8-Puzzle Problem

1 2 3

8 B 4

7 6 5

B 1 2

3 4 5

6 7 8

one

initial

state

goal

state

B=blank

1. What data structure easily represents a state?

2. How many possible states are there?

3. How would you specify the state-change function?

4. What is the path cost function?

uniform cost (=1)

5. What is the complexity of the search?

12

Search Tree Example:

Fragment of 8-Puzzle Problem Space

13

Another Example: N Queens
Place exactly one Q in each column so that no two

Q’s are in the same row or diagonal

• Input:

– Set of states

– Operators [and costs]

– Start state

– Goal state (test)

• Output

Q

Q

Q

Q

14

Example: Route Planning
Find the shortest route from

the starting city to the goal

city given roads and distances.

• Input:

– Set of states

– Operators [and costs]

– Start state

– Goal state (test)

• Output:

Search in AI

• Search in Data Structures

– You’re given an existent tree.

– You search it in different orders.

– It resides in memory.

• Search in Artificial Intelligence

– The tree does not exist.

– You have to generate it as you go.

– For realistic problems, it does not fit in

memory.
15

16

Search Strategies (Ch 3)

• Uninformed Search

The search is blind, only the order of

search is important.

• Informed Search

The search uses a heuristic function

to estimate the goodness of each

state.

Depth-First Search by Recursion*
You will use this for Missionary-Cannibal Problem.

• Search is a recursive procedure that is

called with the start node and has arg s.

• It checks first if s is the goal.

• It also checks if s is illegal or too deep.

• If neither, it generates the list L of

successors of its argument s.

• It iterates through list L, calling itself

recursively for each state in L.

17

Depth-First Search by Recursion

18

start state (root)

successor

list of root

successor

list of

first successor

of root

19

The Missionaries and Cannibals Problem

(from text problem 3.9)

• Three missionaries and three cannibals are on one side
(left) of a river, along with a boat that can hold one or two
people.

• If there are ever more cannibals than missionaries on
one side of the river, the cannibals will eat the
missionaries. (We call this a “dead” state.)

• Find a way to get everyone to the other side (right),
without ever leaving a group of missionaries in one place
(left or right) outnumbered by the cannibals in that place,
ie. without anyone getting eaten.

20

Missionaries and Cannibals Problem

21

Missionaries and Cannibals Problem

Left Bank Right Bank

River

22

Missionary and Cannibals Notes

• Define your state as (M,C,S)

– M: number of missionaries on left bank

– C: number of cannibals on left bank

– S: side of the river that the boat is on

• When the boat is moving, we are in

between states. When it arrives, everyone

gets out.

(3,3,L)  (3,1,R) What action did I apply?

What are all the actions?
• Left to right
1. MCR

2. MMR

3. ?

4. ?

5. ?

• Right to left
1. MCL

2. MML

3. ?

4. ?

5. ? 23

24

When is a state considered “DEAD”?

1. There are more cannibals than missionaries on

the left bank. (Bunga-Bunga)

2. There are more cannibals than missionaries on

the right bank. (Bunga-Bunga)

3. There is an ancestor state of this state that is

exactly the same as this state. (Why?)

Same Ancestor State

25

(3,3,L)

(3,1,R)

(3,3,L)

X

Stack

(3,3,L)

(3,1,R)

26

Assignment

• Implement and solve the problem
– You MUST use recursive depth-first blind search.

– You must detect illegal states (cannibals can eat

missionaries) and repeated states along a path.

– You must keep going and print out all four solutions.

• You must use Python

• Full instructions will be on the assignment

page.

Warning

• The material that follows is NOT for HW1.

• HW1 is to be done with a recursive, depth-

first search.

• It does not use the general paradigm we

are about to go into.

• It is a beginning exercise.

• You will use the more general framework

along with a heuristic in HW2.

27

General Search Paradigm
(Figure 3.7 in text)

28

function TREE-SEARCH(problem) returns solution or failure

initialize frontier using the initial state of problem

loop do

if frontier is empty then return failure

choose a leaf node and remove it from frontier

if the node contains a goal state then return the solution

expand the node, adding the resulting nodes to frontier

1. What is the frontier?

2. How do we choose?

3. What does expand mean?

General Search Paradigm
(Figure 3.7 in text)

29

function GRAPH-SEARCH(problem) returns solution or failure

initialize frontier using the initial state of problem

initialize the explored set to be empty

loop do

if frontier is empty then return failure

choose a leaf node and remove it from frontier

if the node contains a goal state then return the solution

add the node to the explored set

expand the node, adding the resulting nodes to frontier

only if they are not in the frontier or the explored set

OPEN CLOSED

Basic Idea

• Start with the initial state

• Maintain a (general) queue of states to visit

– Depth-First search: the queue is LIFO (stack)

– Breadth-First search: the queue is FIFO (queue)

– Uniform-Cost search: the queue is ordered by

lowest path cost g (path from start to node)

– Depth-Limited search: DFS with a depth limit

– Iterative-Deepening search: DFS with depth

limit sequence 1, 2, 3, …. till memory runs out

– Bidirectional Search
30

Performance Criteria

• Completeness: Does it find a solution

when there is one?

• Optimality: Does it find the optimal solution

in terms of cost?

• Time complexity: How long does it take to

find a solution

• Space Complexity: How much memory is

needed?

31

32

Breadth-First Search

a

b c

d e f g h

• Maintain FIFO queue of nodes to visit

• Evaluation (branching factor b; solution at depth d)

– Complete?

– Time Complexity?

– Space?

Yes (if enough memory)

O(b^d)

O(b^d)

33

Depth-First Search

a

b

c d

e

f g h

• Maintain stack of nodes to visit

• Evaluation (branching factor b; solution at depth d)

– Complete?

– Time Complexity?

– Space ?

Not for infinite spaces

O(b^d)

O(d)

34

Iterative Deepening Search

a b

c d

e

f

g h

• DFS with depth limit; incrementally

grow limit l = 0, 1, 2, ...

• Evaluation (for solution at depth d)

– Complete?

– Time Complexity?

– Space Complexity?

Yes, if l >= d

O(b^d)

O(d)

j

i

k l

35

Cost of Iterative Deepening

b ratio IDS to DFS

2 3:1

3 2:1

5 1.5:1

10 1.2:1

25 1.08:1

100 1.02:1

36

Forwards vs. Backwards

37

vs. Bidirectional

• Replace the goal test with a check to see if the

frontiers of the two searches intersect.

• How might this be done efficiently?

Uniform-Cost Search

38

• Expand the node n with the lowest path cost g(n)

• Implement by storing the frontier as a priority queue

ordered by g(n).

• Apply the goal test when the node is selected for

expansion

• If a newly generated node n is already on the

frontier as node n´ and if pathcost(n) < pathcost(n´),

then replace n’ with n.

Comparison of Blind Methods

39

40

Problem

• All these blind methods are too slow for

real applications

• Solution  add guidance

•  “informed search”

