Knowledge & Reasoning

• Logical Reasoning: to have a computer automatically perform deduction or prove theorems

• Knowledge Representations: modern ways of representing large bodies of knowledge
Logical Reasoning

• In order to communicate, we need a formal language in which to express
 – axioms
 – theorems
 – hypotheses
 – rules

• Common languages include
 – propositional logic
 – 1st order predicate logic
Propositional Logic

• Propositions are statements that are true or false.
 – P: Sierra is a dog
 – Q: Muffy is a cat
 – R: Sierra and Muffy are not friends

• Propositions can be combined using logic symbols

 \[P \land Q \Rightarrow R \quad \neg P \lor Q \]
Predicate Logic

• Formulas have predicates with variables and constants:
 – man(Marcus)
 – Pompeian(Marcus)
 – born(Marcus, 40)

• More symbols
 – ∀ for every \(\forall x \text{ Pompeian}(x) \Rightarrow \text{died}(x,79) \)
 – ∃ there exists \(\exists x \text{ Pompeian}(x) \)
Vesuvius
Ancient Pompei and Vesuvius

What happened to ancient Pompei?

Vesuvius erupted and killed everyone.

When?

79 A.D.
Predicate Logic Example

1. Pompeian(Marcus)
2. born(Marcus,40)
3. man(Marcus)
4. $\forall x \text{ man}(x) \Rightarrow \text{mortal}(x)$
5. $\forall x \text{ Pompeian}(x) \Rightarrow \text{died}(x,79)$
6. erupted(Vesuvius,79)
7. $\forall x \forall t1 \forall t2 \text{ mortal}(x) \land \text{born}(x,t1) \land \text{gt}(t2-t1,150) \Rightarrow \text{dead}(x,t2)$
Dead Guy in 2009

8. gt(now, 79)
Some Rules of Inference

9. $\forall x \forall t \ [\text{alive}(x,t) \Rightarrow \neg \text{dead}(x,t)] \land \neg \text{dead}(x,t) \Rightarrow \text{alive}(x,t)$

If x is alive at time t, he’s not dead at time t, and vice versa.

10. $\forall x \forall t1 \forall t2 \text{died}(x,t1) \land \text{gt}(t2,t1) \Rightarrow \text{dead}(x,t2)$

If x died at time t1 and t2 is later, x is still dead at t2.
Prove dead(Marcus, now)

1. Pompeian(Marcus)
2. born(Marcus, 40)
3. man(Marcus)
4. \(\forall x \) man(x) \(\Rightarrow \) mortal(x)
5. \(\forall x \) Pompeian(x) \(\Rightarrow \) died(x, 79)
6. erupted(Vesuvius, 79)
7. \(\forall x \) \(\forall t_1 \) \(\forall t_2 \) mortal(x) \(\land \) born(x, t1) \(\land \) gt(t2-t1, 150) \(\Rightarrow \) dead(x, t2)
8. gt(now, 79)
9. \(\forall x \) \(\forall t \) [alive(x, t) \(\Rightarrow \) \(\neg \)dead(x, t)] \(\land \) [\(\neg \)dead(x, t) \(\Rightarrow \) alive(x, t)]
10. \(\forall x \) \(\forall t_1 \) \(\forall t_2 \) died(x, t1) \(\land \) gt(t2, t1) \(\Rightarrow \) dead(x, t2)
Prove dead(Marcus, now)

Direct Proof

1. Pompeian(Marcus)

5. \(\forall x \text{ Pompeian}(x) \implies \text{died}(x,79) \)

\[
\begin{align*}
\text{died}(\text{Marcus},79)
\end{align*}
\]

8. \(\text{gt}(\text{now},79) \)

\[
\begin{align*}
\text{died}(\text{Marcus},79) \land \text{gt}(\text{now},79)
\end{align*}
\]

7. \(\forall x \ \forall t_1 \ \forall t_2 \ \text{died}(x,t_1) \land \text{gt}(t_2,t_1) \implies \text{dead}(x,t_2) \)

\[
\begin{align*}
\text{dead}(\text{Marcus},\text{now})
\end{align*}
\]
Proof by Contradiction

\[\neg \text{dead(Marcus, now)} \]

\[\forall x \forall t1 \forall t2 \text{ died}(x, t1) \land \text{gt}(t2, t1) \Rightarrow \text{dead}(x, t2) \]

\[\forall t1 \neg [\text{died}(\text{Marcus, } t1) \land \text{gt}(\text{now, } t1)] \]

What substitutions were made here?
What rule of inference was used?

Marcus for \(x \); now for \(t2 \)

If \(x \Rightarrow y \) then \(\neg y \Rightarrow \neg x \)
Proof by Contradiction

\(\neg \text{dead(Marcus, now)} \)

\(\forall x \ \forall t1 \ \forall t2 \ \text{died}(x, t1) \land \text{gt}(t2, t1) \Rightarrow \text{dead}(x, t2) \)

\(\forall t1 \ \neg [\text{died}(\text{Marcus}, t1) \land \text{gt}(\text{now}, t1)] \)

\(\forall t1 \ \neg \text{died}(\text{Marcus}, t1) \lor \neg \text{gt}(\text{now}, t1) \)

\(\neg \text{gt}(\text{now}, 79) \)

\(\text{died(Marcus, 79)} \)

\(\text{gt(now, 79)} \)

contradiction

*assume we proved this separately
Resolution Theorem Provers for Predicate Logic

• Given:
 – F: a set of axioms represented as formulas
 – S: a conjecture represented as a formula

• Prove: F logically implies S

• Technique
 – Construct \(\neg S \), the negated conjecture
 – Show that \(F' = F \cup \{\neg S\} \) leads to a contradiction
 – Conclude: \(\neg \neg S \) or \(S \)
Part I: Preprocessing to express in Conjunctive Normal Form

1. Eliminate implication operator \(\Rightarrow \)
 - Replace \(A \Rightarrow B \) by \(\lor (\neg A, B) \)

 - Example:
 \(\text{man}(x) \Rightarrow \text{mortal}(x) \) is replaced by
 \(\lor (\neg \text{man}(x), \text{mortal}(x)) \) or in infix notation
 \(\neg \text{man}(x) \lor \text{mortal}(x) \)
2. Reduce the scope of each \(\neg \) to apply to at most one predicate by applying rules:

- Demorgan’s Laws
 \[\neg \lor(x_1,\ldots,x_n) \text{ is equivalent to } \land(\neg x_1,\ldots, \neg x_n) \]
 \[\neg \land(x_1,\ldots,x_n) \text{ is equivalent to } \lor(\neg x_1,\ldots, \neg x_n) \]
- \(\neg(\neg x) \Rightarrow x \)
- \(\neg(\forall x \ A) \Rightarrow \exists x(\neg A) \)
- \(\neg(\exists x \ A) \Rightarrow \forall x(\neg A) \)
Preprocessing Continued

• Example
\[\neg [\forall x \forall t1 \forall t2 [died(x,t1) \land gt(t2,t1)] \Rightarrow dead(x,t2)] \]

• Get rid of the implication
\[\neg [\forall x \forall t1 \forall t2 \neg [died(x,t1) \land gt(t2,t1)] \lor dead(x,t2)] \]

• Apply the rule for \(\neg [\forall \exists x \exists t1 \exists t2 \neg (\neg [died(x,t1) \land gt(t2,t1)] \lor dead(x,t2)) \]

• Apply DeMorgan’s Law
\[\exists x \exists t1 \exists t2 \neg \neg [died(x,t1) \land gt(t2,t1)] \land \neg dead(x,t2) \]
\[\exists x \exists t1 \exists t2 died(x,t1) \land gt(t2,t1) \land \neg dead(x,t2) \]
3. Standardize Variables

Rename variables so that each quantifier binds a unique variable

\(\forall x [P(x) \land \exists x Q(x)] \)

becomes

\(\forall x [P(x) \land \exists y Q(y)] \)
• 4. Eliminate existential qualifiers by introducing \textbf{Skolem functions}.

• Example

\[\forall x \; \forall y \; \exists z \; P(x,y,z) \]

• The variable \(z \) depends on \(x \) and \(y \).

• So \(z \) is a function of \(x \) and \(y \).

• We choose an arbitrary function name, say \(f \), and replace \(z \) by \(f(x,y) \), eliminating the \(\exists \).

\[\forall x \; \forall y \; P(x,y,f(x,y)) \]
5. Rewrite the result in Conjunctive Normal Form (CNF)

\(\land (x_1, \ldots, x_n) \) where the \(x_i \) can be

- atomic formulas \(A(x) \)
- negated atomic formulas \(\neg A(x) \)
- disjunctions \(A(x) \lor P(y) \)

This uses the rule

\(\lor (x_1, \land (x_2, \ldots, x_n)) = \land (\lor (x_1, x_2), \ldots, \lor (x_1, x_n)) \)
6. Since all the variables are now only universally quantified, eliminate the \forall as understood.

$$\forall x \; \forall t1 \; \forall t2 \; \neg \text{died}(x,t1) \lor \neg \text{gt}(t2,t1) \lor \text{dead}(x,t2)$$

becomes

$$\neg \text{died}(x,t1) \lor \neg \text{gt}(t2,t1) \lor \text{dead}(x,t2)$$
Clause Form

- The clause form of a set of original formulas consists of a set of clauses as follows.
 - A literal is an atom or negation of atom.
 - A clause is a disjunction of literals.
 - A formula is a conjunction of clauses.

Example

Clause 1: \{A(x), \neg P(g(x,y),z), \neg R(z)\} (implicit or)
Clause 2: \{C(x,y), Q(x,y,z)\} (another implicit or)
Steps in Proving a Conjecture

1. Given a set of axioms F and a conjecture S, let $F' = F \cup \neg S$ and find the clause form C of F'.

2. Iteratively try to find new clauses that are logically implied by C.

3. If NIL is one of these clauses you produce, then F' is unsatisfiable and the conjecture is proved.

4. You get NIL when you produce something that has A and also has $\neg A$.
Resolution Procedure

1. Convert F to clause form: a set of clauses.
2. Negate S, convert it to clause form, and add it to your set of clauses.
3. Repeat until a contradiction or no progress
 a. Select two parent clauses.
 b. Produce their resolvent.
 c. If the resolvent = NIL, we are done.
 d. Else add the resolvent to the set of clauses.
Resolution for Propositions

- Let $C_1 = L_1 \lor L_2 \lor ... \lor L_n$
- Let $C_2 = L_1' \lor L_2' \lor ... \lor L_n'$
- If C_1 has a literal L and C_2 has the opposite literal $\neg L$, they cancel each other and produce

 \[
 \text{resolvent}(C_1, C_2) = L_1 \lor L_2 \lor ... \lor L_n \lor L_1' \lor L_2' \lor ... \lor L_n'
 \]

 with both L and $\neg L$ removed.
- If no 2 literals cancel, nothing is removed.
Propositional Logic Example

Formulas: $P \lor Q$, $P \Rightarrow Q$, $Q \Rightarrow R$

Conjecture: R

Negation of conjecture: $\neg R$

Clauses: \{ $P \lor Q$, $\neg P \lor Q$, $\neg Q \lor R$, $\neg R$ \}

Resolvent($P \lor Q$, $\neg P \lor Q$) is Q. Add Q to clauses.

Resolvent($\neg Q \lor R$, $\neg R$) is $\neg Q$. Add $\neg Q$ to clauses.

Resolvent(Q, $\neg Q$) is NIL.

The conjecture is proved.
Refutation Graph

Original Clauses: \{P \lor Q, \neg P \lor Q, \neg Q \lor R, \neg R\}
Exercise

• Given $P \Rightarrow R$ and $R \Rightarrow Q$, prove that $P \Rightarrow Q$
Resolution for Predicates

• Requires a matching procedure that compares 2 literals and determines whether there is a set of substitutions that makes them identical.

• This procedure is called unification.

\[C_1 = \text{eats(Tom, x)} \]
\[C_2 = \text{eats(Tom, ice cream)} \]

• The substitution \text{ice cream/x} (read “ice cream for x”) makes \(C_1 = C_2 \).

• You can substitute constants for variables and variables for variables, but nothing for constants.
Proof Using Unification

• Given $\forall x \ P(x) \Rightarrow R(x)$

$\forall z \ R(z) \Rightarrow Q(z)$

• Prove $\forall x \ P(x) \Rightarrow Q(x)$

• Negation $\neg \forall x \ P(x) \Rightarrow Q(x)$

• $\exists x \ \neg (P(x) \Rightarrow Q(x))$

• $\exists x \ \neg (\neg P(x) \lor Q(x))$

• $\exists x \ P(x) \land \neg Q(x)$

• $P(a) \land \neg Q(a)^*$

$\{P(a)\} \ {\neg Q(a)}$

* Skolem function for a single variable is just a constant
Refutation Graph with Unification

\{\neg P(x), R(x)\} \quad \{\neg R(z), Q(z)\}

Substitution
\ x/z

\{\neg P(x), Q(x)\} \quad \{P(a)\}

Substitution
\ a/x

Q(a) \quad \neg Q(a)

NIL
Another Pompeian Example

1. $\text{man}(\text{Marcus})$
2. $\text{Pompeian}(\text{Marcus})$
3. $\neg \text{Pompeian}(x_1) \lor \text{Roman}(x_1)$
4. $\text{ruler}(\text{Caesar})$
5. $\neg \text{Roman}(x_2) \lor \text{loyalto}(x_2, \text{Caesar}) \lor \text{hate}(x_2, \text{Caesar})$
6. $\text{loyalto}(x_3, f_1(x_3))$
7. $\neg \text{man}(x_4) \lor \neg \text{ruler}(y_1) \lor \neg \text{tryassissinate}(x_4, y_1) \lor$
 $\neg \text{loyalto}(x_4, y_1)$
8. $\text{tryassissinate}(\text{Marcus}, \text{Caesar})$

Prove: Marcus hates Caesar
Another Pompeian Example

5. \(\neg \text{Roman}(x_2) \lor \text{loyalto}(x_2, \text{Caesar}) \lor \text{hate}(x_2, \text{Caesar}) \)
6. \(\text{loyalto}(x_3, f_1(x_3)) \)
7. \(\neg \text{man}(x_4) \lor \neg \text{ruler}(y_1) \lor \neg \text{tryassissinate}(x_4, y_1) \lor \neg \text{loyalto}(x_4, y_1) \)
8. \(\text{tryassissinate}(\text{Marcus}, \text{Caesar}) \)

5. If \(x_2 \) is Roman and not loyal to Caesar then \(x_2 \) hates Caesar.
6. For every \(x_3 \), there is someone he is loyal to.
7. If \(x_4 \) is a man and \(y_1 \) is a ruler and \(x_4 \) tries to assassinate \(x_1 \) then \(x_4 \) is not loyal to \(y_1 \).
8. Marcus tried to assassinate Caesar.
Prove: \(\text{hate(Marcus, Caesar)} \)

\[\neg \text{hate(Marcus, Caesar)} \]

5

\[\text{Marcus/x2} \]

3

\[\neg \text{Roman(Marcus)} \lor \text{loyalto(Marcus, Caesar)} \]

\[\text{Marcus/x1} \]

2

\[\neg \text{Pompeian(Marcus)} \lor \text{loyalto(Marcus, Caesar)} \]

7

\[\text{loyalto(Marcus, Caesar)} \]

\[\text{Marcus/x4, Caesar/y1} \]

1

\[\neg \text{man(Marcus)} \lor \neg \text{ruler(Caesar)} \lor \neg \text{tryassassinate(Marcus, Caesar)} \]

\[\neg \text{ruler(Caesar)} \lor \neg \text{tryassassinate(Marcus, Caesar)} \]

4

\[\text{tryassassinate(Marcus, Caesar)} \]

8

\[\square \]
The Monkey-Bananas Problem (Simplified)

Axioms

1) \(\forall x \forall s \{-\text{ONBOX}(s) \rightarrow \text{AT}(\text{box, } x, \text{pushbox}(x,s))\} \)

For each position \(x \) and state \(s \), if the monkey isn’t on the box in state \(s \), then the box will be pushed to position \(x \) and the new state is \(\text{pushbox}(x,s) \).

2) \(\forall s \{\text{ONBOX(\text{climbbox}(s))}\} \)

For all states \(s \), the monkey will be on the box in the state achieved by applying \(\text{climbbox} \) to \(s \).

3) \(\forall s \{\text{ONBOX}(s) \land \text{AT}(\text{box, c, s}) \rightarrow \text{HB(\text{grasp}(s))}\} \)

For all states \(s \), if the monkey is on the box and the box is at position \(c \) in state \(s \), then \(\text{HB} \) is true of the state attained by applying \(\text{grasp} \) to \(s \).

4) \(\forall x \forall s \{\text{AT}(\text{box, } x, s) \rightarrow \text{AT}(\text{box, } x, \text{climbbox}(s))\} \)

The position of the box does not change when the monkey climbs on it, but the state does.

5) \(-\text{ONBOX}(s_0) \)
Conjecture: \(\exists s \ HB(s) \)

Negation: \(\forall s \ \neg HB(s) \) or \(\neg HB(s) \)

Refutation Graph:

- \(\neg HB(t) \)
 - \(\neg ONBOX(s), \neg AT(box, c, s), HB(grasp(s)) \)
 - \(grasp(s) \| t \)

- \(\neg ONBOX(s), \neg AT(box, c, s) \)
 - \(ONBOX(climbbox(s)) \)
 - \(climbbox(s) \| s \)

- \(\neg AT(box, c, climbbox(s)) \)
 - \(\neg AT(box, x, s), AT(box, x, climbbox(s)) \)
 - \(c \| x \)

- \(\neg AT(box, c, s) \)
 - \(ONBOX(o), AT(box, x, pushbox(x, o)) \)
 - \(c \| x \)
 - \(pushbox(c, s) \| s \)

- \(ONBOX(s) \)
- \(\neg ONBOX(s_0) \)
- \(NIL \)
Monkey Solution

- If we change the conjecture to \(\{\neg \text{HB}(s), \text{HB}(s)\} \) the result of the refutation becomes:

\[\text{HB(grasp(climbbbox(pushbox(c,s0))))} \]
Propositional Logic Resolution

Exercise

• Given: P V Q
 P -> R
 Q -> R

• Prove R
Predicate Logic Resolution Exercise

• Given: Sierra is a dog
 Muffy is a cat
 All dogs chase all cats.

• Prove: Sierra chases Muffy
Predicate Logic Resolution Exercise

• Given: Sierra is a dog {dog(Sierra)}
 Muffy is a cat {cat(Muffy)}
 All dogs chase all cats.
 \(\forall x \forall y (\text{dog}(x) \land \text{cat}(y)) \rightarrow \text{chase}(x,y) \)
 \(\forall x \forall y \neg (\text{dog}(x) \land \text{cat}(y)) \lor \text{chase}(x,y) \)
 \(\forall x \forall y \neg \text{dog}(x) \lor \neg \text{cat}(y) \lor \text{chase}(x,y) \)
 \{\neg \text{dog}(x), \neg \text{cat}(y), \text{chase}(x,y)\}

• Prove: Sierra chases Muffy

• Negate: \(\neg \text{chase}(\text{Sierra}, \text{Muffy}) \)
\{\neg \text{chase}(\text{Sierra, Muffy})\}

\{\neg \text{dog}(x), \neg \text{cat}(y), \text{chase}(x,y)\}

\{\neg \text{dog}(\text{Sierra}), \neg \text{cat}(\text{Muffy})\}

\{\text{dog}(\text{Sierra})\}

\{\neg \text{cat}(\text{Muffy})\}

\text{cat}(\text{Muffy})

\text{NIL}