Knowledge & Reasoning

 Logical Reasoning: to have a computer automatically perform deduction or prove theorems

 Knowledge Representations: modern ways of representing large bodies of knowledge

Logical Reasoning

- In order to communicate, we need a formal language in which to express
 - axioms
 - theorems
 - hypotheses
 - rules
- Common languages include
 - propositional logic
 - 1st order predicate logic

Propositional Logic

- Propositions are statements that are true or false.
 - P: Sierra is a dog
 - Q: Muffy is a cat
 - R: Sierra and Muffy are not friends
- Propositions can be combined using logic symbols

$$P \wedge Q \Rightarrow R \qquad \neg P \vee Q$$

Predicate Logic

- Formulas have predicates with variables and constants:
 - man(Marcus)
 - Pompeian(Marcus)
 - born(Marcus, 40)
- More symbols
 - \forall for every

 $\forall x \text{ Pompeian}(x) \Rightarrow \text{died}(x,79)$

− ∃ there exists

∃x Pompeian(x)

Ancient Pompei

Vesuvius

Ancient Pompei and Vesuvius

What happened to ancient Pompei?

Vesuvius erupted and killed everyone.

When?

79 A.D.

Predicate Logic Example

- 1. Pompeian(Marcus)
- 2. born(Marcus,40)
- 3. man(Marcus)
- 4. $\forall x \text{ man}(x) \Rightarrow \text{mortal}(x)$
- 5. $\forall x \text{ Pompeian}(x) \Rightarrow \text{died}(x,79)$
- 6. erupted(Vesuvius, 79)
- 7. $\forall x \ \forall t1 \ \forall t2 \ mortal(x) \land born(x,t1) \land gt(t2-t1,150) \Rightarrow dead(x,t2)$

Dead Guy in 2009

8. gt(now,79)

Some Rules of Inference

9.
$$\forall x \ \forall t \ [alive(x,t) \Rightarrow \neg dead(x,t)] \land [\neg dead(x,t) \Rightarrow alive(x,t)]$$

If x is alive at time t, he's not dead at time t, and vice versa.

10. $\forall x \ \forall t1 \ \forall t2 \ died(x,t1) \land gt(t2,t1) \Rightarrow dead(x,t2)$

If x died at time t1 and t2 is later, x is still dead at t2.

Prove dead(Marcus, now)

- 1. Pompeian(Marcus)
- 2. born(Marcus, 40)
- 3. man(Marcus)
- 4. $\forall x \text{ man}(x) \Rightarrow \text{mortal}(x)$
- 5. $\forall x \text{ Pompeian}(x) \Rightarrow \text{died}(x,79)$
- 6. erupted(Vesuvius, 79)
- 7. $\forall x \ \forall t1 \ \forall t2 \ mortal(x) \land born(x,t1) \land gt(t2-t1,150) \Rightarrow dead(x,t2)$
- 8. gt(now,79)
- 9. $\forall x \ \forall t \ [alive(x,t) \Rightarrow \neg dead(x,t)] \land [\neg dead(x,t) \Rightarrow alive(x,t)]$
- 10. $\forall x \ \forall t1 \ \forall t2 \ died(x,t1) \land gt(t2,t1) \Rightarrow dead(x,t2)$

Prove dead(Marcus,now) Direct Proof

- 1. Pompeian(Marcus)
- 5. $\forall x \text{ Pompeian}(x) \Rightarrow \text{died}(x,79)$

died(Marcus,79)

8. gt(now,79)

 $died(Marcus,79) \land gt(now,79)$

7. $\forall x \ \forall t1 \ \forall t2 \ died(x,t1) \land gt(t2,t1) \Rightarrow dead(x,t2)$

dead(Marcus,now)

Proof by Contradiction

¬ dead(Marcus,now)

 \forall t1 \neg [died(Marcus,t1) \land gt(now,t1)]

What substitutions were made here? What rule of inference was used?

Marcus for x; now for t2

If
$$x \Rightarrow y$$
 then $\neg y \Rightarrow \neg x$

Proof by Contradiction

^{*}assume we proved this separately

Resolution Theorem Provers for Predicate Logic

• Given:

- F: a set of axioms represented as formulas
- S: a conjecture represented as a formula
- Prove: F logically implies S
- Technique
 - Construct ¬S, the negated conjecture
 - Show that $F' = F \cup \{ \neg S \}$ leads to a contradiction
 - Conclude: $\neg \{\neg S\}$ or S

Part I: Preprocessing to express in Conjunctive Normal Form

- 1. Eliminate implication operator \Rightarrow
- Replace $A \Rightarrow B$ by $\vee (\neg A,B)$

• Example:

```
man(x) \Rightarrow mortal(x) is replaced by
```

 \vee (\neg man(x),mortal(x)) or in infix notation

 \neg man(x) \lor mortal(x)

- 2. Reduce the scope of each to apply to at most one predicate by applying rules:
- Demorgan's Laws
 - $\neg \lor (x1,...,xn)$ is equivalent to $\land (\neg x1,..., \neg xn)$
 - $\neg \land (x1,...,xn)$ is equivalent to $\lor (\neg x1,...,\neg xn)$
- $\bullet \quad \neg(\neg x) \Longrightarrow x$
- $\bullet \quad \neg(\forall x A) \Longrightarrow \exists x(\neg A)$
- $\neg(\exists x A) \Rightarrow \forall x(\neg A)$

- Example
- $\neg [\forall x \forall t1 \forall t2 [died(x,t1) \land gt(t2,t1)] \Rightarrow dead(x,t2)]$
- Get rid of the implication
- $\neg [\forall x \forall t1 \forall t2 \neg [died(x,t1) \land gt(t2,t1)] \lor dead(x,t2)]$
- Apply the rule for $\neg [\forall$
- $\exists x \exists t1 \exists t2 \neg (\neg [died(x,t1) \land gt(t2,t1)] \lor dead(x,t2))$
- Apply DeMorgan's Law
- $\exists x \exists t1 \exists t2 \neg \neg [died(x,t1) \land gt(t2,t1)] \land \neg dead(x,t2)$
- $\exists x \exists t1 \exists t2 \ died(x,t1) \land gt(t2,t1) \land \neg \ dead(x,t2)]$

3. Standardize Variables

Rename variables so that each quantifier binds a unique variable

$$\forall x [P(x) \land \exists x Q(x)]$$

becomes

$$\forall x [P(x) \land \exists y Q(y)]$$

- 4. Eliminate existential qualifiers by introducing Skolem functions.
- Example

$$\forall x \forall y \exists z P(x,y,z)$$

- The variable z depends on x and y.
- So z is a function of x and y.
- We choose an arbitrary function name, say f, and replace z by f(x,y), eliminating the ∃.

$$\forall x \forall y P(x,y,f(x,y))$$

- 5. Rewrite the result in Conjunctive Normal Form (CNF)
- \wedge (x1,...,xn) where the xi can be
- atomic formulasA(x)
- negated atomic formulas $\neg A(x)$
- disjunctions $A(x) \vee P(y)$

This uses the rule

$$\vee$$
(x1, \wedge (x2, ..., xn) = \wedge (\vee (x1,x2), ..., \vee (x1,xn))

6. Since all the variables are now only universally quantified, eliminate the \forall as understood.

```
\forall x \ \forall t1 \ \forall t2 \ \neg died(x,t1) \ \lor \ \neg \ gt(t2,t1) \lor dead(x,t2)
```

becomes

```
\negdied(x,t1) \lor \neg gt(t2,t1) \lor dead(x,t2)
```

Clause Form

- The clause form of a set of original formulas consists of a set of clauses as follows.
 - A literal is an atom or negation of atom.
 - A clause is a disjunction of literals.
 - A formula is a conjunction of clauses.
- Example

```
Clause 1: \{A(x), \neg P(g(x,y),z), \neg R(z)\} (implicit or)
```

Clause 2: $\{C(x,y), Q(x,y,z)\}$ (another implicit or)

Steps in Proving a Conjecture

- 1. Given a set of axioms F and a conjecture S, let $F' = F \cup \neg S$ and find the clause form C of F'.
- 2. Iteratively try to find new clauses that are logically implied by C.
- 3. If NIL is one of these clauses you produce, then F' is unsatisfiable and the conjecture is proved.
- 4. You get NIL when you produce something that has A and also has ¬A.

Resolution Procedure

- 1. Convert F to clause form: a set of clauses.
- 2. Negate S, convert it to clause form, and add it to your set of clauses.
- 3. Repeat until a contradiction or no progress
 - a. Select two parent clauses.
 - b. Produce their resolvent.
 - c. If the resolvent = NIL, we are done.
 - d. Else add the resolvent to the set of clauses.

Resolution for Propositions

- Let C1 = L1 \(\times L2 \(\times \)... \(\times Ln \)
- Let C2 = L1' \(\subseteq L2' \times ... \times Ln' \)
- If C1 has a literal L and C2 has the opposite literal —L, they cancel each other and produce resolvent(C1,C2) =

$$L1 \lor L2 \lor ... \lor Ln \lor L1' \lor L2' \lor ... \lor Ln'$$
 with both L and $\neg L$ removed

If no 2 literals cancel, nothing is removed

Propositional Logic Example

Formulas: $P \vee Q$, $P \Rightarrow Q$, $Q \Rightarrow R$

Conjecture: R

Negation of conjecture: ¬R

Clauses: $\{P \lor Q, \neg P \lor Q, \neg Q \lor R, \neg R\}$

Resolvent(P \vee Q, \neg P \vee Q) is Q. Add Q to clauses.

Resolvent($\neg Q \lor R$, $\neg R$) is $\neg Q$. Add $\neg Q$ to clauses.

Resolvent(Q, \neg Q) is NIL.

The conjecture is proved.

Refutation Graph

Original Clauses: $\{P \lor Q, \neg P \lor Q, \neg Q \lor R, \neg R\}$

Exercise

• Given $P \Rightarrow R$ and $R \Rightarrow Q$, prove that $P \Rightarrow Q$

Resolution for Predicates

- Requires a matching procedure that compares 2 literals and determines whether there is a set of substitutions that makes them identical.
- This procedure is called unification.

```
C1 = eats(Tom x)
C2 = eats(Tom, ice cream)
```

- The substituion ice cream/x (read "ice cream for x")
 makes C1 = C2.
- You can substitute constants for variables and variables for variables, but nothing for constants.

Proof Using Unification

• Given $\forall x P(x) \Rightarrow R(x)$

 $\{\neg P(x), R(x)\}$

 $\forall z R(z) \Rightarrow Q(z)$

 $\{\neg R(z), Q(z)\}$

- Prove $\forall x P(x) \Rightarrow Q(x)$
- Negation $\neg \forall x P(x) \Rightarrow Q(x)$
- $\exists x \neg (P(x) \Rightarrow Q(x))$
- $\exists x \neg (\neg P(x) \lor Q(x))$
- $\exists x P(x) \land \neg Q(x)$
- P(a) ∧ ¬ Q(a)*

 $\{P(a)\}\ \{\neg\ Q(a)\}$

^{*} Skolem function for a single variable is just a constant

Refutation Graph with Unification

Another Pompeian Example

- 1. man(Marcus)
- 2. Pompeian(Marcus)
- 3. \neg Pompeian(x1) \vee Roman(x1)
- 4. ruler(Caesar)
- 5. \neg Roman(x2) \lor loyalto(x2,Caesar) \lor hate(x2,Caesar)
- 6. loyalto(x3,f1(x3))
- 7. ¬man(x4) ∨ ¬ruler(y1) ∨ ¬tryassissinate(x4,y1) ∨ ¬loyalto(x4,y1)
- 8. tryassissinate(Marcus, Caesar)

Prove: Marcus hates Caesar

Another Pompeian Example

- 5. \neg Roman(x2) \lor loyalto(x2,Caesar) \lor hate(x2,Caesar)
- 6. loyalto(x3,f1(x3))
- 7. ¬man(x4) ∨ ¬ruler(y1) ∨ ¬tryassissinate(x4,y1) ∨ ¬loyalto(x4,y1)
- 8. tryassissinate(Marcus, Caesar)
- 5. If x2 is Roman and not loyal to Caesar then x2 hates Caesar.
- 6. For every x3, there is someone he is loyal to.
- 7. If x4 is a man and y1 is a ruler and x4 tries to assassinate x1 then x4 is not loyal to y1.
- 8. Marcus tried to assassinate Caesar.

The Monkey-Bananas Problem (Simplified) Axioms

1) $\forall x \forall s \{\neg ONBOX(s) \rightarrow AT(box, x, pushbox(x,s))\}$ For each position x and state s, if the monkey isn't on the box in state s, then the box will be pushed to position x and the new state is pushbox(x,s).

2) $\forall s \{ONBOX(climbbox(s))\}$

For all states s, the monkey will be on the box in the state achieved by applying climbbox to s.

- 3) ∀s{ONBOX(s) ∧ AT(box, c, s) → HB(grasp(s))}
 For all states s, if the monkey is on the box and the box is at position c in state s, then HB is true of the state attained by applying grasp to s.
- 4) ∀x∀s{AT(box, x, s) → AT(box, x, climbbox(s))}
 The position of the box does not change when the monkey climbs on it, but the state does.
- 5) $\neg ONBOX(s_0)$

Monkey Solution

If we change the conjecture to {¬HB(s), HB(s)}
 the result of the refutation becomes:

HB(grasp(climbbox(pushbox(c,s0)))

Propositional Logic Resolution Exercise

Given: P V QP -> RQ -> R

Prove R

Predicate Logic Resolution Exercise

Given: Sierra is a dog
 Muffy is a cat
 All dogs chase all cats.

Prove: Sierra chases Muffy

Predicate Logic Resolution Exercise

Given: Sierra is a dog {dog(Sierra)}
 Muffy is a cat {cat(Muffy)}
 All dogs chase all cats.

```
\forall x \ \forall y \ (dog(x) \land cat(y)) \rightarrow chase(x,y)
\forall x \ \forall y \ \neg(dog(x) \land cat(y)) \lor chase(x,y)
\forall x \ \forall y \ \neg dog(x) \lor \neg cat(y) \lor chase(x,y)
\{\neg dog(x), \neg cat(y), chase(x,y)\}
```

- Prove: Sierra chases Muffy
- Negate: {¬chase(Sierra, Muffy)}

