
1

The Rich/Knight Implementation

• a node consists of

– state

– g, h, f values

– list of successors

– pointer to parent

• OPEN is the list of nodes that have been generated and

had h applied, but not expanded and can be

implemented as a priority queue.

• CLOSED is the list of nodes that have already been

expanded.

2

Rich/Knight

1) /* Initialization */

OPEN <- start node

Initialize the start node

g:

h:

f:

CLOSED <- empty list

3

Rich/Knight

2) repeat until goal (or time limit or space limit)

• if OPEN is empty, fail

• BESTNODE <- node on OPEN with lowest f

• if BESTNODE is a goal, exit and succeed

• remove BESTNODE from OPEN and add it to

CLOSED

• generate successors of BESTNODE

4

Rich/Knight

for each successor s do

1. set its parent field

2. compute g(s)

3. if there is a node OLD on OPEN with
the same state info as s

{ add OLD to successors(BESTNODE)

if g(s) < g(OLD), update OLD and

throw out s }

5

Rich/Knight/Tanimoto
4. if (s is not on OPEN and there is a node

OLD on CLOSED with the same state

info as s

{ add OLD to successors(BESTNODE)

if g(s) < g(OLD), update OLD,

remove it from CLOSED

and put it on OPEN, throw out s

}

6

Rich/Knight

5. If s was not on OPEN or CLOSED

{ add s to OPEN

add s to successors(BESTNODE)

calculate g(s), h(s), f(s) }

end of repeat loop

A* Extra Examples

• To show what happens when

1. It encounters a node whose state is

already on OPEN

2. It encounters a node whose state is

already on CLOSED

Thought Question

• Do you have to keep the list of successors

for each node through the whole search?

• Rich/Knight did (why?)

• Tanimoto did not

• If you keep it, what might it be used for?

8

A* Example
• Newly generated node s, but OLD on OPEN
has the same state.
• Shortest path in Romania, but the goal is now
Giurgiu, not Bucharest.

Straight line distances to Giurgiu (I made them up)
Arad 390
Sibiu 275
Fagaras 200
Rimnicu 205
Pitesi 125
Craiova 120
Bucharest 80
Drobeta 240

Arad
390

Sibiu

415 =140+275

Fagaras
439=239+200

Rimnicu
425=220+205

Bucharest
530=450+80

Pitesi
442=317+125

Craiova
486=366+120

Bucharest
498=418+80

BETTER

Craiova
575=455+120

WORSE

Drobeta
726=486+240

Rimnicu
717=512+205

WORSE

Pitesi
629=504+125

WORSE

Giurgiu
508=508+0

GOAL

Urziceni
etc

140
Forget the other 2

99 80

211 97
146

101 138

90 85

120 146 138

1

2

34

5 6

7

8

Goal is Giurgiu

OLD on OPEN

A* Example (abstract, pretend it’s time)
• Newly generated node s, but OLD on CLOSED
has the same state.

A

B
9=5+4

C
16=6+10

D
14=9+5

E
19=13+6

D
13=8+5
BETTER

F
24=19+5

G
24=19+5

5 6

4 8 2

10 10

2

3

4

1

OLD on
CLOSED

12

The Heuristic Function h

• If h is a perfect estimator of the true cost then A* will
always pick the correct successor with no search.

• If h is admissible, A* with TREE-SEARCH is guaranteed
to give the optimal solution.

• If h is consistent, too, then GRAPH-SEARCH is optimal.

• If h is not admissable, no guarantees, but it can work
well if h is not often greater than the true cost.

Complexity of A*

• Time complexity is exponential in the length of
the solution path unless for “true” distance h*
|h(n) – h*(n)| < O(log h*(n))

which we can’t guarantee.

• But, this is AI, computers are fast, and a good
heuristic helps a lot.

• Space complexity is also exponential, because it
keeps all generated nodes in memory.

Big Theta notation says 2 functions have about the same growth rate.

Why not always use A*?

• Pros

• Cons

Solving the Memory Problem

• Iterative Deepening A*

• Recursive Best-First Search

• Depth-First Branch-and-Bound

• Simplified Memory-Bounded A*

Iterative-Deepening A*
• Like iterative-deepening depth-first, but...

• Depth bound modified to be an f-limit

– Start with f-limit = h(start)

– Prune any node if f(node) > f-limit

– Next f-limit=min-cost of any node pruned

a

b

c

d

e

f

FL=15
FL=21

Recursive Best-First Search

• Use a variable called f-limit to keep track of the
best alternative path available from any ancestor
of the current node

• If f(current node) > f-limit, back up to try that
alternative path

• As the recursion unwinds, replace the f-value of
each node along the path with the backed-up
value: the best f-value of its children

Simplified Memory-Bounded A*

• Works like A* until memory is full

• When memory is full, drop the leaf node with the

highest f-value (the worst leaf), keeping track of

that worst value in the parent

• Complete if any solution is reachable

• Optimal if any optimal solution is reachable

• Otherwise, returns the best reachable solution

20

Performance of Heuristics

• How do we evaluate a heuristic function?

• effective branching factor b*

– If A* using h finds a solution at depth d using

N nodes, then the effective branching factor is

b* where N = 1 + b* + (b*)2 + . . . + (b*)d

• Example: depth 0

d=2 depth 1

b=3 depth 2

21

Table of Effective Branching Factors

b d N

2 2 7

2 5 63

3 2 13

3 5 364

3 10 88573

6 2 43

6 5 9331

6 10 72,559,411

How might we use this idea to evaluate a heuristic?

How Can Heuristics be Generated?

1. From Relaxed Problems that have fewer

constraints but give you ideas for the

heuristic function.

2. From Subproblems that are easier to

solve and whose exact cost solutions are

known.

22

The cost of solving a relaxed problem or subproblem is not

greater than the cost of solving the full problem.

Still may not succeed

• In spite of the use of heuristics and various

smart search algorithms, not all problems

can be solved.

• Some search spaces are just too big for a

classical search.

• So we have to look at other kinds of tools.

23

HW 2: A* Search

• A robot moves in a 2D space.

• It starts at a start point (x0,y0) and wants

to get to a goal point (xg,yg).

• There are rectangular obstacles in the

space.

• It cannot go THROUGH the obstacles.

• It can only move to corners of the

obstacles, ie. search space limited.

24

Simple Data Set

25

How can the robot get from (0,0) to (9,6)?

What is the minimal length path?

26

More next time.

