HW 1. Warmup

Missionaries and Cannibals

« Solve the Missionary-Cannibal Problem (with 3
missionaries and 3 cannibals) with a RECURSIVE
DEPTH-FIRST SEARCH as follows:

You MUST use a recursive depth first search
No ancestor repeated states in a path

Keep counts of illegal states (cannibals eat missionaries),
repeated states, total states searched

Use Python

Comment on each method and important code sections
Print all paths from start to goal

Print the final 3 counts.

 Due Jan 16 11:59pm. Late date Jan 18 11:59pm
Your work must be YOUR OWN.

Informed (Heuristic) Search

O @p
ldea: be smart
about what paths S %g
to try. Do (
@,
/

Blind Search vs. Informed Search

 \What's the difference?

 How do we formally specify this?

A node Is selected for expansion based on
an evaluation function that estimates cost
to goal.

General Tree Search Paradigm

function tree-search(root-node)
fringe €< successors(root-node)
while (notempty(fringe))
{node < remove-first(fringe)
state < state(node)
If goal-test(state) return solution(node)
fringe < insert-all(successors(node),fringe) }
return failure
end tree-search

root-node

/

successors list > > N

How do we order the successor list?

Best-First Search

* Use an evaluation function f(n) for node n.

» Always choose the node from fringe that
has the lowest f value.

®» & @
OO

Heuristics

« What is a heuristic?

* What are some examples of heuristics we
use?

« We'll call the heuristic function h(n).

Greedy Best-First Search

* 1(n) = h(n)

« What does that mean?

 What is it ignoring?

Romanian Route Finding

* Problem
— Initial State: Arad
— Goal State: Bucharest
—c(s,a,s") Is the length of the road fromsto s’

» Heuristic function: h(s) = the straight line
distance from s to Bucharest

Original Road Map of Romania

Figure 3.2 A simplified road map of part of Romania.

What'’s the real shortest path from Arad to Bucharest?
What's the distance on that path?

Greedy Search in Romania

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Fagaras

329 374

Distance = 450

10

Greedy Best-First Search

Is greedy search optimal?

IS It complete?

No, can get into infinite loops in tree search.
Graph search is complete for finite spaces.

What Is its worst-case complexity for a tree
search with branching factor b and maximum

depth m?
—time O(b™)
— space O(b™)

11

Greedy Best-First Search

* \When would we use greedy best-first
search or greedy approaches in general?

12

A* Search

Hart, Nilsson & Rafael 1968
— Best-first search with f(n) = g(n) + h(n)
where g(n) = sum of edge costs from start to n
and h(n) = estimate of lowest cost path n-->goal
— If h(n) is admissible then search will find optimal
solution. L Never overes’rimq’res ‘rhe true
{cos’r of any solution which

can be reached from a node.

Space bound since the queue must be maintained.

13

Back to Romania

w0
5
o
3] Oradea
l 75
Arad
Sibiu gg Fagaras
118
30
Timisoara . Rimnicu Vilcea
1 . .
M Lugoj Pitesti
70 -
] Mehadia 10
75 138
Dobreta [120
LI Craiova

211

MNeamt
u 87
] lasi
92
[] Vaslui
142
98 _
85 _[] Hirsova
Urziceni
] 86
Bucharest
a0 u
L. Eforie
] Giurgiu

end

Straight—line distance
to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
lasi 226
Lugoj 244
Mehadia 241
Neamt 2134
Oradea 380
Pitesti 08
Rimnicu Vilcea 93
Sibiu 253
Timisoara 370
Urziceni 80
Vaslui 199
Zerind 374

14

A* for Romanian Shortest Path

366=0+366

15

t((n) = g(n) + h(n)
e
> T oo <>

393=140+253 447=118+329 449=75+374

16

449=75+374

646=280+366 415=239+176 67/1=291+380 413=220+193

17

_Arad D
&€= Climisoara CZerind 2

447=118+329 449=T75+374

C Arad DPClagaras Dy COradea menViced

646=280+366 415=239+176 671=291+380

Clraiova > (Pitesti > _Sibiu_

526=366+160 417=317+100 553=300+253

18

C_Arad >
Sibiu_> Climisoara) CZerind 2

447=118+329 449=75+374

TS G o> @i

646=280+366 671=291+380

C_sibiu_> Bucharesy CCraiova S Pitesti > _Sibiu_3

0991=338+253 450=450+0 526=366+160 417=317+100 553=300+253

19

CArad D
C_Sibiu > Climisoara C Zerind 2

447=118+329 449=75+374

Chrad > Eagarasd (Cradea> @i i

646=280+366 671=291+380
591=338+253 450=450+0 526=366+160

{ Craiova)

418=418+0 615=455+160 607=414+193

20

8 Puzzle Example

» 1(n) = g(n) + h(n)
« What Is the usual g(n)?

* (wo we
—-hl=t

l-known h(n)’s
ne number of misplaced tiles

—h2 =t

ne sum of the distances of the tiles from

their goal positions, using city block distance,

which

IS the sum of the horizontal and vertical

distances (Manhattan Distance)

21

goal

8 Puzzle Using Number of

283
1 4
765

Misplaced Tiles

8
6

~N =N
oA W

283
164
/5

o Q

0
A4
=4

—

283
164
75

22

~N 00 —
o

N

&) I S OV

283
1 4
765

Exercise:
What are its children and their
f, g, h?

23

Optimality of A* wit
(h never overestimates t

N Admissibility

ne cost to the goal)

Suppose a suboptimal goal G2 has been generated and
IS In the queue. Let n be an unexpanded node on the
shortest path to an optimal goal G1.

O f(n) = g(n) + h(n)
/ \ <g(Gl) Why?
/ < g(G2) G2 is suboptimal
nO = {(G2) f(G2) = g(G2)
So f(n) < f(G2) and A* will never select
@ O G2 for expansion.

24

Optimality of A* with
Consistency (stronger condition)
* h(n) Is consistent If
— for every node n

— for every successor n” due to legal action a
—h(n) <=c(n,a,n’) + h(n")

4 h(n)

c(n,a,n’)

n’ h(n) G

* Every consistent heuristic Is also
admissible.

25

Algorithms for A*

Since Nillsson defined A* search, many different
authors have suggested algorithms.

Using Tree-Search, the optimality argument
holds, but you search too many states.

Using Graph-Search, it can break down,
because an optimal path to a repeated state can
be discarded if it is not the first one found.

One way to solve the problem is that whenever
you come to a repeated node, discard the longer
path to it. 20

The Rich/Knight Implementation

e a node consists of
— State
— g, h, fvalues
— list of successors
— pointer to parent

 OPEN is the list of nodes that have been generated and
had h applied, but not expanded and can be
Implemented as a priority queue.

« CLOSED is the list of nodes that have already been
expanded.

27

Rich/Knight

1)

[* Initialization */
OPEN <- start node
Initialize the start node

g

h:

f:

CLOSED <- empty list

28

Rich/Knight

2) repeat until goal (or time limit or space limit)

 If OPEN is empty, falil
« BESTNODE <- node on OPEN with lowest f
« If BESTNODE Is a goal, exit and succeed

« remove BESTNODE from OPEN and add it to
CLOSED

« generate successors of BESTNODE

29

Rich/Knight

for each successor s do
1. set its parent field
2. compute g(s)

3. If there iIs a node OLD on OPEN with
the same state info as s

{ add OLD to successors(BESTNODE)

If g(s) < g(OLD), update OLD and
throw out s }

30

Rich/Knight/Tanimoto

4. 1f (s 1s not on OPEN and there is a node
OLD on CLOSED with the same state

Info as s
{ add OLD to successors(BESTNODE)
If g(s) < g(OLD), update OLD,
remove it from CLOSED
and put it on OPEN, throw out s

31

Rich/Knight

5. If s was not on OPEN or CLOSED
{ add s to OPEN
add s to successors(BESTNODE)
calculate g(s), h(s), f(s) }

end of repeat loop

32

