
HW 1: Warmup

Missionaries and Cannibals
• Solve the Missionary-Cannibal Problem (with 3

missionaries and 3 cannibals) with a RECURSIVE

DEPTH-FIRST SEARCH as follows:

– You MUST use a recursive depth first search

– No ancestor repeated states in a path

– Keep counts of illegal states (cannibals eat missionaries),

repeated states, total states searched

– Use Python

– Comment on each method and important code sections

– Print all paths from start to goal

– Print the final 3 counts.

• Due Jan 16 11:59pm. Late date Jan 18 11:59pm

• Your work must be YOUR OWN. 1

2

Informed (Heuristic) Search

Idea: be smart

about what paths

to try.

3

Blind Search vs. Informed Search

• What’s the difference?

• How do we formally specify this?

A node is selected for expansion based on

an evaluation function that estimates cost

to goal.

4

General Tree Search Paradigm

function tree-search(root-node)

fringe  successors(root-node)

while (notempty(fringe))

{node  remove-first(fringe)

state  state(node)

if goal-test(state) return solution(node)

fringe  insert-all(successors(node),fringe) }

return failure

end tree-search

root-node

successors list

How do we order the successor list?

5

Best-First Search

• Use an evaluation function f(n) for node n.

• Always choose the node from fringe that

has the lowest f value.

3 5 1

4 6

6

Heuristics

• What is a heuristic?

• What are some examples of heuristics we
use?

• We’ll call the heuristic function h(n).

7

Greedy Best-First Search

• f(n) = h(n)

• What does that mean?

• What is it ignoring?

Romanian Route Finding

• Problem

– Initial State: Arad

– Goal State: Bucharest

– c(s,a,s´) is the length of the road from s to s´

• Heuristic function: h(s) = the straight line

distance from s to Bucharest

8

Original Road Map of Romania

9
What’s the real shortest path from Arad to Bucharest?

What’s the distance on that path?

Greedy Search in Romania

10

140

99

211
Distance = 450

11

Greedy Best-First Search

• Is greedy search optimal?

• Is it complete?

No, can get into infinite loops in tree search.

Graph search is complete for finite spaces.

• What is its worst-case complexity for a tree

search with branching factor b and maximum

depth m?

– time

– space

O(bm)

O(bm)

Greedy Best-First Search

• When would we use greedy best-first

search or greedy approaches in general?

12

13

A* Search

• Hart, Nilsson & Rafael 1968

– Best-first search with f(n) = g(n) + h(n)

where g(n) = sum of edge costs from start to n

and h(n) = estimate of lowest cost path n-->goal

– If h(n) is admissible then search will find optimal

solution.

{
Space bound since the queue must be maintained.

14

Back to Romaniasta
rt

end

15

A* for Romanian Shortest Path

16

f(n) = g(n) + h(n)

17

18

19

20

21

8 Puzzle Example

• f(n) = g(n) + h(n)

• What is the usual g(n)?

• two well-known h(n)’s

– h1 = the number of misplaced tiles

– h2 = the sum of the distances of the tiles from

their goal positions, using city block distance,

which is the sum of the horizontal and vertical

distances (Manhattan Distance)

22

8 Puzzle Using Number of

Misplaced Tiles

2 8 3

1 6 4

7 5

1 2 3

8 4

7 6 5

goal

g=0

h=4

f=4

2 8 3

1 4

7 6 5

2 8 3

1 6 4

7 5

2 8 3

1 6 4

7 5

23

2 8 3

1 4

7 6 5

Exercise:

What are its children and their

f, g, h?

24

Optimality of A* with Admissibility

(h never overestimates the cost to the goal)
Suppose a suboptimal goal G2 has been generated and

is in the queue. Let n be an unexpanded node on the

shortest path to an optimal goal G1.

G1

n

G2

f(n) = g(n) + h(n)

< g(G1) Why?

< g(G2) G2 is suboptimal

= f(G2) f(G2) = g(G2)

So f(n) < f(G2) and A* will never select

G2 for expansion.

Optimality of A* with

Consistency (stronger condition)

• h(n) is consistent if

– for every node n

– for every successor n´ due to legal action a

– h(n) <= c(n,a,n´) + h(n´)

• Every consistent heuristic is also

admissible.
25

n

n´ G

c(n,a,n´)
h(n´)

h(n)

26

Algorithms for A*

• Since Nillsson defined A* search, many different
authors have suggested algorithms.

• Using Tree-Search, the optimality argument
holds, but you search too many states.

• Using Graph-Search, it can break down,
because an optimal path to a repeated state can
be discarded if it is not the first one found.

• One way to solve the problem is that whenever
you come to a repeated node, discard the longer
path to it.

27

The Rich/Knight Implementation

• a node consists of

– state

– g, h, f values

– list of successors

– pointer to parent

• OPEN is the list of nodes that have been generated and

had h applied, but not expanded and can be

implemented as a priority queue.

• CLOSED is the list of nodes that have already been

expanded.

28

Rich/Knight

1) /* Initialization */

OPEN <- start node

Initialize the start node

g:

h:

f:

CLOSED <- empty list

29

Rich/Knight

2) repeat until goal (or time limit or space limit)

• if OPEN is empty, fail

• BESTNODE <- node on OPEN with lowest f

• if BESTNODE is a goal, exit and succeed

• remove BESTNODE from OPEN and add it to

CLOSED

• generate successors of BESTNODE

30

Rich/Knight

for each successor s do

1. set its parent field

2. compute g(s)

3. if there is a node OLD on OPEN with
the same state info as s

{ add OLD to successors(BESTNODE)

if g(s) < g(OLD), update OLD and

throw out s }

31

Rich/Knight/Tanimoto
4. if (s is not on OPEN and there is a node

OLD on CLOSED with the same state

info as s

{ add OLD to successors(BESTNODE)

if g(s) < g(OLD), update OLD,

remove it from CLOSED

and put it on OPEN, throw out s

}

32

Rich/Knight

5. If s was not on OPEN or CLOSED

{ add s to OPEN

add s to successors(BESTNODE)

calculate g(s), h(s), f(s) }

end of repeat loop

