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Genetic Algorithms 

• Start with random population of states

– Representation serialized (ie. strings of characters or bits)

– States are ranked with “fitness function”

• Produce new generation

– Select random pair(s) using probability: 

• probability ~ fitness

– Randomly choose “crossover point”

• Offspring mix halves

– Randomly mutate bits
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Genetic Algorithm

• Given: population P and fitness-function f

• repeat

– newP  empty set

– for i = 1 to size(P)

x  RandomSelection(P,f)

y RandomSelection(P,f)

child  Reproduce(x,y)

if (small random probability) then child  Mutate(child)

add child to newP

– P newP

• until some individual is fit enough or enough time has elapsed

• return the best individual in P according to f
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Using Genetic Algorithms

• 2 important aspects to using them

– 1. How to encode your real-life problem

– 2. Choice of fitness function

• Research Example

– I have N variables V1, V2, ... VN

– I want to produce a single number from them

that best satisfies my fitness function F

– I tried linear combinations, but that didn’t work

– A guy named Stan I met at a workshop in Italy 

told me to try Genetic Programming
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Genetic Programming

• Like genetic algorithm, but instead of 

finding the best character string, we want 

to find the best arithmetic expression tree 

• The leaves will be the variables and the 

non-terminals will be arithmetic operators

• It uses the same ideas of crossover and 

mutation to produce the arithmetic 

expression tree that maximizes the fitness 

function.
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Example: Classification and 

Quantification of Facial Abnormalities

• Input is 3D meshes of faces

• Disease is 22q11.2 Deletion Syndrome.

• Multiple different facial abnormalities

• We’d like to assign severity scores to the 

different abnormalities, so need a single 

number to represent our analysis of a 

portion of the face.
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22q11.2 Deletion Syndrome 

(22q11.2DS)

• Caused by genetic deletion

• Cardiac anomalies, learning disabilities

• Multiple subtle physical manifestations

• Assessment is subjective



Data Collection

3dMD multi-camera stereo system      Reconstructed 3D mesh
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Learning  3D Shape Quantification

• Analyze 22q11.2DS and 9 associated 

facial features

• Goal: quantify different shape variations in 

different facial abnormalities



Azimuth and Elevation Angles
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Learning 3D Shape Quantification -

2D Histogram Azimuth Elevation

• Using azimuth and elevation angles of surface 

normal vectors of points in selected region
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Learning 3D Shape Quantification -

Feature Selection

• Determine most discriminative bins

• Use Adaboost learning

• Obtain positional information of important 

region on face
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Learning 3D Shape Quantification -

Feature Combination

• Use Genetic Programming (GP) to evolve 

mathematical expression

• Start with random population

– Individuals are evaluated with fitness measure

– Best individuals reproduce to form new 

population
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Learning 3D Shape Quantification -

Genetic Programming

• Individual:

– Tree structure

– Terminals e.g variables eg. 3, 5, x, y, …

– Function set e.g +, -, *, …

– Fitness measure e.g sum of square …

x y

5 +

*

5*(x+y)
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Learning 3D Shape Quantification -

Feature Combination

• 22q11.2DS dataset 

– Assessed by craniofacial experts

– Groundtruth is union of expert scores

• Goal: classify individual according to given 

facial abnormality
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Learning 3D Shape Quantification -

Feature Combination

• Individual

– Terminal: selected histogram bins

– Function set: +,-,*,min,max,sqrt,log,2x,5x,10x

– Fitness measure: F1-measure

X6 + X7 + (max(X7,X6)-sin(X8) + (X6+X6))

precision = TP/(TP + FP)

recall = TP/all positives
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Learning 3D Shape 

Quantification - Experiment 1

• Objective: investigate function sets
– Combo1 = {+,-,*,min,max}

– Combo2 = {+,-,*,min,max,sqrt,log2,log10}

– Combo3 = {+,-,*,min,max,

2x,5x,10x,20x,50x,100x}

– Combo4 = {+,-,*,min,max,sqrt,log2,log10,

2x,5x,10x,20x,50x,100x}
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Learning 3D Shape 

Quantification - Experiment 1
• Best F-measure out of 10 runs
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Tree structure for quantifying 

midface hypoplasia

Xi are the selected histogram bins from an azimuth-

elevation histogram of the surface normals of the face.
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Learning 3D Shape 

Quantification - Experiment 2
• Objective: compare local facial shape 

descriptors
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Learning 3D Shape 

Quantification - Experiment 3 
• Objective: predict 22q11.2DS
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Local Search in Continuous Spaces

• Given a continuous state space

S = {(x1,x2,…,xN) | xi  R}

• Given a continuous objective function 

f(x1,x2,…,xN) 

• The gradient of the objective function is a 

vector f = (f/x1,f/x2,…,f/xN)

• The gradient gives the magnitude and 

direction of the steepest slope at a point.
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Local Search in Continuous Spaces

• To find a maximum, the basic idea is to set 

f =0

• Then updating of the current state becomes

x  x + f(x)

where  is a small constant.

• Theory behind this is taught in numerical 

methods classes.

• Your book suggests the Newton-Raphson

method. Luckily there are packages…..
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Computer Vision Pose Estimation Example
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pose from

6 point

correspondences

pose from ellipse-

circle 

correspondence

pose from both

6 points and

ellipse-circle

correspondences

I have a

3D model

of an object

and an image

of that object.

I want to find

the pose: the

position and

orientation

of the camera.



Computer Vision Pose Estimation Example
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Initial pose from points/ellipses and

final pose after optimization.

• The optimization was searching a 6D space:

(x,y,z,θx,θy,θz)

• The fitness function was how well the projection

of the 3D object lined up with the edges on 

the image.



Fitness Function

• Modified Hausdorf Distance between the 

image of the projected model and the 

image of the detected edges
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Searching with Nondeterministic Actions

• Vacuum World (actions = {left, right, suck})
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Searching with Nondeterministic Actions

In the nondeterministic case, the result of an 

action can vary.

Erratic Vacuum World: 

• When sucking a dirty square, it cleans it and 

sometimes cleans up dirt in an adjacent square.

• When sucking a clean square, it sometimes 

deposits dirt on the carpet.
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Generalization of State-Space 

Model
1. Generalize the transition function to 

return a set of possible outcomes.

oldf: S x A -> S     newf: S x A -> 2S

2. Generalize the solution to a contingency 

plan. 

if state=s then action-set-1 else action-set-2

3. Generalize the search tree to an AND-OR 

tree.
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AND-OR Search Tree
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Node
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Searching with Partial Observations

• The agent does not always know its state!

• Instead, it maintains a belief state: a set of 

possible states it might be in. 

• Example: a robot can be used to build a 

map of a hostile environment. It will have 

sensors that allow it to “see” the world.
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Belief State Space for Sensorless Agent 
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initial      state

Knows it’s 

on the right.

Knows it’s

on the left

Knows left

side clean

?
Knows its

side is clean.



Online Search Problems

• Active agent

– executes actions

– acquires percepts from sensors

– deterministic and fully observable

– has to perform an action to know the 

outcome

• Examples

– Web search

– Autonomous vehicle
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