
More on HW 2 (due Jan 26)
• Again, it must be in Python 2.7.

• For the A* algorithm, you will need an 

Open* list and a Closed list.

• States should have 

– the coordinates of the point

– the g-value cost of the path from init to here

– the h-value estimate of cost to goal

– the parent state

– (optional) list of successors

1*Note:  Python will have a fit if you call it Open.



Input format Example

2

0 0

9 6

2

0 0 4 0 4 4 0 4

7 4 9 6 4 10 2 8

Start Point

Goal Point

How many Rectangles.

Rectangle coordinates are

given clockwise.



More Difficult Example
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Has 4 known solutions

with approximately the

same cost.

You will just find 1

least cost solution

and print the whole

path with states and

cumulative costs.



In Addition

• You must design your own custom data 

set and run your program on it, too. You 

will turn in a picture of your data set, 

similar to the pictures we give you of ours.

• Turn in commented source code, input 

and output from all 3 data sets, and your 

picture.
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Beyond Classical Search

• Chapter 3 covered problems that considered the whole 

search space and produced a sequence of actions 

leading to a goal.

• Chapter 4 covers techniques (some developed outside 

of AI) that don’t try to cover the whole space and only the 

goal state, not the steps, are important. 

• The techniques of Chapter 4 tend to use much less 

memory and are not guaranteed to find an optimal 

solution.



More Search Methods

• Local Search

– Hill Climbing

– Simulated Annealing

– Beam Search

– Genetic Search

• Local Search in Continuous Spaces

• Searching with Nondeterministic Actions

• Online Search (agent is executing actions)

6
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Local Search Algorithms and 

Optimization Problems

• Complete state formulation

– For example, for the 8 queens problem, all 8 queens 

are on the board and need to be moved around to get 

to a goal state

• Equivalent to optimization problems often found 

in science and engineering

• Start somewhere and try to get to the solution 

from there

• Local search around the current state to decide 

where to go next



Pose Estimation Example

• Given a geometric model of a 3D object 

and a 2D image of the object.

• Determine the position and orientation of 

the object wrt the camera that snapped the 

image.

image                 3D object

• State (x, y, z, θx, θy, θz) 8



Gradient

• What is the gradient of a function?

• In 1D. Function f(x). Gradient f΄(x), the 

derivative.

• In 2D. Function f(x,y). Gradient (   x,    y)

• e.g. f(x) = x2. f΄(x) = ?

9
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Hill Climbing “Gradient ascent”

solution

Note: solutions shown

here as max not min.

Often used for numerical optimization problems.

How does it work?

In continuous space, the gradient tells you the

direction in which to move uphill.



Numeric Example
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-1     0     1
• Normal distribution with 0 mean 

and 1 SD

• f(x) = c e ^ (-1/2)x2

• f΄(x) = -x c e ^ (-1/2)x2

• f΄(1) comes out negative, ie. move 

backward

• f΄(-1) comes out positive, ie. move 

forward.
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AI Hill Climbing

Steepest-Ascent Hill Climbing

• current  start node

• loop do
– neighbor  a highest-valued successor of current

– if neighbor.Value <= current.Value then return current.State

– current  neighbor

• end loop

At each step, the current node is replaced by

the best (highest-valued) neighbor.

This is sometimes called greedy local search.
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Hill Climbing Search

6

4 10 3 2 8

current

What if current had a value of 12?
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Hill Climbing Problems

Local maxima

Plateaus

Diagonal ridges 

What is it sensitive to?

Does it have any advantages?
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Solving the Problems

• Allow backtracking (What happens to complexity?)

• Stochastic hill climbing: choose at random from uphill 
moves, using steepness for a probability

• Random restarts: “If at first you don’t succeed, try, try 
again.”

• Several moves in each of several directions, then test

• Jump to a different part of the search space
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Simulated Annealing

• Variant of hill climbing (so up is good)

• Tries to explore enough of the search 

space early on, so that the final solution is 

less sensitive to the start state

• May make some downhill moves before 

finding a good way to move uphill.
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Simulated Annealing

• Comes from the physical process of annealing in which substances 
are raised to high energy levels (melted) and then cooled to solid 
state.

• The probability of moving to a higher energy state, instead of lower is  

p = e^(-E/kT)

where E is the positive change in energy level, T is the temperature, 
and k is Bolzmann’s constant.

heat                                 cool
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Simulated Annealing

• At the beginning, the temperature is high.

• As the temperature becomes lower

– kT becomes lower

– E/kT gets bigger

– (-E/kT) gets smaller

– e^(-E/kT) gets smaller

• As the process continues, the probability 
of a downhill move gets smaller and 
smaller.
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For Simulated Annealing

• E represents the change in the value of 

the objective function.

• Since the physical relationships no longer 

apply, drop k.   So p = e^(-E/T) 

• We need an annealing schedule, which is 

a sequence of values of T: T0, T1, T2, ...
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Simulated Annealing Algorithm

• current  start node; 

• for each T on the schedule /* need a schedule */

– next  randomly selected successor of current

– evaluate next; it it’s a goal, return it

– E  next.Value – current.Value  /* already negated */

– if E > 0

• then current  next /* better than current */

• else current  next with probability e^(E/T)

How would you do this probabilistic selection?



Probabilistic Selection

• Select next with probability p

• Generate a random number 

• If it’s <= p, select next

21

0                                        1p
random 

number
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Simulated Annealing Properties

• At a fixed “temperature” T, state occupation probability 

reaches the Boltzman distribution

• If T is decreased slowly enough (very slowly), the 

procedure will reach the best state.

• Slowly enough has proven too slow for some 

researchers who have developed alternate schedules.

p(x) = e^(E(x)/kT)
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Simulated Annealing Schedules

• Acceptance criterion and cooling schedule



24

Simulated Annealing Applications

• Basic Problems
– Traveling salesman

– Graph partitioning

– Matching problems

– Graph coloring

– Scheduling

• Engineering
– VLSI design

• Placement

• Routing

• Array logic minimization

• Layout

– Facilities layout

– Image processing

– Code design in information theory
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Local Beam Search

• Keeps more previous states in memory

– Simulated annealing just kept one previous state in 

memory.

– This search keeps k states in memory.

- randomly generate k initial states

- if any state is a goal, terminate

- else, generate all successors and select best k

- repeat



Local Beam Search
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Coming next: Genetic Algorithms, which are

motivated by human genetics. How do you 

search a very large search space in a fitness

oriented way?


