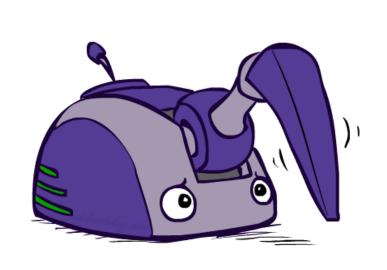
CSE 473: Artificial Intelligence

Reinforcement Learning

Instructor: Luke Zettlemoyer

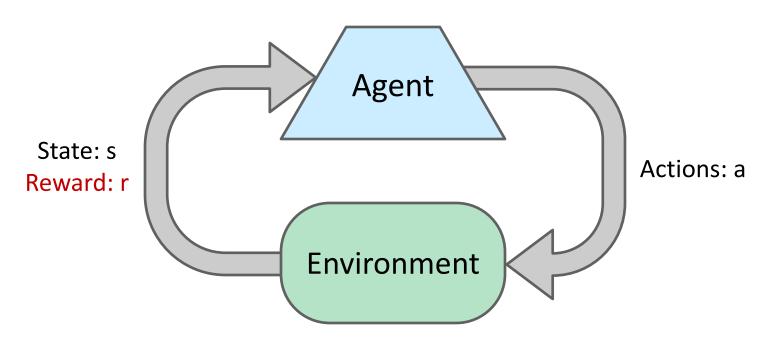
University of Washington

Reinforcement Learning





Reinforcement Learning



Basic idea:

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- All learning is based on observed samples of outcomes!

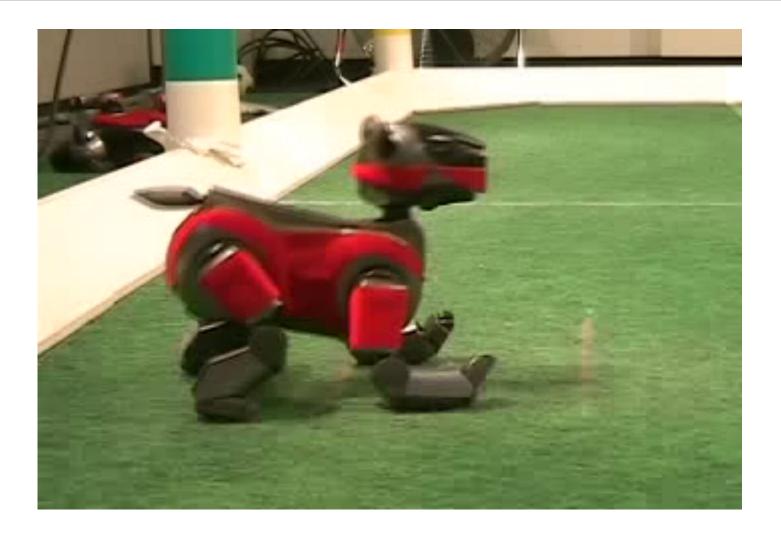
Initial

A Learning Trial

After Learning [1K Trials]

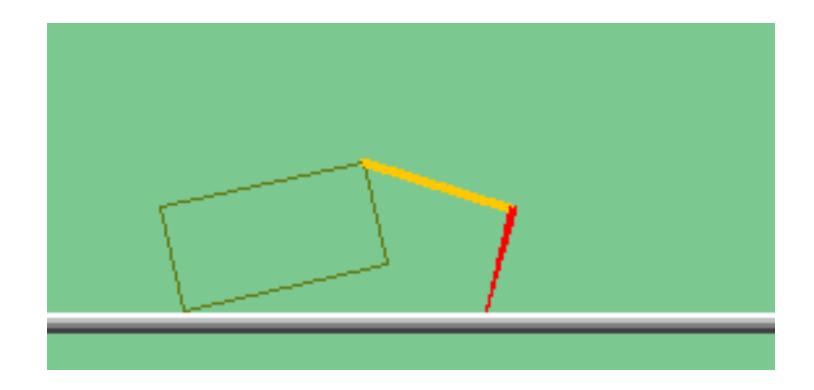
Initial

Training



Finished

The Crawler!



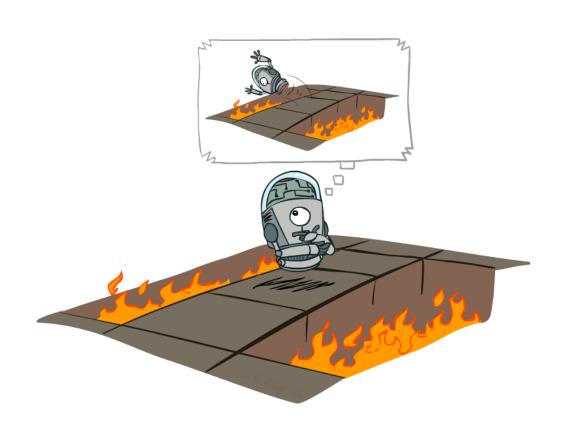
Video of Demo Crawler Bot

Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$

- New twist: don't know T or R
 - I.e. we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

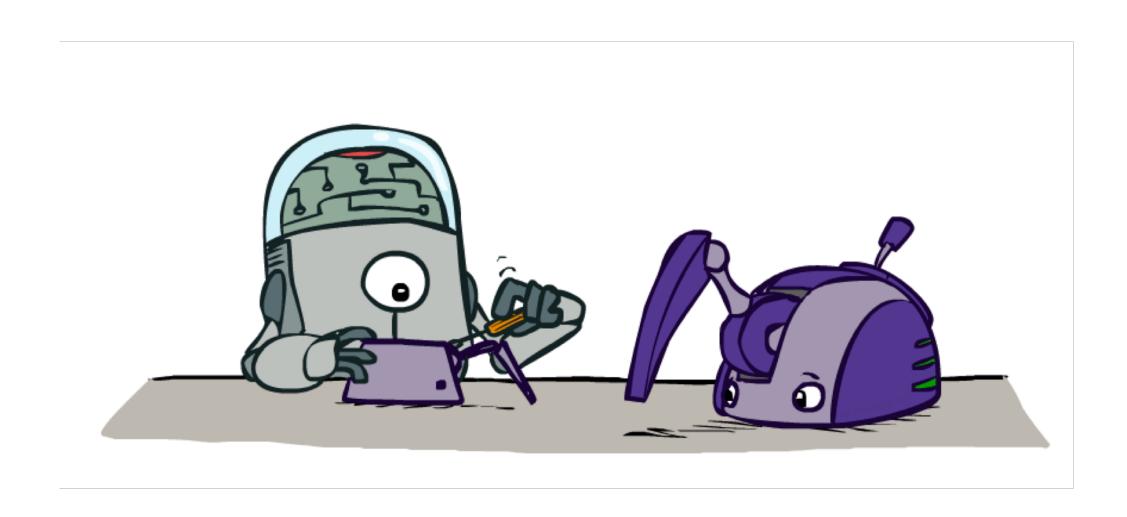
Offline (MDPs) vs. Online (RL)



Offline Solution

Online Learning

Model-Based Learning



Model-Based Learning

Model-Based Idea:

- Learn an approximate model based on experiences
- Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model

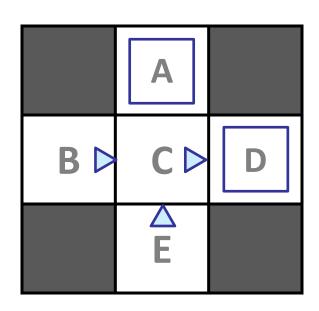
- Count outcomes s' for each s, a
- Normalize to give an estimate of $\widehat{T}(s, a, s')$
- Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')

Step 2: Solve the learned MDP

For example, use value iteration, as before

Example: Model-Based Learning

Input Policy π



Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Learned Model

 $\widehat{T}(s,a,s')$

T(B, east, C) = 1.00 T(C, east, D) = 0.75 T(C, east, A) = 0.25

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

$$\widehat{R}(s,a,s')$$

R(B, east, C) = -1 R(C, east, D) = -1 R(D, exit, x) = +10

...

Example: Expected Age

Goal: Compute expected age of CSE 473 students

Known P(A)

$$E[A] = \sum_{a} P(a) \cdot a = 0.35 \times 20 + \dots$$

Without P(A), instead collect samples $[a_1, a_2, ... a_N]$

Unknown P(A): "Model Based"

Why does this work? Because eventually you learn the right model.

$$\hat{P}(a) = \frac{\text{num}(a)}{N}$$

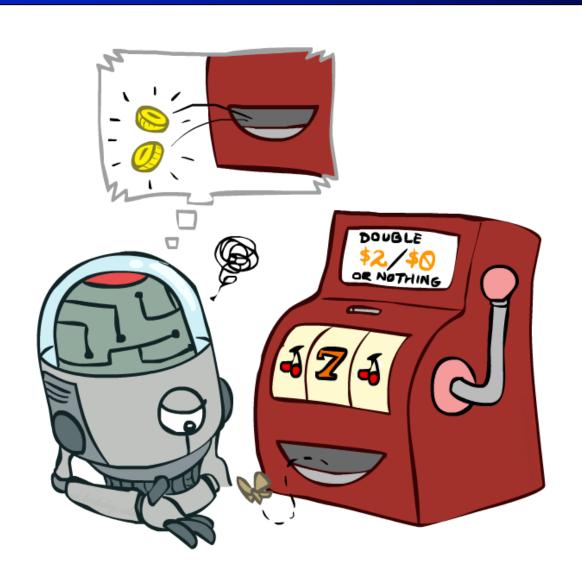
$$E[A] \approx \sum_{a} \hat{P}(a) \cdot a$$

Unknown P(A): "Model Free"

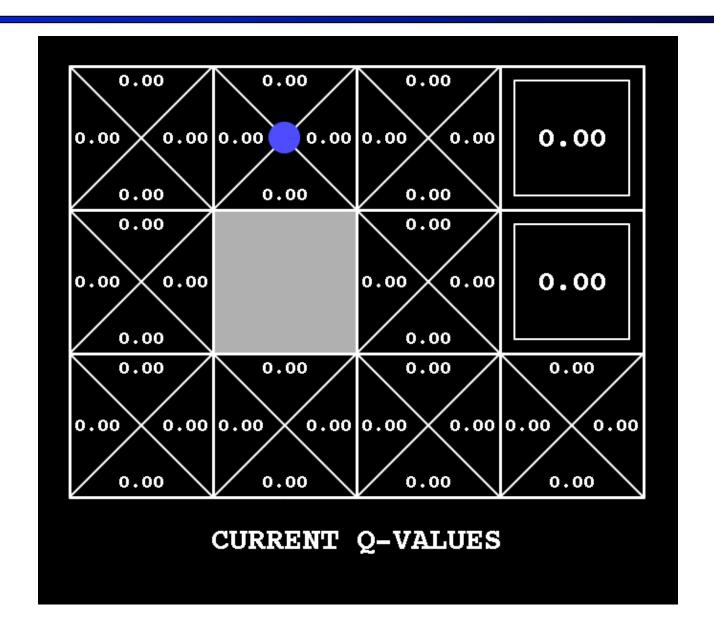
$$E[A] \approx \frac{1}{N} \sum_{i} a_{i}$$

Why does this work? Because samples appear with the right frequencies.

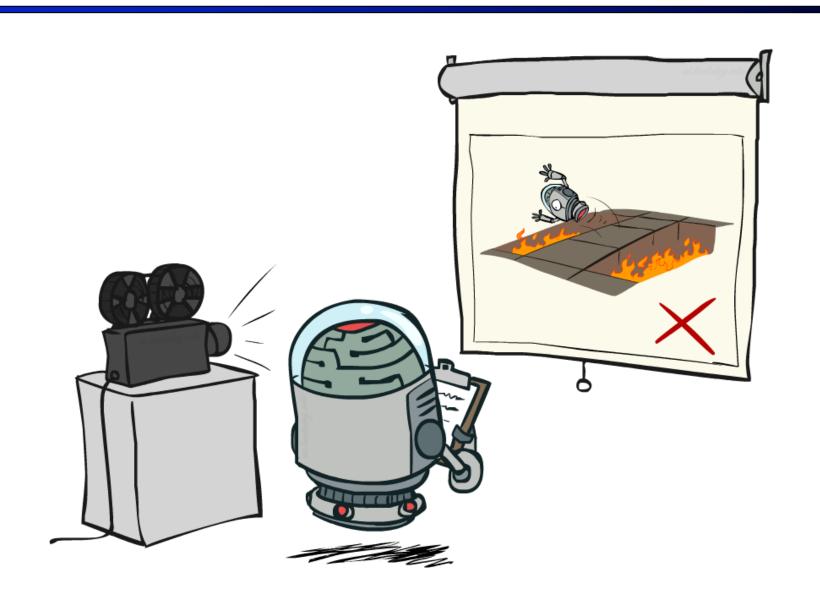
Model-Free Learning



Preview: Gridworld Reinforcement Learning



Passive Reinforcement Learning

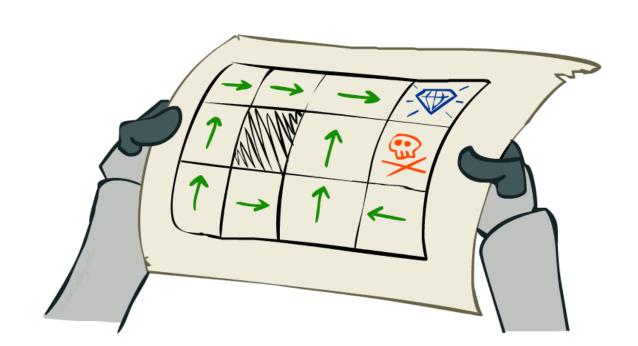


Passive Reinforcement Learning

- Simplified task: policy evaluation
 - Input: a fixed policy $\pi(s)$
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - Goal: learn the state values

In this case:

- Learner is "along for the ride"
- No choice about what actions to take
- Just execute the policy and learn from experience
- This is NOT offline planning! You actually take actions in the world.



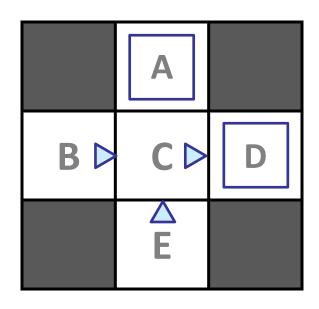
Direct Evaluation

- Goal: Compute values for each state under π
- Idea: Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples



Example: Direct Evaluation

Input Policy π



Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Output Values

	-10 A	
+8 B	+4 C	+10 D
	-2 E	

Problems with Direct Evaluation

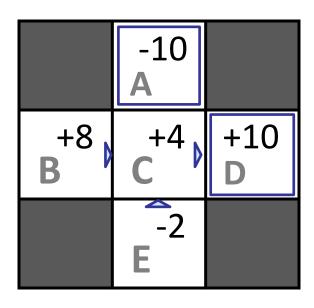
What's good about direct evaluation?

- It's easy to understand
- It doesn't require any knowledge of T, R
- It eventually computes the correct average values, using just sample transitions

What bad about it?

- It wastes information about state connections
- Each state must be learned separately
- So, it takes a long time to learn

Output Values



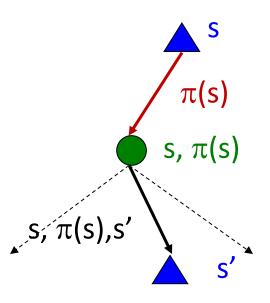
If B and E both go to C under this policy, how can their values be different?

Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V for a fixed policy:
 - Each round, replace V with a one-step-look-ahead layer over V

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$
 s, $\pi(s)$, s'



- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!
- Key question: how can we do this update to V without knowing T and R?
 - In other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

Idea: Take samples of outcomes s' (by doing the action!) and average

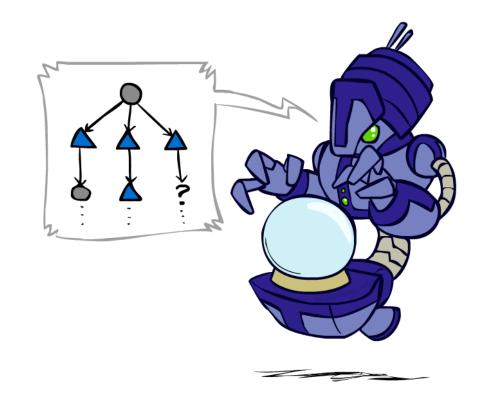
$$sample_1 = R(s, \pi(s), s'_1) + \gamma V_k^{\pi}(s'_1)$$

$$sample_2 = R(s, \pi(s), s'_2) + \gamma V_k^{\pi}(s'_2)$$

$$\dots$$

$$sample_n = R(s, \pi(s), s'_n) + \gamma V_k^{\pi}(s'_n)$$

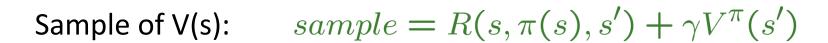
$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_i$$



Temporal Difference Learning

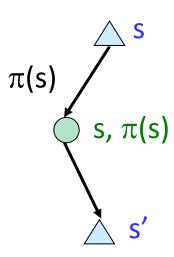
- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often

- Policy still fixed, still doing evaluation!
- Move values toward value of whatever successor occurs: running average



Update to V(s):
$$V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$$

Same update:
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$$



Exponential Moving Average

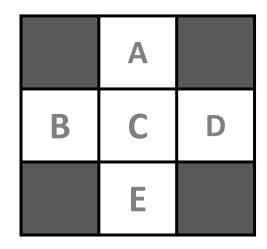
- Exponential moving average
 - The running interpolation update: $\bar{x}_n = (1-\alpha)\cdot \bar{x}_{n-1} + \alpha\cdot x_n$
 - Makes recent samples more important:

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

- Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages

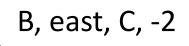
Example: Temporal Difference Learning

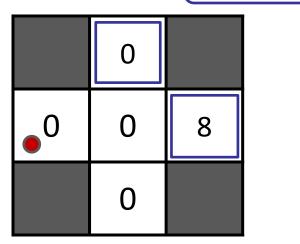
States

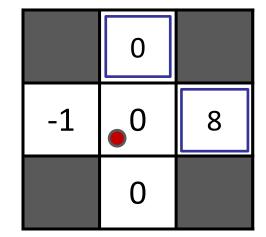


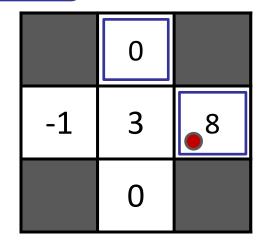
Assume: $\gamma = 1$, $\alpha = 1/2$

Observed Transitions









$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$$

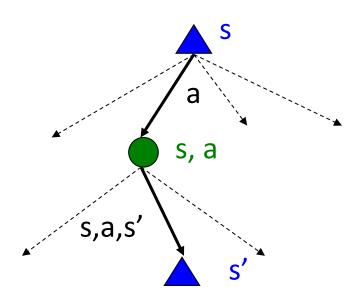
Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, if we want to turn values into a (new) policy, we're sunk:

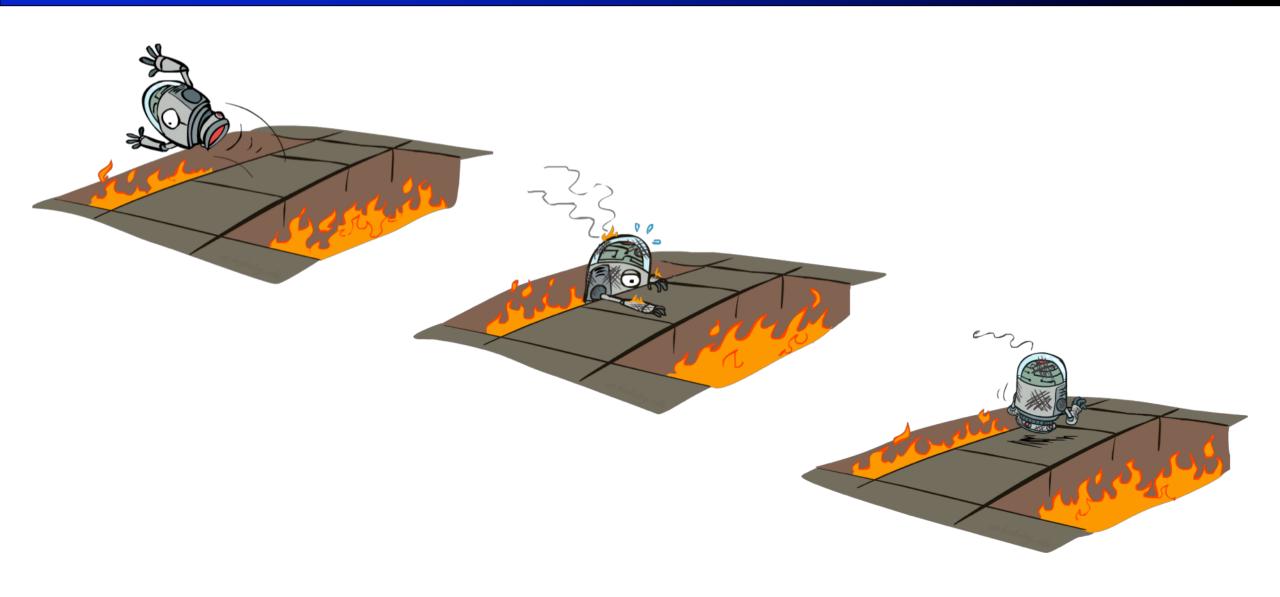
$$\pi(s) = \arg\max_{a} Q(s, a)$$

$$Q(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V(s') \right]$$

- Idea: learn Q-values, not values
- Makes action selection model-free too!

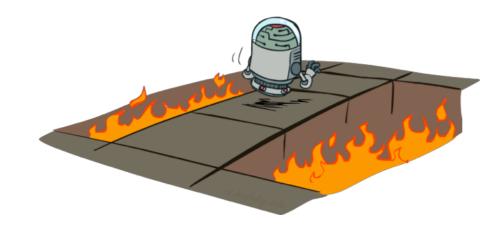


Active Reinforcement Learning



Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - You choose the actions now
 - Goal: learn the optimal policy / values



In this case:

- Learner makes choices!
- Fundamental tradeoff: exploration vs. exploitation
- This is NOT offline planning! You actually take actions in the world and find out what happens...

Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k, calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead
 - Start with $Q_0(s,a) = 0$, which we know is right
 - Given Q_k , calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Q-Learning

Q-Learning: sample-based Q-value iteration

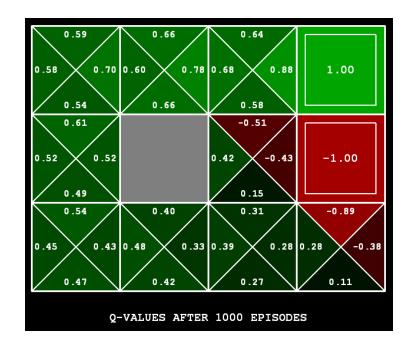
$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate:

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

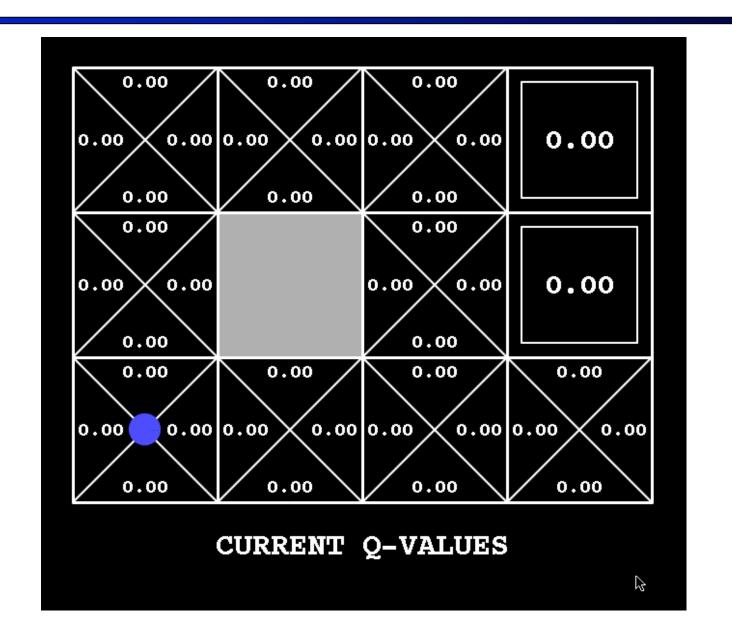
• Incorporate the new estimate into a running average:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$$

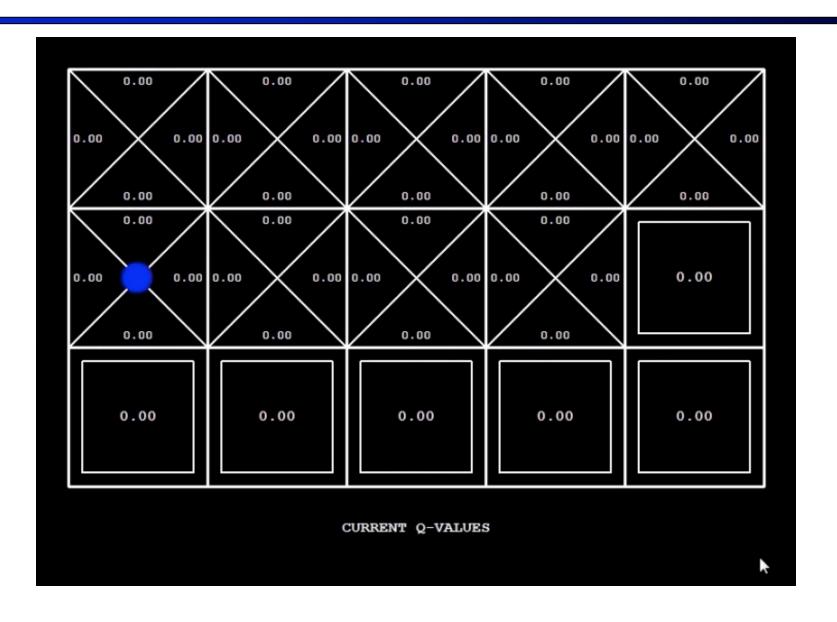


[Demo: Q-learning – gridworld (L10D2)] [Demo: Q-learning – crawler (L10D3)]

Q learning with a fixed policy



Video of Demo Q-Learning -- Gridworld

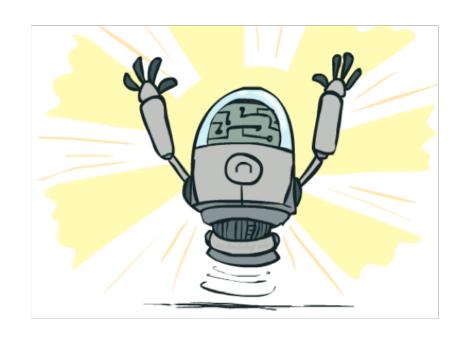


Q-Learning Properties

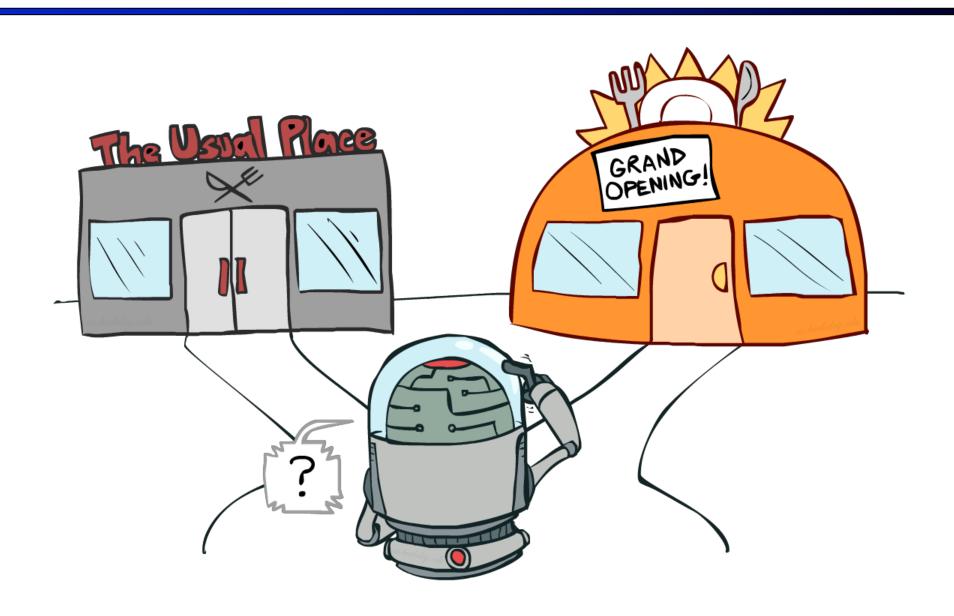
- Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
- This is called off-policy learning

Caveats:

- You have to explore enough
- You have to eventually make the learning rate small enough
- ... but not decrease it too quickly
- Basically, in the limit, it doesn't matter how you select actions (!)



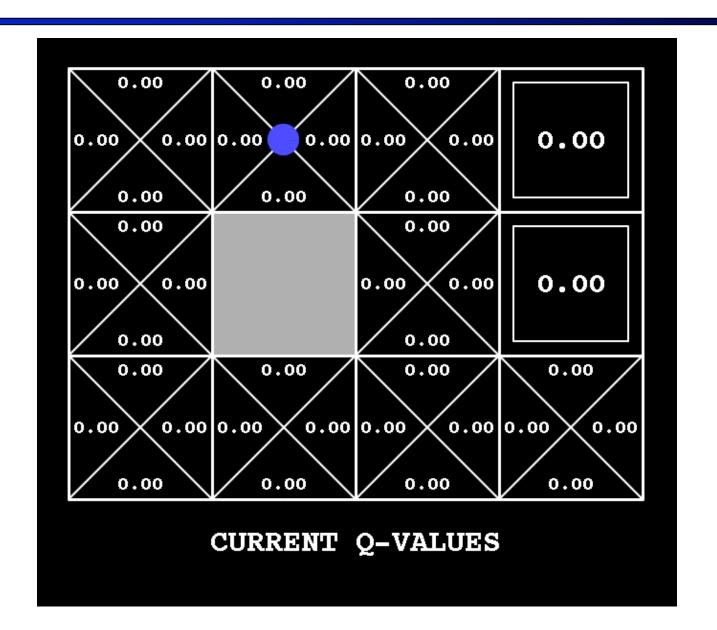
Exploration vs. Exploitation



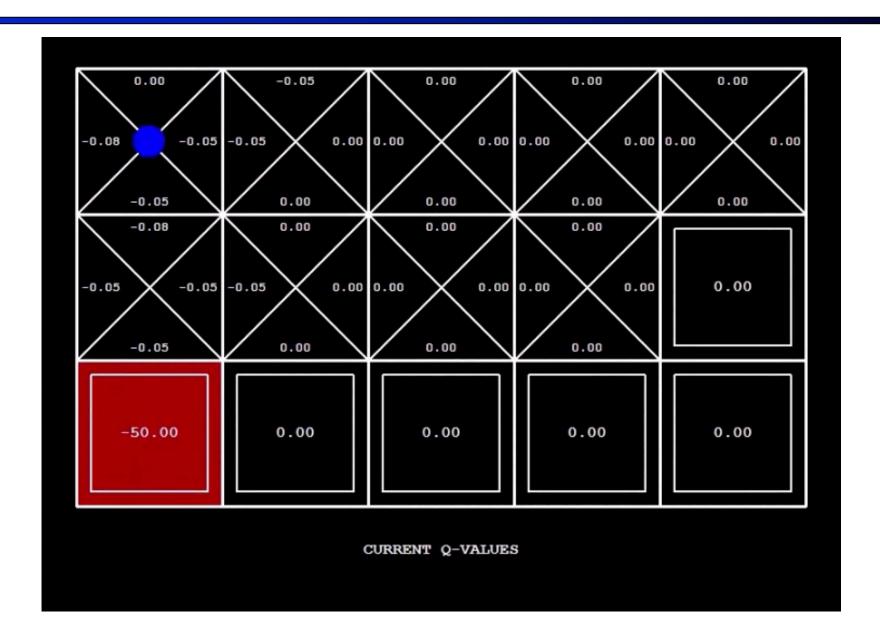
How to Explore?

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε , act randomly
 - With (large) probability 1-ε, act on current policy
 - Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

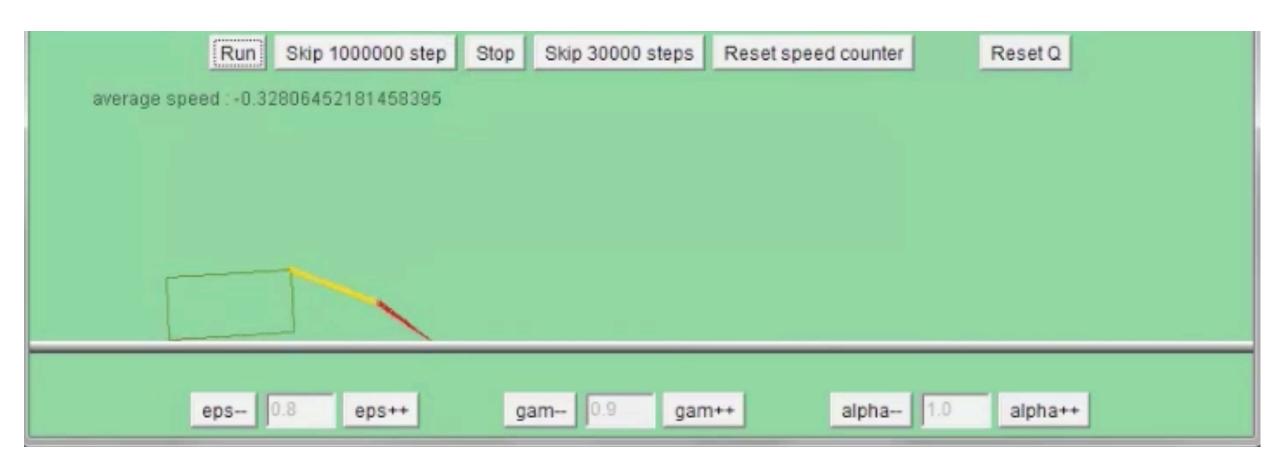
Gridworld RL: ε-greedy



Gridworld RL: ε-greedy



Video of Demo Q-learning – Epsilon-Greedy – Crawler



Exploration Functions

When to explore?

- Random actions: explore a fixed amount
- Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

Exploration function

■ Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u, n) = u + k/n

Regular Q-Update: $Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} Q(s', a')$

Modified Q-Update: $Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))$

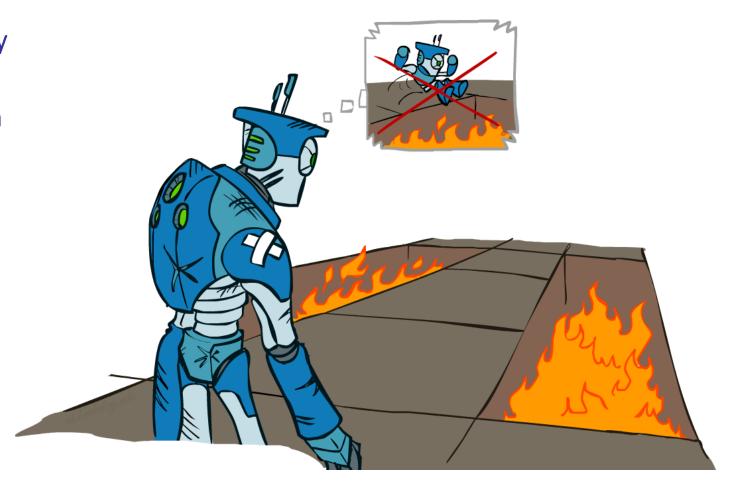
Note: this propagates the "bonus" back to states that lead to unknown states as well!

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

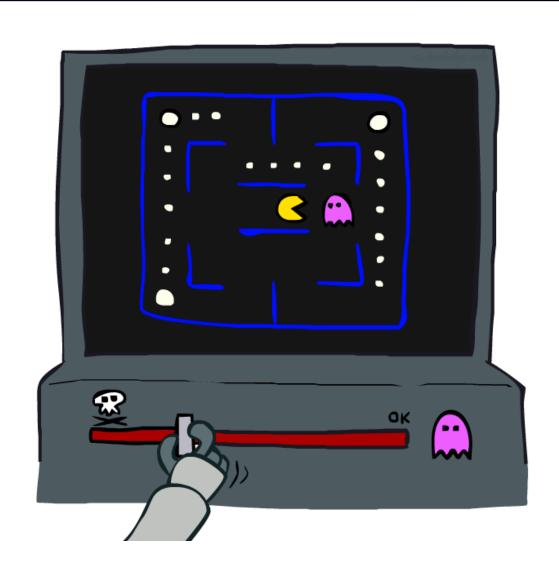
Video of Demo Q-learning – Exploration Function – Crawler

Regret

- Even if you learn the optimal policy, you still make mistakes along the way
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret

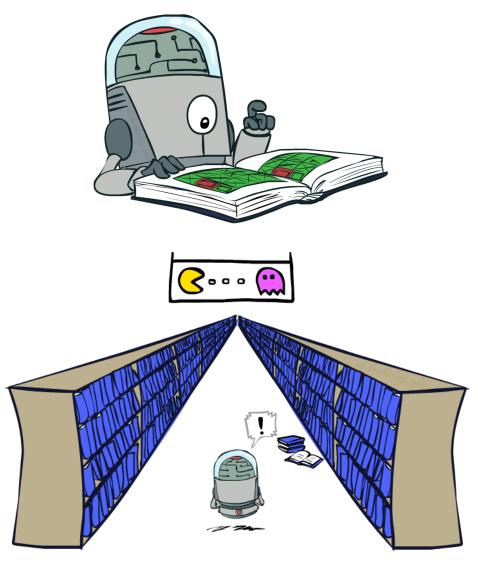


Approximate Q-Learning



Generalizing Across States

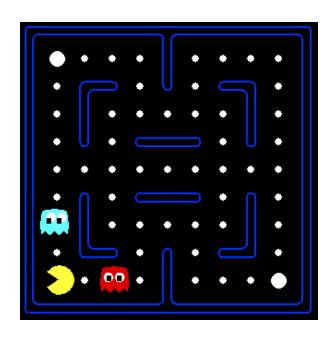
- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we'll see it over and over again

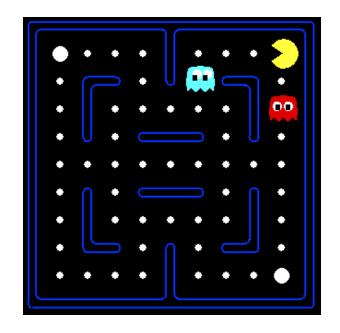


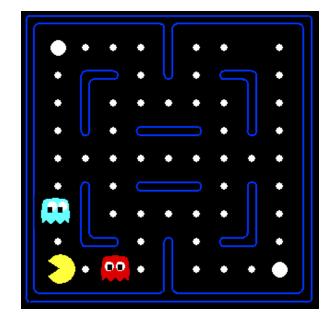
Example: Pacman

Let's say we discover through experience that this state is bad: In naïve q-learning, we know nothing about this state:

Or even this one!





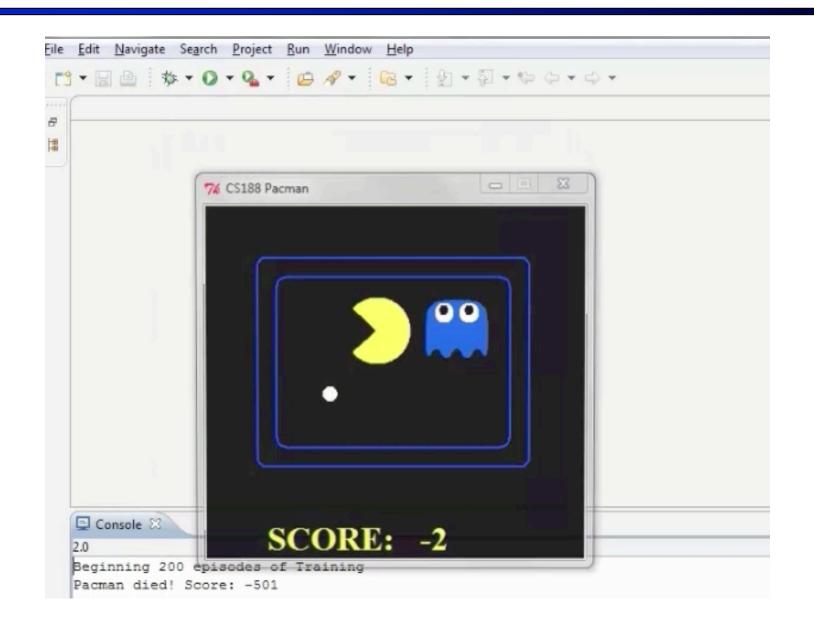


[Demo: Q-learning – pacman – tiny – watch all (L11D5)]

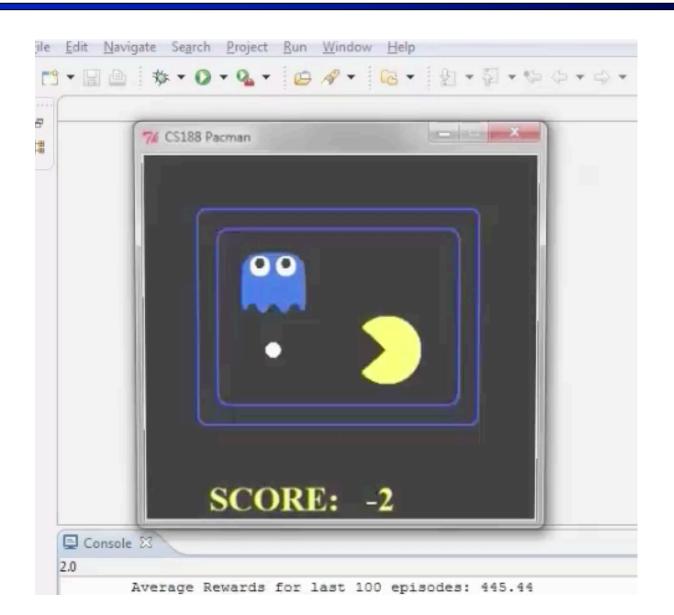
[Demo: Q-learning – pacman – tiny – silent train (L11D6)]

[Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Video of Demo Q-Learning Pacman – Tiny – Watch All



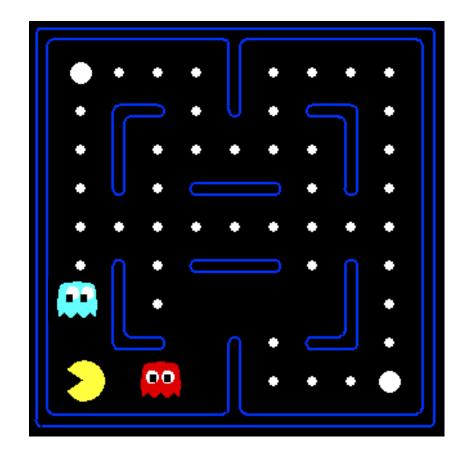
Video of Demo Q-Learning Pacman – Tiny – Silent Train



Video of Demo Q-Learning Pacman – Tricky – Watch All

Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot.
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)



Linear Value Functions

Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$
$$Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \dots + w_n f_n(s, a)$$

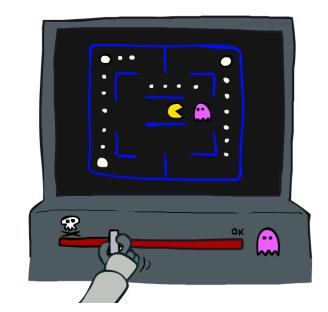
- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Q-learning with linear Q-functions:

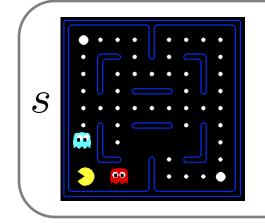
$$\begin{aligned} & \text{transition } = (s, a, r, s') \\ & \text{difference} = \left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a) \\ & Q(s, a) \leftarrow Q(s, a) + \alpha \text{ [difference]} \end{aligned} \quad & \text{Exact Q's} \\ & w_i \leftarrow w_i + \alpha \text{ [difference]} f_i(s, a) \quad & \text{Approximate Q's} \end{aligned}$$



- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares

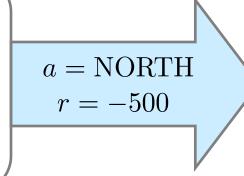
Example: Q-Pacman

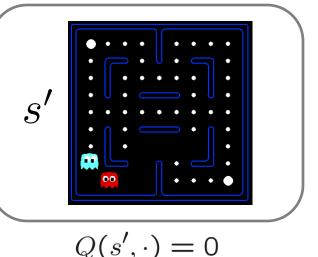
$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$



$$f_{DOT}(s, NORTH) = 0.5$$

$$f_{GST}(s, NORTH) = 1.0$$





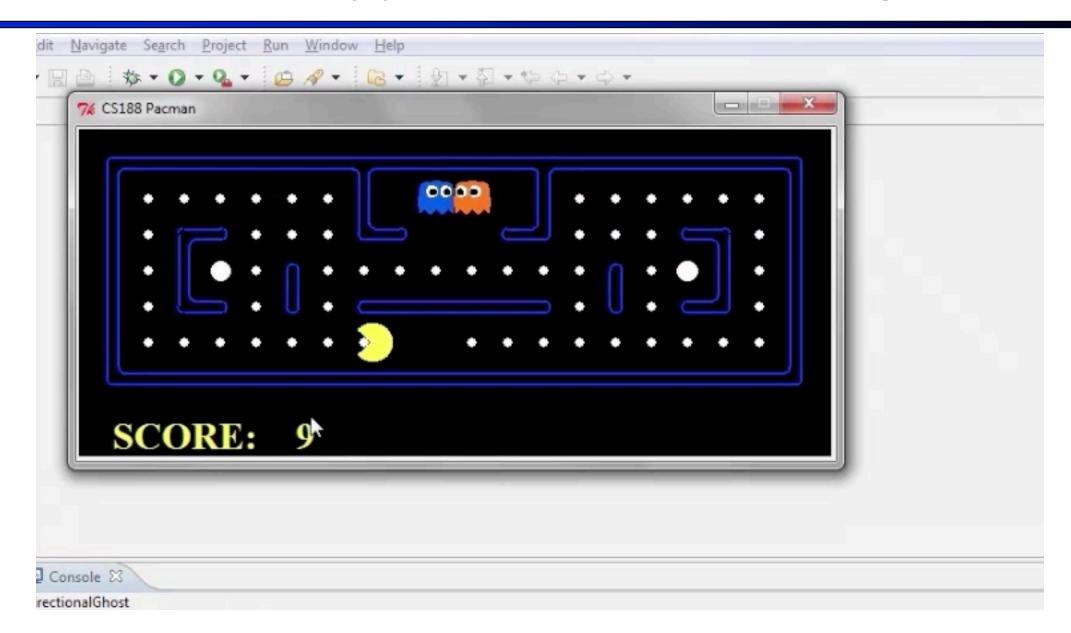
$$Q(s, \text{NORTH}) = +1$$

$$r + \gamma \max_{s} Q(s', a') = -500 + 0$$

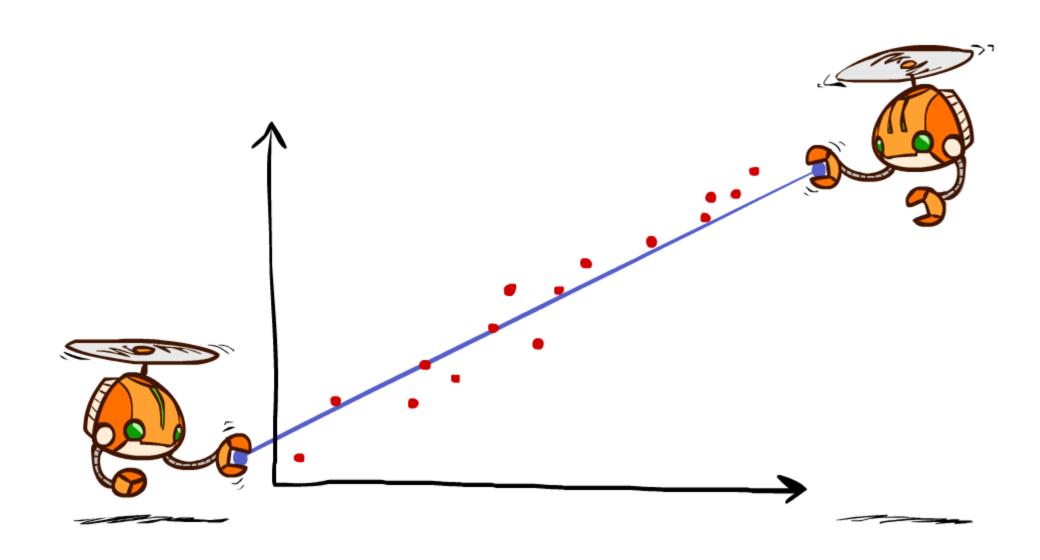
difference =
$$-501$$
 $w_{DOT} \leftarrow 4.0 + \alpha [-501] 0.5$ $w_{GST} \leftarrow -1.0 + \alpha [-501] 1.0$

$$Q(s, a) = 3.0 f_{DOT}(s, a) - 3.0 f_{GST}(s, a)$$

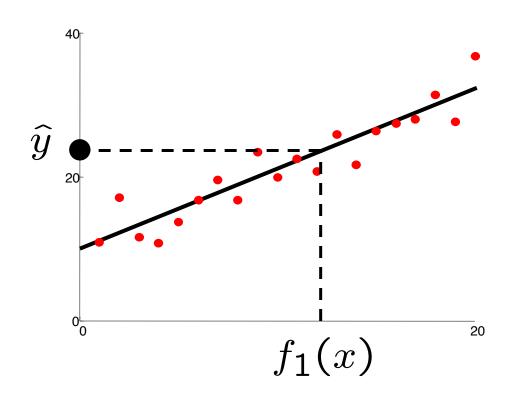
Video of Demo Approximate Q-Learning -- Pacman

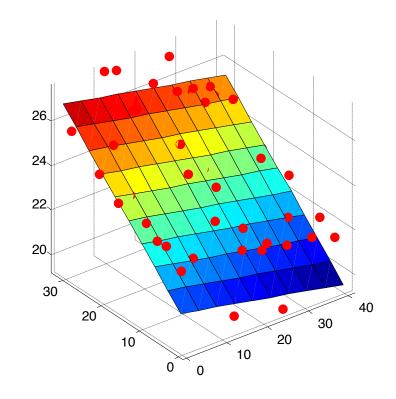


Q-Learning and Least Squares



Linear Approximation: Regression*





Prediction:

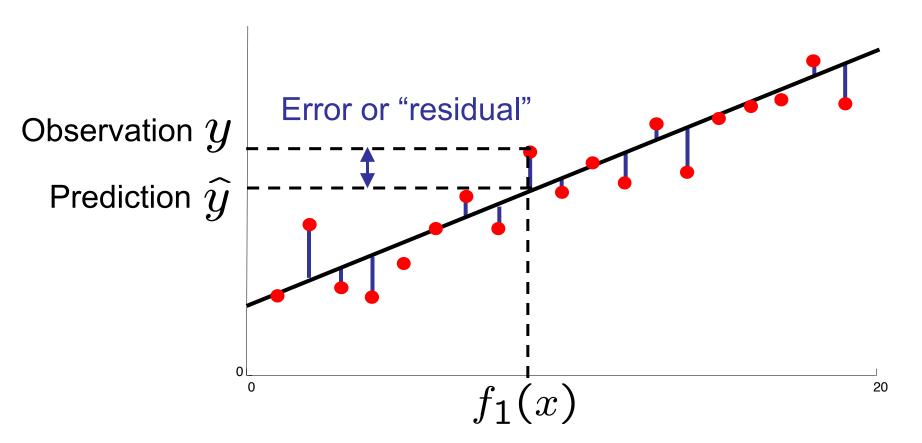
$$\hat{y} = w_0 + w_1 f_1(x)$$

Prediction:

$$\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$$

Optimization: Least Squares*

total error =
$$\sum_{i} (y_i - \hat{y_i})^2 = \sum_{i} \left(y_i - \sum_{k} w_k f_k(x_i)\right)^2$$



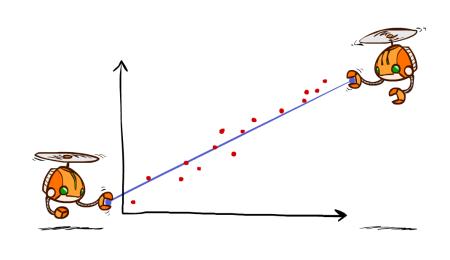
Minimizing Error*

Imagine we had only one point x, with features f(x), target value y, and weights w:

$$\operatorname{error}(w) = \frac{1}{2} \left(y - \sum_{k} w_{k} f_{k}(x) \right)^{2}$$

$$\frac{\partial \operatorname{error}(w)}{\partial w_{m}} = -\left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

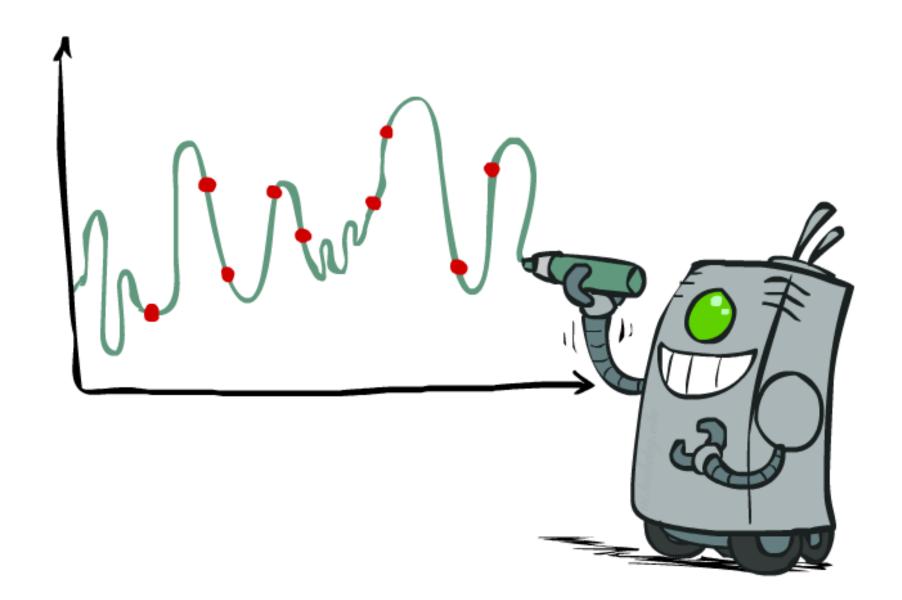
$$w_{m} \leftarrow w_{m} + \alpha \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

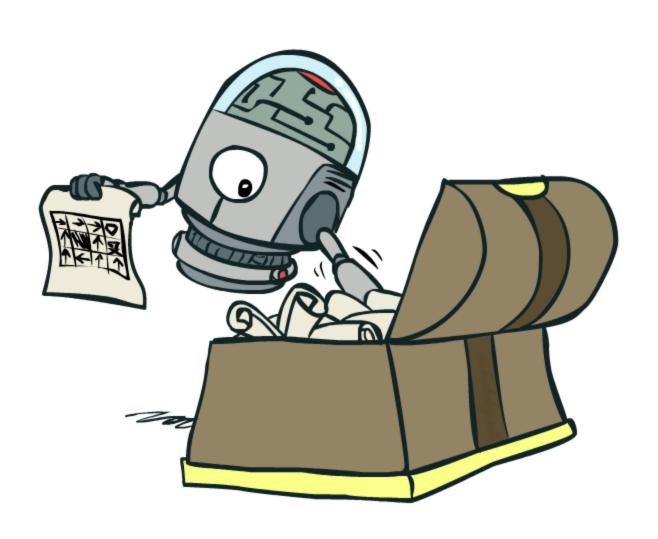


Approximate q update explained:

$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$
 "target" "prediction"

Overfitting: Why Limiting Capacity Can Help*





- Problem: often the feature-based policies that work well (win games, maximize utilities) aren't the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - Q-learning's priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
 - We'll see this distinction between modeling and prediction again later in the course
- Solution: learn policies that maximize rewards, not the values that predict them
- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights

- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before
- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical
- Better methods exploit lookahead structure, sample wisely, change multiple parameters...

[Andrew Ng] [Video: HELICOPTER]

Conclusion

We're done with Part I: Search and Planning!

- We've seen how AI methods can solve problems in:
 - Search
 - Games
 - Markov Decision Problems
 - Reinforcement Learning
- Next up: Part II: Uncertainty and Learning!

