CSE 473: Artificial Intelligence
Probability

Instructors: Luke Zettlemoyer --- University of Washington

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]



Today

= Probability

= Random Variables
= Joint and Marginal Distributions
= Conditional Distribution

Product Rule, Chain Rule, Bayes’ Rule
= |Inference

" Independence

= You’ll need all this stuff A LOT for the
next few weeks, so make sure you go
over it now!




Inference in Ghostbusters

= Aghostisin the grid
somewhere
= Sensor readings tell how
close a square is to the
ghost
= On the ghost: red
= 1 or 2 away: orange
= 3 or4away: yellow

= 5+ away: green

= Sensors are noisy, but we know P(Color | Distance)

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3




Uncertainty

= General situation:

= Observed variables (evidence): Agent knows certain
things about the state of the world (e.g., sensor
readings or symptoms)

= Unobserved variables: Agent needs to reason about
other aspects (e.g. where an object is or what disease is
present)

= Model: Agent knows something about how the known
variables relate to the unknown variables

= Probabilistic reasoning gives us a framework for |
managing our beliefs and knowledge
<0.01




Random Variables

" Arandom variable is some aspect of the world about
which we (may) have uncertainty
= R=Isitraining?
= T=Isit hotor cold?
= D =How long will it take to drive to work?
= L =Whereis the ghost?

= We denote random variables with capital letters

= Random variables have domains
= Rin{true, false} (often write as {+r, -r})
= Tin {hot, cold}
= Din [0, «)
= Lin possible locations, maybe {(0,0), (0,1), ...}




Probability Distributions

= Associate a probability with each value

= Temperature:

P(T)
T p
hot 0.5
cold | 0.5

= Weather:

P(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0




Unobserved random variables have distributions

P(T)
T p
hot 0.5
cold | 0.5

A distribution is a TABLE of probabilities of values

Probability Distributions

P(W)
W P
sun 0.6
rain 0.1
fog 0.3

meteor 0.0

Shorthand notation:

P(hot) = P(T = hot),
P(cold) = P(T = cold),
P(rain) = P(W = rain),

OK if all domain entries are unique

A probability (lower case value) is a single number

Must have:

P(W = rain) = 0.1

Ve P(X =x2)>0

and

Y P(X=uz)=1



Joint Distributions

= Ajoint distribution over a set of random variables: X, X»,... X,

specifies a real number for each assignment (or outcome):

P(X1=z1,Xo=xo,... Xy, = xn)

P(T, W)
P(xq,xo,...2n)
T W P
" Must obey: P(xq1,25,...2n) >0 hot | sun | 04
hot | rain 0.1
Z P(w17m27 . x’n) =1 cold | sun 0.2
(21,22,...2n) cold | rain | 0.3

Size of distribution if n variables with domain sizes d?
= For all but the smallest distributions, impractical to write out!




Probabilistic Models

= A probabilistic model is a joint
distribution over a set of random
variables

= Probabilistic models:

(Random) variables with domains
Assignments are called outcomes

Joint distributions: say whether
assignments (outcomes) are likely

Normalized: sum to 1.0

Ideally: only certain variables directly
interact

Distribution over TW

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




Events

= An eventis a set E of outcomes

P(EyY= )  P(z1...zn)

" From a joint distribution, we can
calculate the probability of any event

= Probability that it’s hot AND sunny?
= Probability that it’s hot?

= Probability that it’s hot OR sunny?

= Typically, the events we care about
are partial assignments, like P(T=hot)

P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




" P(x, +y)?

= P(+x)?

" P(-yOR+x)?

Quiz: Events

=0.2

0.2+0.3 =0.5

0.2+0.3+0.1 = 0.6

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1




Marginal Distributions

Marginal distributions are sub-tables which eliminate variables

Marginalization (summing out): Combine collapsed rows by adding

P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

 ———
P(t) =Y P(t,s)

—
P(s) = Z P(t,s)
t

P(X1=uz1) =) P(X1=uz1,Xp=u1)p)

P(T)

T P
hot 0.5
cold 0.5

P(W)
W P
sun 0.6
rain 0.4




Quiz: Marginal Distributions

—

P(z) =) P(z,y)
Y

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

—

P(y) = > P(z,y)

P(X)
X P
+X 0.5
-X 0.5

P(Y)

Y P
+y 0.6
-y 04




= Asimple relation between joint and conditional probabilities

= |n fact, this is taken as the definition of a conditional probability

Conditional Probabilities

P(a,b)
P(b)

P(al|b) =

P(a)

— — 2
P(W:3|T:C):P(W s, =¢) _02
P(T = c¢) 0.5

_——

=P(W=s,T=c)+P(W=r,T =c)

P(T, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

=024+03 =0.5

= 0.4




Quiz: Conditional Probabilities

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

= P(+x | +y)?

= P(-x|+y)?

" Py [+x)?

0.2/(0.2+0.4) = 1/3

0.4/(0.2+0.4) = 2/3

0.3/(0.2+0.3) = 3/5



Conditional Distributions

= Conditional distributions are probability distributions over
some variables given fixed values of others

Conditional Distributions

- P(W|T = hot)

Joint Distribution

P(T,W)

W P T W p
;\ rs:i: gi hot sun 0.4
g hot rain 0.1
& P(W|T = cold) cold | sun 0.2

W P cold rain 0.3

sun 0.4

rain 0.6




The Product Rule

= Sometimes have conditional distributions but want the joint

P(y)P(z|y) = P(z,y) < ran="7"

£ N



The Product Rule

P(y)P(zly) = P(x,y)

= Example:
P(D|W) P(D,W)
P(W) D w | P D w
R p wet sun 0.1 wet sun
sun | 0.8 dry | sun |09 <::> dry | sun
ain 02 wet rain 0.7 wet rain
dry rain | 0.3 dry rain




The Chain Rule

= More generally, can always write any joint distribution as an
incremental product of conditional distributions

P(xy,x0,23) = P(x1)P(z2|x1)P(x3|r1,22)

P(z1,x2,...xzn) = || P(ailzy ... 2-1)
7

= Why is this always true?



Bayes Rule




Bayes’ Rule

= Two ways to factor a joint distribution over two variables:

P(xz,y) = P(z|y)P(y) = P(y|z)P(x)

That’s my rule! }

= Dividing, we get:

P(aly) = Y9 poy

P(y)
= Why is this at all helpful?

= |Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
* Foundation of many systems we’ll see later (e.g. ASR, MT)

= |n the running for most important Al equation!



Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P(effect|cause) P(cause)

P(causeleffect) = P(effect)

= Example:
= M: meningitis, S: stiff neck

P(+m) = 0.0001 .

xampie
P(+s|+m) =08 o
P(+s| —m) =0.01

P(+m|+s) = LUEslEmIPGEm) P(+s| +m)P(+m) 0.8 x 0.0001

P(+s) " P(+s| + m)P(+m) + P(+s| — m)P(—m) _ 0.8 x 0.0001 + 0.01 x 0.999

= Note: posterior probability of meningitis still very small
= Note: you should still get stiff necks checked out! Why?



Quiz: Bayes’ Rule

. P(D\W)
= Glven:
P(W) D W P
R P wet sun 0.1
un 08 dry sun 0.9
cain 0.2 wet rain 0.7
dry rain 0.3

" Whatis P(W | dry) ?



Probabilistic Inference

" Probabilistic inference: compute a desired - "
probability from other known probabilities (e.g. L //

conditional from joint)

= We generally compute conditional probabilities
= P(ontime | no reported accidents) = 0.90
= These represent the agent’s beliefs given the evidence

" Probabilities change with new evidence:
= P(ontime | no accidents, 5 a.m.) =0.95
! | o Cﬁ\\E ‘_9 1
= P(ontime | no accidents, 5 a.m., raining) = 0.80 o

= QObserving new evidence causes beliefs to be updated




Inference by Enumeration

=  General case:

» Evidencevariables: FEq1...Ep=e€q1...€

= Query* variable: Q
= Hijdden variables: Hy...H,

= Step 1: Select the
entries consistent
with the evidence

Peo
0.05
0.25
0.07
02 |
———
0.01 e@

P(Q,e1...e;) = >, P(Q7hl'

X1,Xo,..

All variables

. Xn

Step 2: Sum out H to get joint
of Query and evidence

hl...hr

AW

. hryeq1...ep)

_/

~

X1, Xo,..

. Xn

* Works fine with

We want: multiple query

variables, too

P(Qley .. .ex)

= Step 3: Normalize

1
><_
A

ZZZP(Q,el”‘ek)
q

P(Qler -+ ex) = 7 P(Quer-cx)



Inference by Enumeration

W P
= P(W)?

sun 0.65

rain 0.35
= P(W | winter)?

W P

sun 0.25

rain 0.25
= P(W | winter, hot)?

W P

sun 0.1

rain 0.05

Normalize

ﬂ
Z=0.5

Normalize

ﬁ
Z=0.15

W P
sun 0.5
rain 0.5
W P
sun | 0.66
rain | 0.33

S T W P
summe hot sun 0.30
r
summe hot rain 0.05
r
summe | cold sun 0.10
r
summe | cold rain 0.05
r
winter hot sun 0.10
winter hot rain 0.05
winter | cold sun 0.15
winter | cold rain 0.20




Inference by Enumeration

= QObvious problems:

= Worst-case time complexity O(d")

= Space complexity O(d") to store the joint distribution



Ghostbusters, Revisited

= Let’s say we have two distributions:

= Prior distribution over ghost location: P(G)
= Let’s say this is uniform 011 011 011
= Sensor reading model: P(R | G)
= Given: we know what our sensors do
= R =reading color measured at (1,1) 0.11 0.11 0.11
= E.g. P(R=yellow | G=(1,1)) =0.1
= We can calculate the posterior
distribution P(G|r) over ghost locations
M

P(g|r) o< P(r|g)P(g)

given a reading using Bayes’ rule:

[Demo: Ghostbuster — with probability (L12D2) ]



Independence

= Two variables are independent in a joint distribution if:

P(X,Y) = P(X)P(Y)
X 1Y
Vo,y P(x,y) = P(x)P(y)

= Says the joint distribution factors into a product of two simple ones
=  Usually variables aren’t independent!

= Can use independence as a modeling assumption
® |ndependence can be a simplifying assumption
=  Empirical joint distributions: at best “close” to independent
= What could we assume for {Weather, Traffic, Cavity}?




P1(T, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

Example: Independence?

PZ (T7 W) —
T W P
hot sun 0.3
hot rain 0.2
cold sun 0.3
cold rain 0.2

P(T)

T P
hot 0.5
cold 0.5
P(W)
W P
sun 0.6
rain 0.4




Example: Independence

" N fair, independent coin flips:

P(X1) P(X>2) P(Xn)
H | 05 H | 05 o H | 05
T 0.5 T 0.5 T 0.5

N~

—

P(X1,X5,...Xn)




Conditional Independence




Conditional Independence

P(Toothache, Cavity, Catch)

If | have a cavity, the probability that the probe catches in it
doesn't depend on whether | have a toothache:

= P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if | don’t have a cavity:
=  P(+catch | +toothache, -cavity) = P(+catch| -cavity)

Catch is conditionally independent of Toothache given Cavity:
=  P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:
= P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
= P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
= One can be derived from the other easily



Conditional Independence

= Unconditional (absolute) independence very rare (why?)

" Conditional independence is our most basic and robust form
of knowledge about uncertain environments.

= Xis conditionally independent of Y given Z XJ_l_Y’Z

if and only if:
Vz,y,z : P(x,y|z) = P(z]2)P(y|z)
or, equivalently, if and only if

Va,y,z 1 P(x|z,y) = P(z|2)



Conditional Independence

= What about this domain:

= Traffic
= Umbrella
= Raining




Conditional Independence

= \What about this domain: Y~

= Fire

= Smoke §3«/’
= Alarm /455@ @ ;js& G, I)
’gj 87 = i
& ; ©-




Probability Recap

Conditional probability P(xly) = Pz, y)
P(y)
Product rule P(xz,y) = P(z|y)P(y)
Chain rUIe P(Xl,XQ, - Xn) = P(Xl)P(X2|X1)P(X3‘X1,X2) ce

mn
— H P(Xi|X17°"7Xi—1)

=1

X, Y independent if and only if:  Vz,y : P(z,y) = P(z)P(y)

X and Y are conditionally independent given Z if and only if:
Vz,y,z . P(z,ylz) = P(z|z)P(ylz)

X1Y|Z



Next Time: Markov Models



Normalization Trick

POW=sT=c) = L W=sT=c)

P(T = ¢)
= P(W — S,T = C)
P(T7W) _P(W:S’T:C)_I_P(W:T,T:C)
0.2
T W P ~02403 POVIT = o
hot sun 0.4
hot rain 0.1
sun 0.4
cold sun 0.2 | o
P =nl= rain ,

cold rain 0.3 P(W =T =c) = ( P(TT,: . ¢)

= P(W:”",Tzc)
_P(W:S’T:C)_I_P(W:T,T:C)

0.3
p— — 0,6
0.240.3




Normalization Trick

P(W =s,T =c)
P(T =c¢)
. P(W =s,T =c)
T PW=sT=c)+P(W=rT=c)

P(W =s|T=c¢) =

0.2+40.3
P(T, W) SELECT the joint NORMALIZE the
probabilities selection .

T W P matching the P(C, W) (make it sum to one) P(W|T T C)
hot sun 0.4 evidence T W P W, p
hOt rain 0.1 I COId sun 0.2 sun 0.4
cold | sun 0.2 cold | rain | 0.3 rain | 0.6
cold rain 0.3

P(W=nr,T=c)

P(T =c¢)
. P(W=nr,T =c)
C PW=sT=c)+P(W=rT=c)
03
02403

PW=rT=c)=

=0.6



Normalization Trick

P(T,W) SELECT the joint NORMALIZE the
probabilities selection .

T W P matching the P(c, W) (make it sum to one) P(W|T T C)
hot sun 0.4 evidence T W P W, p
hot rain 0.1 — cold | sun | 0.2 sun | 0.4
cold | sun 0.2 cold | rain | 0.3 rain | 0.6
cold rain 0.3

= Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

P(zy,20) _  P(xy,22)
P(x2) >y P(x1,72)

P(x1|zs) =



" P(X'| Y=-y)?
P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

Quiz: Normalization Trick

SELECT the joint
probabilities
matching the

evidence

ﬁ

NORMALIZE the
selection
(make it sum to one)

ﬂ



= (Dictionary) To bring or restore to a

" Procedure:
= Step 1: Compute Z = sum over all entries
= Step 2: Divide every entry by Z

= Example 1

W P
sun 0.2
rain 0.3

Normalize

ﬂ
Z=05

To Normalize

normal condition

W P
sun 0.4
rain 0.6

N~

All entries sum to ONE

= Example 2

T W P
hot sun 20
hot rain 5
cold sun 10
cold rain 15

Normalize

ﬁ
Z =50

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




