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Instructors: Luke Zettlemoyer --- University of Washington
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Today

§ Probability
§ Random Variables
§ Joint and Marginal Distributions
§ Conditional Distribution
§ Product Rule, Chain Rule, Bayes’ Rule
§ Inference
§ Independence

§ You’ll need all this stuff A LOT for the 
next few weeks, so make sure you go 
over it now!



Inference in Ghostbusters

§ A ghost is in the grid 
somewhere

§ Sensor readings tell how 
close a square is to the 
ghost
§ On the ghost: red
§ 1 or 2 away: orange
§ 3 or 4 away: yellow
§ 5+ away: green

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3

§ Sensors are noisy, but we know P(Color | Distance)



Uncertainty

§ General situation:

§ Observed variables (evidence): Agent knows certain 
things about the state of the world (e.g., sensor 
readings or symptoms)

§ Unobserved variables: Agent needs to reason about 
other aspects (e.g. where an object is or what disease is 
present)

§ Model: Agent knows something about how the known 
variables relate to the unknown variables

§ Probabilistic reasoning gives us a framework for 
managing our beliefs and knowledge



Random Variables

§ A random variable is some aspect of the world about 
which we (may) have uncertainty
§ R = Is it raining?
§ T = Is it hot or cold?
§ D = How long will it take to drive to work?
§ L = Where is the ghost?

§ We denote random variables with capital letters

§ Random variables have domains
§ R in {true, false}   (often write as {+r, -r})
§ T in {hot, cold}
§ D in [0, ¥)
§ L in possible locations, maybe {(0,0), (0,1), …}



Probability Distributions

§ Associate a probability with each value

§ Temperature:

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0

§ Weather: 



Shorthand notation:

OK if all domain entries are unique

Probability Distributions

§ Unobserved random variables have distributions

§ A distribution is a TABLE of probabilities of values

§ A probability (lower case value) is a single number

§ Must have:                                                 and

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0



Joint Distributions
§ A joint distribution over a set of random variables:

specifies a real number for each assignment (or outcome): 

§ Must obey:

§ Size of distribution if n variables with domain sizes d?
§ For all but the smallest distributions, impractical to write out!

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3



Probabilistic Models

§ A probabilistic model is a joint 
distribution over a set of random 
variables

§ Probabilistic models:
§ (Random) variables with domains 
§ Assignments are called outcomes
§ Joint distributions: say whether 

assignments (outcomes) are likely
§ Normalized: sum to 1.0
§ Ideally: only certain variables directly 

interact

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

Distribution over T,W



Events

§ An event is a set E of outcomes

§ From a joint distribution, we can 
calculate the probability of any event

§ Probability that it’s hot AND sunny?

§ Probability that it’s hot?

§ Probability that it’s hot OR sunny?

§ Typically, the events we care about 
are partial assignments, like P(T=hot)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3



Quiz: Events

§ P(+x, +y) ?

§ P(+x) ?

§ P(-y OR +x) ?

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

=0.2

0.2+0.3 = 0.5

0.2+0.3+0.1 = 0.6



Marginal Distributions

§ Marginal distributions are sub-tables which eliminate variables 
§ Marginalization (summing out): Combine collapsed rows by adding

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T P
hot 0.5
cold 0.5

W P
sun 0.6
rain 0.4



Quiz: Marginal Distributions

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

X P
+x
-x

Y P
+y
-y

0.5

0.5

0.6
0.4



Conditional Probabilities

§ A simple relation between joint and conditional probabilities
§ In fact, this is taken as the definition of a conditional probability

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(b)P(a)

P(a,b)



Quiz: Conditional Probabilities

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

§ P(+x | +y) ?

§ P(-x | +y) ?

§ P(-y | +x) ?

0.2 / (0.2+0.4) = 1/3

0.4 / (0.2+0.4) = 2/3

0.3 / (0.2+0.3) = 3/5



Conditional Distributions

§ Conditional distributions are probability distributions over 
some variables given fixed values of others

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.8
rain 0.2

W P
sun 0.4
rain 0.6

Conditional Distributions Joint Distribution



The Product Rule

§ Sometimes have conditional distributions but want the joint



The Product Rule

§ Example:

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

D W P

wet sun 0.08

dry sun 0.72

wet rain 0.14

dry rain 0.06



The Chain Rule

§ More generally, can always write any joint distribution as an 
incremental product of conditional distributions

§ Why is this always true?



Bayes Rule



Bayes’ Rule

§ Two ways to factor a joint distribution over two variables:

§ Dividing, we get:

§ Why is this at all helpful?

§ Lets us build one conditional from its reverse
§ Often one conditional is tricky but the other one is simple
§ Foundation of many systems we’ll see later (e.g. ASR, MT)

§ In the running for most important AI equation!

That’s my rule!



Inference with Bayes’ Rule

§ Example: Diagnostic probability from causal probability:

§ Example:
§ M: meningitis, S: stiff neck

§ Note: posterior probability of meningitis still very small
§ Note: you should still get stiff necks checked out!  Why?

Example
givens

P (+s|�m) = 0.01

P (+m|+ s) =
P (+s|+m)P (+m)

P (+s)
=

P (+s|+m)P (+m)

P (+s|+m)P (+m) + P (+s|�m)P (�m)
=

0.8⇥ 0.0001

0.8⇥ 0.0001 + 0.01⇥ 0.9999
= 0.007937

P (+m) = 0.0001
P (+s|+m) = 0.8

P (cause|e↵ect) = P (e↵ect|cause)P (cause)

P (e↵ect)



Quiz: Bayes’ Rule

§ Given:

§ What is P(W | dry) ? 

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3



Probabilistic Inference

§ Probabilistic inference: compute a desired 
probability from other known probabilities (e.g. 
conditional from joint)

§ We generally compute conditional probabilities 
§ P(on time | no reported accidents) = 0.90
§ These represent the agent’s beliefs given the evidence

§ Probabilities change with new evidence:
§ P(on time | no accidents, 5 a.m.) = 0.95
§ P(on time | no accidents, 5 a.m., raining) = 0.80
§ Observing new evidence causes beliefs to be updated



Inference by Enumeration
§ General case:

§ Evidence variables: 
§ Query* variable:
§ Hidden variables: All variables

* Works fine with 
multiple query 
variables, too

§ We want:

§ Step 1: Select the 
entries consistent 
with the evidence

§ Step 2: Sum out H to get joint 
of Query and evidence

§ Step 3: Normalize

⇥ 1

Z



Inference by Enumeration

§ P(W)?

§ P(W | winter)?

§ P(W | winter, hot)?

S T W P
summe

r
hot sun 0.30

summe
r

hot rain 0.05

summe
r

cold sun 0.10

summe
r

cold rain 0.05

winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

W P
sun 0.65
rain 0.35

W P
sun 0.25
rain 0.25 Z = 0.5

Normalize W P
sun 0.5
rain 0.5

W P
sun 0.1
rain 0.05 Z = 0.15

Normalize W P
sun 0.66
rain 0.33



§ Obvious problems:

§ Worst-case time complexity O(dn) 

§ Space complexity O(dn) to store the joint distribution

Inference by Enumeration



Ghostbusters, Revisited

§ Let’s say we have two distributions:
§ Prior distribution over ghost location: P(G)

§ Let’s say this is uniform
§ Sensor reading model: P(R | G)

§ Given: we know what our sensors do
§ R = reading color measured at (1,1)
§ E.g. P(R = yellow | G=(1,1)) = 0.1

§ We can calculate the posterior 
distribution P(G|r) over ghost locations 
given a reading using Bayes’ rule:

[Demo: Ghostbuster – with probability (L12D2) ]



Independence

§ Two variables are independent in a joint distribution if:

§ Says the joint distribution factors into a product of two simple ones
§ Usually variables aren’t independent!

§ Can use independence as a modeling assumption
§ Independence can be a simplifying assumption
§ Empirical  joint distributions: at best “close” to independent
§ What could we assume for {Weather, Traffic, Cavity}?



Example: Independence?

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4

P2(T,W ) = P (T )P (W )



Example: Independence

§ N fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5



Conditional Independence



Conditional Independence

§ P(Toothache, Cavity, Catch)

§ If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache:
§ P(+catch | +toothache, +cavity) = P(+catch | +cavity)

§ The same independence holds if I don’t have a cavity:
§ P(+catch | +toothache, -cavity) = P(+catch| -cavity)

§ Catch is conditionally independent of Toothache given Cavity:
§ P(Catch | Toothache, Cavity) = P(Catch | Cavity)

§ Equivalent statements:
§ P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
§ P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
§ One can be derived from the other easily



Conditional Independence

§ Unconditional (absolute) independence very rare (why?)

§ Conditional independence is our most basic and robust form 
of knowledge about uncertain environments.

§ X is conditionally independent of Y given Z

if and only if:

or, equivalently, if and only if



Conditional Independence

§ What about this domain:

§ Traffic
§ Umbrella
§ Raining



Conditional Independence

§ What about this domain:

§ Fire
§ Smoke
§ Alarm



Probability Recap

§ Conditional probability

§ Product rule

§ Chain rule 

§ X, Y independent if and only if:

§ X and Y are conditionally independent given Z if and only if:



Next Time: Markov Models



Normalization Trick

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.4
rain 0.6



SELECT the joint 
probabilities 
matching the 

evidence

Normalization Trick

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.4
rain 0.6

T W P
cold sun 0.2
cold rain 0.3

NORMALIZE the 
selection

(make it sum to one)



Normalization Trick

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.4
rain 0.6

T W P
cold sun 0.2
cold rain 0.3

SELECT the joint 
probabilities 
matching the 

evidence

NORMALIZE the 
selection

(make it sum to one)

§ Why does this work? Sum of selection is P(evidence)!  (P(T=c), here)



Quiz: Normalization Trick

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

SELECT the joint 
probabilities 
matching the 

evidence

NORMALIZE the 
selection

(make it sum to one)

§ P(X | Y=-y) ?



§ (Dictionary) To bring or restore to a normal condition

§ Procedure:
§ Step 1: Compute Z = sum over all entries
§ Step 2: Divide every entry by Z

§ Example 1

To Normalize

All entries sum to ONE

W P
sun 0.2
rain 0.3 Z = 0.5

W P
sun 0.4
rain 0.6

§ Example 2
T W P

hot sun 20

hot rain 5

cold sun 10

cold rain 15

Normalize

Z = 50

Normalize
T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3


