CSE 473: Artificial Intelligence

Markov Decision Processes

Luke Zettlemoyer

University of Washington

[These slides were adapted from Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Non-Deterministic Search

Example: Grid World

A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as planned

= 80% of the time, the action North takes the agent North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

= |f thereis a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World Stochastic Grid World

Markov Decision Processes

An MDP is defined by:

= Asetofstatess €S

= AsetofactionsaeA

= A transition function T(s, a, s’)
= Probability that a from s leads to s, i.e., P(s’| s, a)
= Also called the model or the dynamics

A reward function R(s, a, s’)
= Sometimes just R(s) or R(s’)

A start state

Maybe a terminal state

MDPs are non-deterministic search problems
= One way to solve them is with expectimax search
= We'll have a new tool soon

[Demo — gridworld manual intro (L8D1)]

What is Markov about MDPs?

= “Markov” generally means that given the present state, the
future and the past are independent

= For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(St—i—l = Sl\St — StaAt = Ay, Si—1 = St—1,At—1, ...50 = So)

Andrey Markov
P(St_|_1 = S"St = S¢, At = Clt) (1856-1922)

= This is just like search, where the successor function could only
depend on the current state (not the history)

Policies

In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

For MDPs, we want an optimal policy n*: S - A

= A policy t gives an action for each state

= An optimal policy is one that maximizes
expected utility if followed

= An explicit policy defines a reflex agent

Optimal policy when R(s, a, s’) =-0.03
for all non-terminals s

Expectimax didn’t compute entire policies
= |t computed the action for a single state only

Optimal Policies

o N
T Il
= ©
I~ o

Example: Racing

Example: Racing

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated

Two actions: Slow, Fast
0.5

Going faster gets double reward

Slow

Overheated
1.0

Racing Search Tree

MDP Search Trees

= Each MDP state projects an expectimax-like search tree

(s,a,s) called a transition
T(s,a,s") = P(s” |s,a)

R(s,a,s”)

Utilities of Sequences

Utilities of Sequences
= What preferences should an agent have over reward sequences?
= Moreorless? [1,2,2] or [2,3,4]

= Now or later? [0, O, 1] or [1,0,0]

Discounting

" |t’s reasonable to maximize the sum of rewards
" |t’s also reasonable to prefer rewards now to rewards later
= One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

= How to discount?

= Each time we descend a level, we
multiply in the discount once

* Why discount?

= Sooner rewards probably do have
higher utility than later rewards

= Also helps our algorithms converge

= Example: discount of 0.5
= U([1,2,3])=1*1+0.5*2 + 0.25*3
= U([1,2,3]) < U([3,2,1])

Stationary Preferences

9
® - g

\ 4

= Theorem: if we assume stationary preferences:

[al,ag,...] ~— [bl,bg,...] @

? . /4

[Tv a1,dz, ..] >~ [T, bl,bg, ..]

" Then: there are only two ways to define utilities

= Additive utility: U([rg,71,72,...]) =r0g+711+710+ -

= Discounted utility: U([rg,71,72,...]) = rg+yr1 +7%r2- -

Quiz: Discounting

Given: 10 1

a b C d e
= Actions: East, West, and Exit (only available in exit states a, e)

= Transitions: deterministic

Quiz 1: For y =1, what is the optimal policy? 10

Quiz 2: For y=0.1, what is the optimal policy? 10

Quiz 3: For which y are West and East equally good when in state d?

Infinite Utilities?!

" Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:

= Finite horizon: (similar to depth-limited search)
= Terminate episodes after a fixed T steps (e.g. life)
= Gives nonstationary policies (r depends on time left)

= Discounting:use0O<y<1

U([ro,.--ro0)) = > v'r¢ < Rmax/(1 —7)
t=0

= Smaller y means smaller “horizon” — shorter term focus
Y

= Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Recap: Defining MDPs

" Markov decision processes:
= Set of states S
= Start state s,
= Set of actions A
= Transitions P(s’|s,a) (or T(s,a,s’))
= Rewards R(s,a,s’) (and discount vy) 5,8

= MDP quantities so far:

= Policy = Choice of action for each state
= Utility = sum of (discounted) rewards

Solving MDPs

Optimal Quantities

"= The value (utility) of a state s:

V*(s) = expected utility starting in s and s is a
acting optimally state
s (s, a)is a
" The value (utility) of a g-state (s,a): P < g-state
Q’(s,a) = expected utility starting out o N
having taken action a from state s and 58,5 (s,a,8") is a
, transition

(thereafter) acting optimally

=" The optimal policy:
n'(s) = optimal action from state s

[Demo — gridworld values (L8D4)]

Snapshot of Demo — Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Snapshot of Demo — Gridworld Q Values

Noise = 0.2
D nt=0.9
Living reward =0

Values of States

= Fundamental operation: compute the (expectimax) value of a state

= Expected utility under optimal action
= Average sum of (discounted) rewards
" This is just what expectimax computed!

= Recursive definition of value: ,
Vi(s) = maxQ™(s, a)

Q*(s,a) =) T(s,a,s") [R(s, a,s’) + 'yV*(s’)}

V*i(s) = ma?XZT(s, a,s) {R(s,a, s") + ny*(s’)}

S

Racing Search Tree

Racing Search Tree

UOVWRT LHTRNTERN TR THEONTEORE THAWRT TR

Racing Search Tree

We're doing way too much
work with expectimax!

Problem: States are repeated

= |dea: Only compute needed
guantities once

Problem: Tree goes on forever fl fl ﬁ fl fl m fl ﬁ

= |dea: Do a depth-limited ||| RN

computation, but with increasing
depths until change is small Hﬂﬁ ﬂﬂﬁﬂﬁ ﬂﬂﬁ ﬂﬂﬁ
= Note: deep parts of the tree

eventually don’t matter ify< 1 THITRITTINL T THTIRLLL

Time-Limited Values

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends
in k more time steps
= Equivalently, it’'s what a depth-k expectimax would give from s

é Va(@)

fos T
CR AL

N

[Demo — time-limited values (L8D6)]

VALUES AFTER O ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 4 ITERATIONS NPise =0.2
Discount = 0.9

Living reward =0

k=5

Cridworld Display

.

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=6

Gridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=7

Gridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Nf’ise =0.2
Discount = 0.9

Living reward =0

k=9

Gridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=11

GCridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Computing Time-Limited Values

'A .A A 'A

NN RN l J T T L A O O l i

| L Y | O Y Y | L Y | Y| Y WY W | L /

(=
(=
S EEX
(=
(=

THTTRITT L] TR IR D T T

Value lteration

Value lteration

Start with Vy(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) < mC?XZT(S,a,, s") {R(s,a, s + *ka(s/)}

Repeat until convergence

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Example: Value Iteration

Va [3.5 2.5

Vl [2 1 Overheated
Assume no discount! (y=1)
Vo [0 0 0 J Vit1(s) < maxy T(s,a,s") [R(S, a,s') + Vk(S')]

Vi) =max(0.5[1+Vye) 1+05[1+Vyke)],1.0[-10+V, =)])
= max(1, -10)

Convergence®

How do we know the V, vectors are going to converge?

Vi(s) Vit1(s)

Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

Case 2: If the discount is less than 1

= Sketch: For any state V| and V,,1 can be viewed as depth
k+1 expectimax results in nearly identical search trees

= The difference is that on the bottom layer, V., has actual
rewards while V| has zeros

= That last layer is at best all Ryjax

= |tisat worst Ryn / \ /

= But everything is discounted by yk that far out
= So V, and V,; are at most y* max|R| different
= So as kincreases, the values converge

Policy Methods

Policy Evaluation

Fixed Policies

Do the optimal action Do what 7 says to do

“’s,a,S

"A
A s

= Expectimax trees max over all actions to compute the optimal values

= |f we fixed some policy 1t(s), then the tree would be simpler — only one action per state
= .. though the tree’s value would depend on which policy we fixed

Utilities for a Fixed Policy

Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy m:
V™(s) = expected total discounted rewards starting in s and following &t

Recursive relation (one-step look-ahead / Bellman equation):

VT(s) =) T(s,m(s),s)[R(s,7(s),8) + V()]

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Evaluation

How do we calculate the V’s for a fixed policy ©?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Vo (s) =0 s;7(s),s’
R

ka—l—l(s) — ZT(S, 7(s),s)[R(s,7(s),s) + ’YV]CW(S,)]

S

Efficiency: O(S?) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
= Solve with Matlab (or your favorite linear system solver)

Policy Extraction

1

Computing Actions from Values

y e . . %
Let’s imagine we have the optimal values V*(s) n
" |t’s not obvious!
u
We need to do a mini-expectimax (one step) .

m*(s) = arg Cl;naXZT(s, a,s)[R(s,a,s) +~V*(s)]

S

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

" Let’s imagine we have the optimal g-values: WW
ANV
= How should we act? W-}q
= Completely trivial to decide! 2 ‘”’9 00

" |mportant lesson: actions are easier to select from g-values than values!

Policy Iteration

Problems with Value Iteration

= Value iteration repeats the Bellman updates:

Vi41(s) < mC?XZT(S,a, s") [R(s,a, s + ’ka(s’)]

S

= Problem 1: It’s slow — O(S2A) per iteration

= Problem 2: The “max” at each state rarely changes

= Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]

VALUES AFTER O ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 4 ITERATIONS NPise =0.2
Discount = 0.9

Living reward =0

k=5

Cridworld Display

.

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=6

Gridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=7

Gridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Nf’ise =0.2
Discount = 0.9

Living reward =0

k=9

Gridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=11

GCridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Policy Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

= Repeat steps until policy converges

= This is policy iteration
= |t’s still optimal!

= Can converge (much) faster under some conditions

Policy Iteration

= Evaluation: For fixed current policy =, find values with policy evaluation:

" |terate until values converge:
Vit 1 (s) < ZT<S mi(s), ') |R(s,mi(s),s") + vV, (s))]

" |[mprovement: For flxed values, get a better policy using policy extraction

" One-step look-ahead:

mi4+1(s) = arg maXZT(S, a,s) {R(s, a,s’) + ’yVWi(S/)}

8,

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:

= Every iteration updates both the values and (implicitly) the policy
= We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

= We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

= After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
" The new policy will be better (or we’re done)

Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

= S0 you want to....
= Compute optimal values: use value iteration or policy iteration
= Compute values for a particular policy: use policy evaluation
" Turn your values into a policy: use policy extraction (one-step lookahead)

" These all look the same!
* They basically are —they are all variations of Bellman updates
" They all use one-step lookahead expectimax fragments
» They differ only in whether we plug in a fixed policy or max over actions

Double Bandits

= Actions: Blue, Red
= States: Win, Lose

Double-Bandit MDP

-

No discount

100 time steps

Both states have
the same value

~

Offline Planning

= Solving MDPs is offline planning 4 No discount A
" You determine all quantities through computation 100 time steps
" You need to know the details of the MDP Both states have
the same value

" You do not actually play the game!

4 N

Value
Play Red 150
Play Blue 100

o /

Let’s Play!

S2 S2 SO0 S2 S2
S2 $2 SO0 SO SO

Online Planning

= Rules changed! Red’s win chance is different.

Let’s Play!

SO SO SO S2 SO
S2 SO0 SO SO SO

What Just Happened?

» That wasn’t planning, it was learning!
= Specifically, reinforcement learning
" There was an MDP, but you couldn’t solve it with just computation
" You needed to actually act to figure it out

" |mportant ideas in reinforcement learning that came up
= Exploration: you have to try unknown actions to get information
= Exploitation: eventually, you have to use what you know
= Regret: even if you learn intelligently, you make mistakes
= Sampling: because of chance, you have to try things repeatedly
= Difficulty: learning can be much harder than solving a known MDP

Next Time: Reinforcement Learning!

