CSE 473: Artificial Intelligence #### **Markov Decision Processes** Luke Zettlemoyer #### **University of Washington** [These slides were adapted from Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] ### Non-Deterministic Search ### Example: Grid World - A maze-like problem - The agent lives in a grid - Walls block the agent's path - Noisy movement: actions do not always go as planned - 80% of the time, the action North takes the agent North (if there is no wall there) - 10% of the time, North takes the agent West; 10% East - If there is a wall in the direction the agent would have been taken, the agent stays put - The agent receives rewards each time step - Small "living" reward each step (can be negative) - Big rewards come at the end (good or bad) - Goal: maximize sum of rewards ### **Grid World Actions** #### Deterministic Grid World ### Markov Decision Processes - An MDP is defined by: - A set of states $s \in S$ - A set of actions $a \in A$ - A transition function T(s, a, s') - Probability that a from s leads to s', i.e., P(s' | s, a) - Also called the model or the dynamics - A reward function R(s, a, s') - Sometimes just R(s) or R(s') - A start state - Maybe a terminal state - MDPs are non-deterministic search problems - One way to solve them is with expectimax search - We'll have a new tool soon #### What is Markov about MDPs? - "Markov" generally means that given the present state, the future and the past are independent - For Markov decision processes, "Markov" means action outcomes depend only on the current state $$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$ $$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$ This is just like search, where the successor function could only depend on the current state (not the history) Andrey Markov (1856-1922) ### **Policies** In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal - For MDPs, we want an optimal policy $\pi^*: S \rightarrow A$ - A policy π gives an action for each state - An optimal policy is one that maximizes expected utility if followed - An explicit policy defines a reflex agent - Expectimax didn't compute entire policies - It computed the action for a single state only Optimal policy when R(s, a, s') = -0.03 for all non-terminals s # **Optimal Policies** $$R(s) = -0.4$$ $$R(s) = -0.03$$ $$R(s) = -2.0$$ # Example: Racing ## Example: Racing A robot car wants to travel far, quickly Three states: Cool, Warm, Overheated Two actions: Slow, Fast ### **MDP Search Trees** Each MDP state projects an expectimax-like search tree # **Utilities of Sequences** ## **Utilities of Sequences** What preferences should an agent have over reward sequences? • More or less? [1, 2, 2] or [2, 3, 4] • Now or later? [0, 0, 1] or [1, 0, 0] ### Discounting - It's reasonable to maximize the sum of rewards - It's also reasonable to prefer rewards now to rewards later - One solution: values of rewards decay exponentially ## Discounting #### How to discount? Each time we descend a level, we multiply in the discount once #### Why discount? - Sooner rewards probably do have higher utility than later rewards - Also helps our algorithms converge #### Example: discount of 0.5 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3 - U([1,2,3]) < U([3,2,1]) ## **Stationary Preferences** Theorem: if we assume stationary preferences: $$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$ $$\updownarrow$$ $$[r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$ - Then: there are only two ways to define utilities - Additive utility: $U([r_0, r_1, r_2, ...]) = r_0 + r_1 + r_2 + \cdots$ - Discounted utility: $U([r_0, r_1, r_2, ...]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$ ## Quiz: Discounting Given: - Actions: East, West, and Exit (only available in exit states a, e) - Transitions: deterministic • Quiz 1: For $\gamma = 1$, what is the optimal policy? • Quiz 2: For γ = 0.1, what is the optimal policy? • Quiz 3: For which γ are West and East equally good when in state d? ### Infinite Utilities?! - Problem: What if the game lasts forever? Do we get infinite rewards? - Solutions: - Finite horizon: (similar to depth-limited search) - Terminate episodes after a fixed T steps (e.g. life) - Gives nonstationary policies (π depends on time left) - Discounting: use $0 < \gamma < 1$ $$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$ - Smaller γ means smaller "horizon" shorter term focus - Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing) ## Recap: Defining MDPs #### Markov decision processes: - Set of states S - Start state s₀ - Set of actions A - Transitions P(s'|s,a) (or T(s,a,s')) - Rewards R(s,a,s') (and discount γ) #### MDP quantities so far: - Policy = Choice of action for each state - Utility = sum of (discounted) rewards # Solving MDPs ### **Optimal Quantities** - The value (utility) of a state s: - V*(s) = expected utility starting in s and acting optimally - The value (utility) of a q-state (s,a): - Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally - The optimal policy: $\pi^*(s)$ = optimal action from state s ### Snapshot of Demo – Gridworld V Values ## Snapshot of Demo – Gridworld Q Values ### Values of States - Fundamental operation: compute the (expectimax) value of a state - Expected utility under optimal action - Average sum of (discounted) rewards - This is just what expectimax computed! - Recursive definition of value: $$V^*(s) = \max_a Q^*(s, a)$$ $$Q^{*}(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^{*}(s') \right]$$ $$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$ - We're doing way too much work with expectimax! - Problem: States are repeated - Idea: Only compute needed quantities once - Problem: Tree goes on forever - Idea: Do a depth-limited computation, but with increasing depths until change is small - Note: deep parts of the tree eventually don't matter if γ < 1 ### Time-Limited Values - Key idea: time-limited values - Define V_k(s) to be the optimal value of s if the game ends in k more time steps - Equivalently, it's what a depth-k expectimax would give from s ## **Computing Time-Limited Values** ## Value Iteration #### Value Iteration - Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero - Given vector of $V_k(s)$ values, do one ply of expectimax from each state: $$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$ - Repeat until convergence - Complexity of each iteration: O(S²A) - Theorem: will converge to unique optimal values - Basic idea: approximations get refined towards optimal values - Policy may converge long before values do ### Example: Value Iteration $$V_1(-10) = \max(0.5[1 + V_0(-10)] + 0.5[1 + V_0(-10)], 1.0[-10 + V_0(-10)])$$ = $\max(1, -10)$ ## Convergence* - How do we know the V_k vectors are going to converge? - Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values - Case 2: If the discount is less than 1 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros - That last layer is at best all R_{MAX} - It is at worst R_{MIN} - But everything is discounted by y^k that far out - So V_k and V_{k+1} are at most γ^k max|R| different - So as k increases, the values converge # Policy Methods # **Policy Evaluation** #### **Fixed Policies** Do the optimal action Do what π says to do - Expectimax trees max over all actions to compute the optimal values - If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state - ... though the tree's value would depend on which policy we fixed ## Utilities for a Fixed Policy - Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy - Define the utility of a state s, under a fixed policy π : $V^{\pi}(s)$ = expected total discounted rewards starting in s and following π - Recursive relation (one-step look-ahead / Bellman equation): $$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$ # Example: Policy Evaluation Always Go Right Always Go Forward ## **Example: Policy Evaluation** Always Go Right Always Go Forward ## **Policy Evaluation** - How do we calculate the V's for a fixed policy π ? - Idea 1: Turn recursive Bellman equations into updates (like value iteration) $$V_0^{\pi}(s) = 0$$ $$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$ - Efficiency: O(S²) per iteration - Idea 2: Without the maxes, the Bellman equations are just a linear system - Solve with Matlab (or your favorite linear system solver) ## **Policy Extraction** ## Computing Actions from Values - Let's imagine we have the optimal values V*(s) - How should we act? - It's not obvious! - We need to do a mini-expectimax (one step) $$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$ This is called policy extraction, since it gets the policy implied by the values ## Computing Actions from Q-Values Let's imagine we have the optimal q-values: - How should we act? - Completely trivial to decide! $$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$ Important lesson: actions are easier to select from q-values than values! # Policy Iteration #### Problems with Value Iteration Value iteration repeats the Bellman updates: $$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$ ■ Problem 1: It's slow – O(S²A) per iteration Problem 2: The "max" at each state rarely changes Problem 3: The policy often converges long before the values #### k=12 Noise = 0.2 Discount = 0.9 Living reward = 0 #### k=100 Noise = 0.2 Discount = 0.9 Living reward = 0 ### **Policy Iteration** - Alternative approach for optimal values: - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values - Repeat steps until policy converges - This is policy iteration - It's still optimal! - Can converge (much) faster under some conditions ## **Policy Iteration** - Evaluation: For fixed current policy π , find values with policy evaluation: - Iterate until values converge: $$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$ - Improvement: For fixed values, get a better policy using policy extraction - One-step look-ahead: $$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$ #### Comparison - Both value iteration and policy iteration compute the same thing (all optimal values) - In value iteration: - Every iteration updates both the values and (implicitly) the policy - We don't track the policy, but taking the max over actions implicitly recomputes it - In policy iteration: - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them) - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass) - The new policy will be better (or we're done) - Both are dynamic programs for solving MDPs #### Summary: MDP Algorithms #### So you want to.... - Compute optimal values: use value iteration or policy iteration - Compute values for a particular policy: use policy evaluation - Turn your values into a policy: use policy extraction (one-step lookahead) #### These all look the same! - They basically are they are all variations of Bellman updates - They all use one-step lookahead expectimax fragments - They differ only in whether we plug in a fixed policy or max over actions ## **Double Bandits** #### Double-Bandit MDP ## Offline Planning - Solving MDPs is offline planning - You determine all quantities through computation - You need to know the details of the MDP - You do not actually play the game! No discount 100 time steps Both states have the same value # Let's Play! \$2 \$2 \$0 \$2 \$2 \$2 \$2 \$0 \$0 \$0 ## Online Planning Rules changed! Red's win chance is different. # Let's Play! \$0 \$0 \$0 \$2 \$0 \$2 \$0 \$0 \$0 \$0 ### What Just Happened? - That wasn't planning, it was learning! - Specifically, reinforcement learning - There was an MDP, but you couldn't solve it with just computation - You needed to actually act to figure it out - Important ideas in reinforcement learning that came up - Exploration: you have to try unknown actions to get information - Exploitation: eventually, you have to use what you know - Regret: even if you learn intelligently, you make mistakes - Sampling: because of chance, you have to try things repeatedly - Difficulty: learning can be much harder than solving a known MDP # Next Time: Reinforcement Learning!