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Non-Deterministic Search



Example: Grid World

§ A maze-like problem
§ The agent lives in a grid
§ Walls block the agent’s path

§ Noisy movement: actions do not always go as planned
§ 80% of the time, the action North takes the agent North 

(if there is no wall there)
§ 10% of the time, North takes the agent West; 10% East
§ If there is a wall in the direction the agent would have 

been taken, the agent stays put

§ The agent receives rewards each time step
§ Small “living” reward each step (can be negative)
§ Big rewards come at the end (good or bad)

§ Goal: maximize sum of rewards



Grid World Actions
Deterministic Grid World Stochastic Grid World



Markov Decision Processes

§ An MDP is defined by:
§ A set of states s Î S
§ A set of actions a Î A
§ A transition function T(s, a, s’)

§ Probability that a from s leads to s’, i.e., P(s’| s, a)
§ Also called the model or the dynamics

§ A reward function R(s, a, s’) 
§ Sometimes just R(s) or R(s’)

§ A start state
§ Maybe a terminal state

§ MDPs are non-deterministic search problems
§ One way to solve them is with expectimax search
§ We’ll have a new tool soon

[Demo – gridworld manual intro (L8D1)]



What is Markov about MDPs?

§ “Markov” generally means that given the present state, the 
future and the past are independent

§ For Markov decision processes, “Markov” means action 
outcomes depend only on the current state

§ This is just like search, where the successor function could only 
depend on the current state (not the history)

Andrey Markov 
(1856-1922)



Policies

Optimal policy when R(s, a, s’) = -0.03 
for all non-terminals s

§ In deterministic single-agent search problems, 
we wanted an optimal plan, or sequence of 
actions, from start to a goal

§ For MDPs, we want an optimal policy p*: S → A
§ A policy p gives an action for each state
§ An optimal policy is one that maximizes        

expected utility if followed
§ An explicit policy defines a reflex agent

§ Expectimax didn’t compute entire policies
§ It computed the action for a single state only



Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01



Example: Racing



Example: Racing
§ A robot car wants to travel far, quickly
§ Three states: Cool, Warm, Overheated
§ Two actions: Slow, Fast
§ Going faster gets double reward
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Racing Search Tree



MDP Search Trees
§ Each MDP state projects an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a q-
state



Utilities of Sequences



Utilities of Sequences

§ What preferences should an agent have over reward sequences?

§ More or less?

§ Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or



Discounting

§ It’s reasonable to maximize the sum of rewards
§ It’s also reasonable to prefer rewards now to rewards later
§ One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps



Discounting

§ How to discount?
§ Each time we descend a level, we 

multiply in the discount once

§ Why discount?
§ Sooner rewards probably do have 

higher utility than later rewards
§ Also helps our algorithms converge

§ Example: discount of 0.5
§ U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
§ U([1,2,3]) < U([3,2,1])



Stationary Preferences

§ Theorem: if we assume stationary preferences:

§ Then: there are only two ways to define utilities

§ Additive utility:

§ Discounted utility:



Quiz: Discounting

§ Given:

§ Actions: East, West, and Exit (only available in exit states a, e)
§ Transitions: deterministic

§ Quiz 1: For g = 1, what is the optimal policy?

§ Quiz 2: For g = 0.1, what is the optimal policy?

§ Quiz 3: For which g are West and East equally good when in state d?



Infinite Utilities?!

§ Problem: What if the game lasts forever?  Do we get infinite rewards?

§ Solutions:
§ Finite horizon: (similar to depth-limited search)

§ Terminate episodes after a fixed T steps (e.g. life)
§ Gives nonstationary policies (p depends on time left)

§ Discounting: use 0 < g < 1

§ Smaller g means smaller “horizon” – shorter term focus

§ Absorbing state: guarantee that for every policy, a terminal state will eventually 
be reached (like “overheated” for racing)



Recap: Defining MDPs

§ Markov decision processes:
§ Set of states S
§ Start state s0
§ Set of actions A
§ Transitions P(s’|s,a) (or T(s,a,s’))
§ Rewards R(s,a,s’) (and discount g)

§ MDP quantities so far:
§ Policy = Choice of action for each state
§ Utility = sum of (discounted) rewards

a

s

s, a

s,a,s’
s’



Solving MDPs



Optimal Quantities

§ The value (utility) of a state s:
V*(s) = expected utility starting in s and 

acting optimally

§ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally

§ The optimal policy:
p*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a 
transition

s,a,s’

s is a 
state

(s, a) is a 
q-state

[Demo – gridworld values (L8D4)]



Snapshot of Demo – Gridworld V Values

Noise = 0.2
Discount = 0.9
Living reward = 0



Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0



Values of States

§ Fundamental operation: compute the (expectimax) value of a state
§ Expected utility under optimal action
§ Average sum of (discounted) rewards
§ This is just what expectimax computed!

§ Recursive definition of value:

a

s

s, a

s,a,s’
s’



Racing Search Tree



Racing Search Tree



Racing Search Tree

§ We’re doing way too much 
work with expectimax!

§ Problem: States are repeated 
§ Idea: Only compute needed 

quantities once

§ Problem: Tree goes on forever
§ Idea: Do a depth-limited 

computation, but with increasing 
depths until change is small

§ Note: deep parts of the tree 
eventually don’t matter if γ < 1



Time-Limited Values

§ Key idea: time-limited values

§ Define Vk(s) to be the optimal value of s if the game ends 
in k more time steps
§ Equivalently, it’s what a depth-k expectimax would give from s

[Demo – time-limited values (L8D6)]



k=0

Noise = 0.2
Discount = 0.9
Living reward = 0



k=1

Noise = 0.2
Discount = 0.9
Living reward = 0



k=2

Noise = 0.2
Discount = 0.9
Living reward = 0



k=3

Noise = 0.2
Discount = 0.9
Living reward = 0



k=4

Noise = 0.2
Discount = 0.9
Living reward = 0



k=5

Noise = 0.2
Discount = 0.9
Living reward = 0



k=6

Noise = 0.2
Discount = 0.9
Living reward = 0



k=7

Noise = 0.2
Discount = 0.9
Living reward = 0



k=8

Noise = 0.2
Discount = 0.9
Living reward = 0



k=9

Noise = 0.2
Discount = 0.9
Living reward = 0



k=10

Noise = 0.2
Discount = 0.9
Living reward = 0



k=11

Noise = 0.2
Discount = 0.9
Living reward = 0



k=12

Noise = 0.2
Discount = 0.9
Living reward = 0



k=100

Noise = 0.2
Discount = 0.9
Living reward = 0



Computing Time-Limited Values



Value Iteration



Value Iteration

§ Start with V0(s) = 0: no time steps left means an expected reward sum of zero

§ Given vector of Vk(s) values, do one ply of expectimax from each state:

§ Repeat until convergence

§ Complexity of each iteration: O(S2A)

§ Theorem: will converge to unique optimal values
§ Basic idea: approximations get refined towards optimal values
§ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)



Example: Value Iteration

0             0             0

2             1             0

3.5          2.5          0

Assume no discount! (𝛾=1)

V1(   ) = max( 0.5 [ 1 + V0( )   ] + 0.5 [ 1 + V0(   )  ] , 1.0 [-10 + V0(   )  ] ) 
= max(1, -10)



Convergence*

§ How do we know the Vk vectors are going to converge?

§ Case 1: If the tree has maximum depth M, then VM holds 
the actual untruncated values

§ Case 2: If the discount is less than 1
§ Sketch: For any state Vk and Vk+1 can be viewed as depth 

k+1 expectimax results in nearly identical search trees
§ The difference is that on the bottom layer, Vk+1 has actual 

rewards while Vk has zeros
§ That last layer is at best all RMAX

§ It is at worst RMIN

§ But everything is discounted by γk that far out
§ So Vk and Vk+1 are at most γk max|R| different
§ So as k increases, the values converge



Policy Methods



Policy Evaluation



Fixed Policies

§ Expectimax trees max over all actions to compute the optimal values

§ If we fixed some policy p(s), then the tree would be simpler – only one action per state
§ … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’
s’

p(s)

s

s, p(s)

s, p(s),s’
s’

Do the optimal action Do what p says to do



Utilities for a Fixed Policy

§ Another basic operation: compute the utility of a state s 
under a fixed (generally non-optimal) policy

§ Define the utility of a state s, under a fixed policy p:
Vp(s) = expected total discounted rewards starting in s and following p

§ Recursive relation (one-step look-ahead / Bellman equation):

p(s)

s

s, p(s)

s, p(s),s’
s’



Example: Policy Evaluation

Always Go Right Always Go Forward



Example: Policy Evaluation

Always Go Right Always Go Forward



Policy Evaluation

§ How do we calculate the V’s for a fixed policy p?

§ Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

§ Efficiency: O(S2) per iteration

§ Idea 2: Without the maxes, the Bellman equations are just a linear system
§ Solve with Matlab (or your favorite linear system solver)

p(s)

s

s, p(s)

s, p(s),s’
s’



Policy Extraction



Computing Actions from Values

§ Let’s imagine we have the optimal values V*(s)

§ How should we act?
§ It’s not obvious!

§ We need to do a mini-expectimax (one step)

§ This is called policy extraction, since it gets the policy implied by the values



Computing Actions from Q-Values

§ Let’s imagine we have the optimal q-values:

§ How should we act?
§ Completely trivial to decide!

§ Important lesson: actions are easier to select from q-values than values!



Policy Iteration



Problems with Value Iteration

§ Value iteration repeats the Bellman updates:

§ Problem 1: It’s slow – O(S2A) per iteration

§ Problem 2: The “max” at each state rarely changes

§ Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’
s’

[Demo: value iteration (L9D2)]



k=0

Noise = 0.2
Discount = 0.9
Living reward = 0



k=1

Noise = 0.2
Discount = 0.9
Living reward = 0



k=2

Noise = 0.2
Discount = 0.9
Living reward = 0



k=3

Noise = 0.2
Discount = 0.9
Living reward = 0



k=4

Noise = 0.2
Discount = 0.9
Living reward = 0



k=5

Noise = 0.2
Discount = 0.9
Living reward = 0



k=6

Noise = 0.2
Discount = 0.9
Living reward = 0



k=7

Noise = 0.2
Discount = 0.9
Living reward = 0



k=8

Noise = 0.2
Discount = 0.9
Living reward = 0



k=9

Noise = 0.2
Discount = 0.9
Living reward = 0



k=10

Noise = 0.2
Discount = 0.9
Living reward = 0



k=11

Noise = 0.2
Discount = 0.9
Living reward = 0



k=12

Noise = 0.2
Discount = 0.9
Living reward = 0



k=100

Noise = 0.2
Discount = 0.9
Living reward = 0



Policy Iteration

§ Alternative approach for optimal values:
§ Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal 

utilities!) until convergence
§ Step 2: Policy improvement: update policy using one-step look-ahead with resulting 

converged (but not optimal!) utilities as future values
§ Repeat steps until policy converges

§ This is policy iteration
§ It’s still optimal!
§ Can converge (much) faster under some conditions



Policy Iteration

§ Evaluation: For fixed current policy p, find values with policy evaluation:
§ Iterate until values converge:

§ Improvement: For fixed values, get a better policy using policy extraction
§ One-step look-ahead:



Comparison

§ Both value iteration and policy iteration compute the same thing (all optimal values)

§ In value iteration:
§ Every iteration updates both the values and (implicitly) the policy
§ We don’t track the policy, but taking the max over actions implicitly recomputes it

§ In policy iteration:
§ We do several passes that update utilities with fixed policy (each pass is fast because we 

consider only one action, not all of them)
§ After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
§ The new policy will be better (or we’re done)

§ Both are dynamic programs for solving MDPs



Summary: MDP Algorithms

§ So you want to….
§ Compute optimal values: use value iteration or policy iteration
§ Compute values for a particular policy: use policy evaluation
§ Turn your values into a policy: use policy extraction (one-step lookahead)

§ These all look the same!
§ They basically are – they are all variations of Bellman updates
§ They all use one-step lookahead expectimax fragments
§ They differ only in whether we plug in a fixed policy or max over actions



Double Bandits



Double-Bandit MDP

§ Actions: Blue, Red
§ States: Win, Lose

W L
$1

1.0

$1

1.0

0.25 $0

0.75 
$2

0.75 $2

0.25 
$0

No discount
100 time steps

Both states have 
the same value



Offline Planning

§ Solving MDPs is offline planning
§ You determine all quantities through computation
§ You need to know the details of the MDP
§ You do not actually play the game!

Play Red

Play Blue

Value

No discount
100 time steps

Both states have 
the same value

150

100

W L
$1

1.0

$1

1.0

0.25 $0

0.75 
$2

0.75 $2

0.25 
$0



Let’s Play!

$2 $2 $0 $2 $2
$2 $2 $0 $0 $0



Online Planning

§ Rules changed!  Red’s win chance is different.

W L
$1

1.0

$1

1.0

?? $0

?? 
$2

?? $2

?? 
$0



Let’s Play!

$0 $0 $0 $2 $0
$2 $0 $0 $0 $0



What Just Happened?

§ That wasn’t planning, it was learning!
§ Specifically, reinforcement learning
§ There was an MDP, but you couldn’t solve it with just computation
§ You needed to actually act to figure it out

§ Important ideas in reinforcement learning that came up
§ Exploration: you have to try unknown actions to get information
§ Exploitation: eventually, you have to use what you know
§ Regret: even if you learn intelligently, you make mistakes
§ Sampling: because of chance, you have to try things repeatedly
§ Difficulty: learning can be much harder than solving a known MDP



Next Time: Reinforcement Learning!


