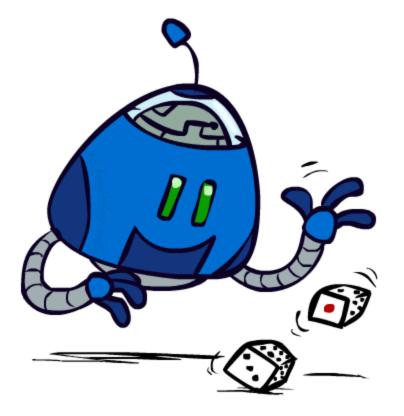


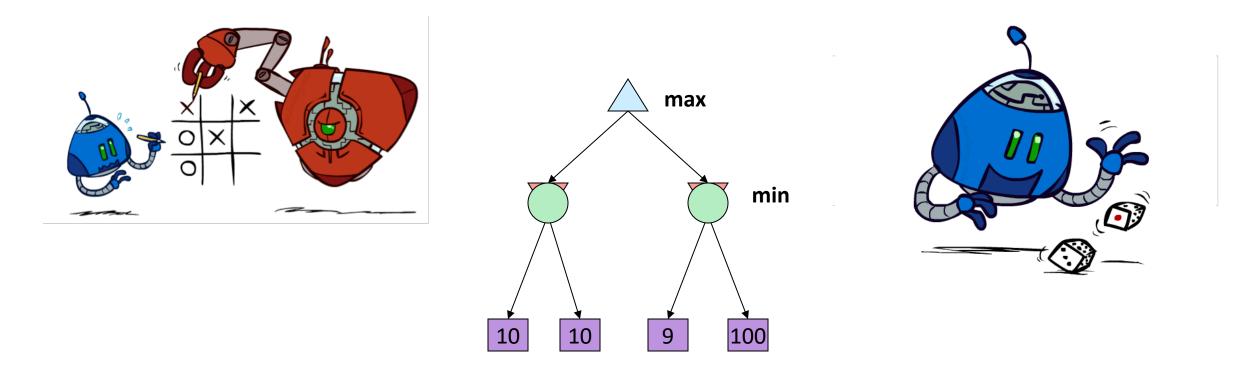
University of Washington

[These slides were adapted from Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Uncertain Outcomes



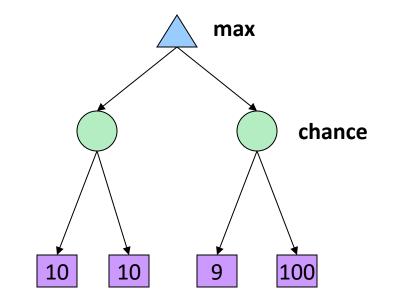
Worst-Case vs. Average Case



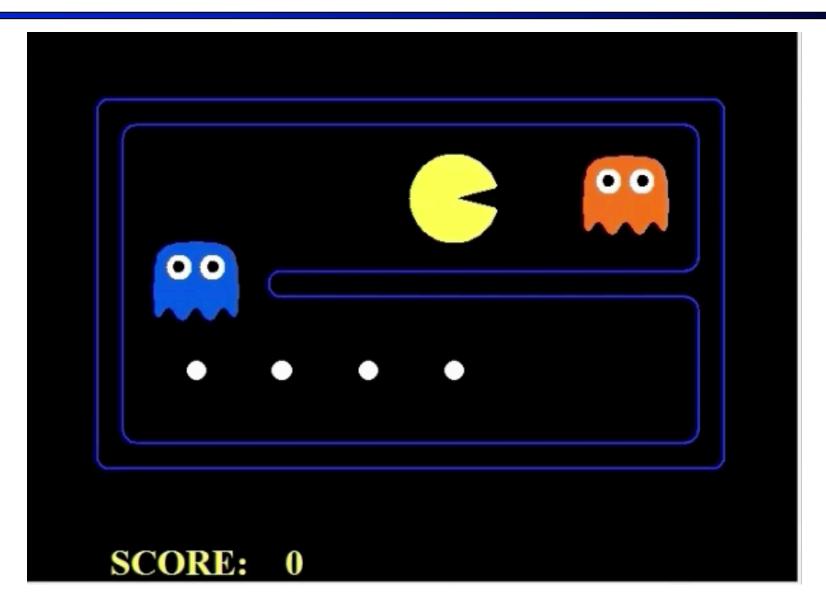
Idea: Uncertain outcomes controlled by chance, not an adversary!

Expectimax Search

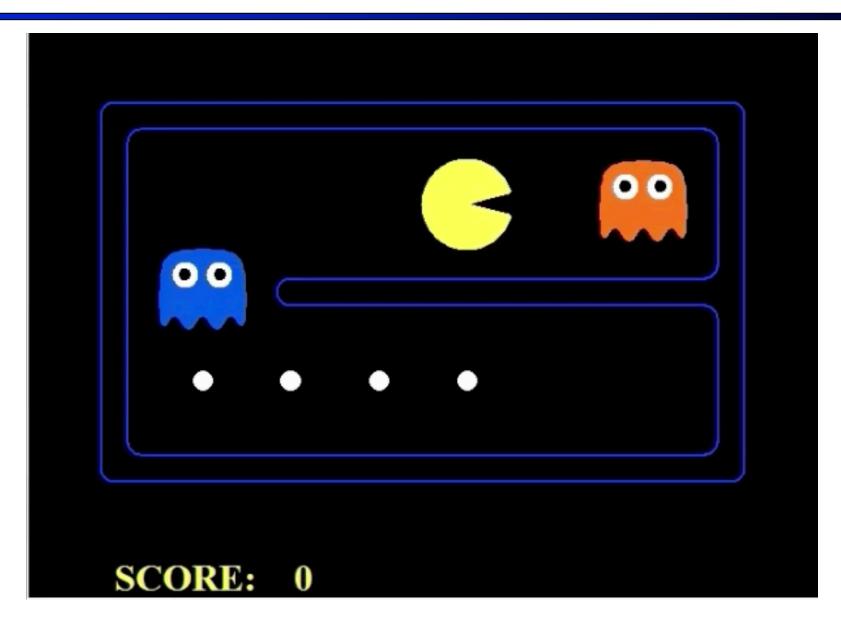
- Why wouldn't we know what the result of an action will be?
 - Explicit randomness: rolling dice
 - Unpredictable opponents: the ghosts respond randomly
 - Actions can fail: when moving a robot, wheels might slip
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal play
 - Max nodes as in minimax search
 - Chance nodes are like min nodes but the outcome is uncertain
 - Calculate their expected utilities
 - I.e. take weighted average (expectation) of children
- Later, we'll learn how to formalize the underlying uncertainresult problems as Markov Decision Processes



Video of Demo Min vs. Exp (Min)



Video of Demo Min vs. Exp (Exp)



Expectimax Pseudocode

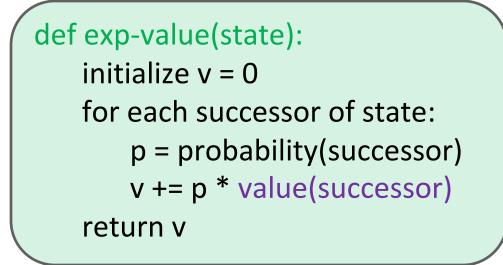
def value(state):

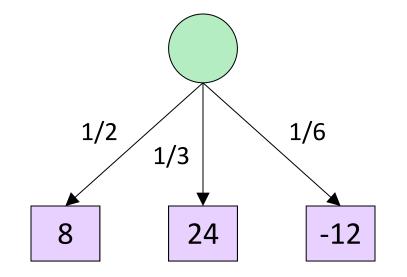
if the state is a terminal state: return the state's utility if the next agent is MAX: return max-value(state) if the next agent is EXP: return exp-value(state)

```
def max-value(state):
initialize v = -∞
for each successor of state:
    v = max(v, value(successor))
return v
```

def exp-value(state):
initialize v = 0
for each successor of state:
 p = probability(successor)
 v += p * value(successor)
return v

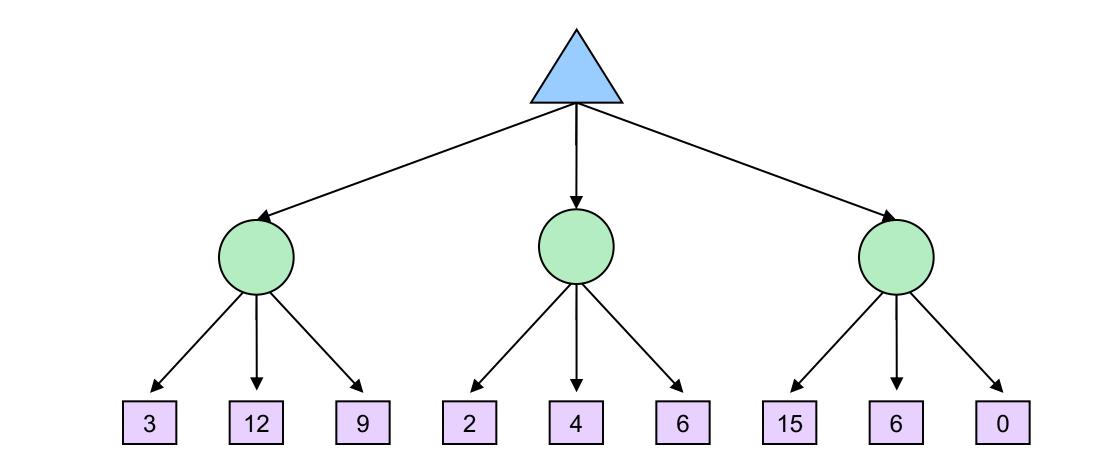
Expectimax Pseudocode



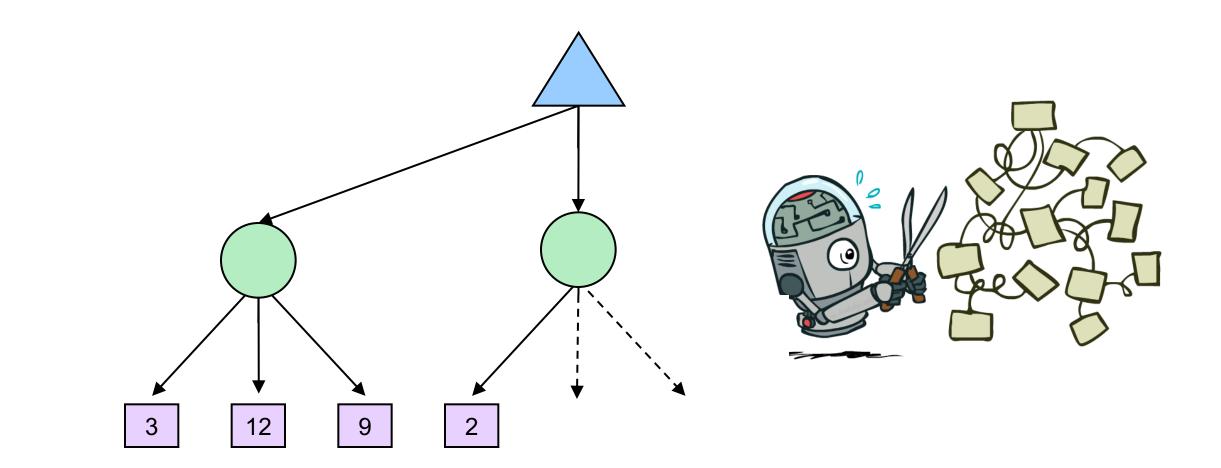


v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10

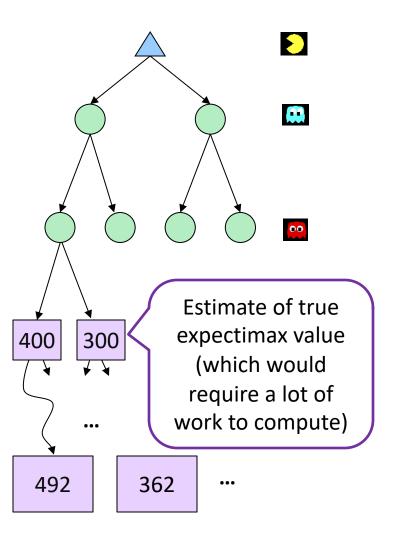
Expectimax Example



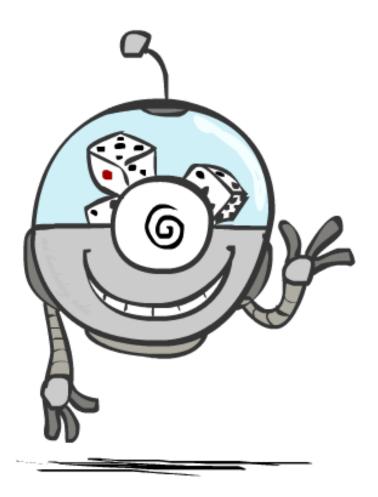
Expectimax Pruning?



Depth-Limited Expectimax

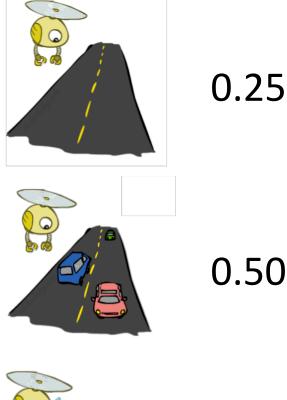


Probabilities



Reminder: Probabilities

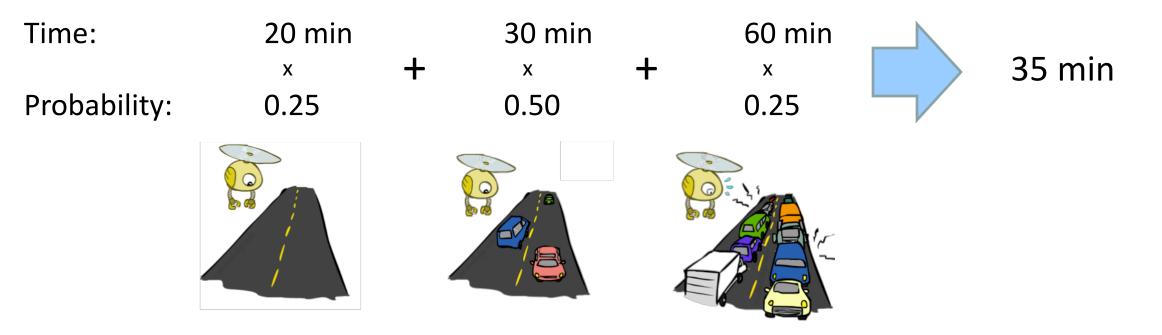
- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes
- Example: Traffic on freeway
 - Random variable: T = whether there's traffic
 - Outcomes: T in {none, light, heavy}
 - Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25
- Some laws of probability (more later):
 - Probabilities are always non-negative
 - Probabilities over all possible outcomes sum to one
- As we get more evidence, probabilities may change:
 - P(T=heavy) = 0.25, P(T=heavy | Hour=8am) = 0.60
 - We'll talk about methods for reasoning and updating probabilities later



Reminder: Expectations

Ч С

- The expected value of a function of a random variable is the average, weighted by the probability distribution over outcomes
- Example: How long to get to the airport?



What Probabilities to Use?

- In expectimax search, we have a probabilistic note of how the opponent (or environment) will behany state
 - Model could be a simple uniform distribution (roll a diff)
 - Model could be sophisticated and require a great deal of computation
 - We have a chance node for any outcome out of our contor opponent or environment
 - The model might say that adversarial actions are likely!
- For now, assume each chance node magically comes along with probabilities that specify the distribution over its outcomes

Having a probabilistic belief about another agent's action does not mean that the agent is flipping any coins!

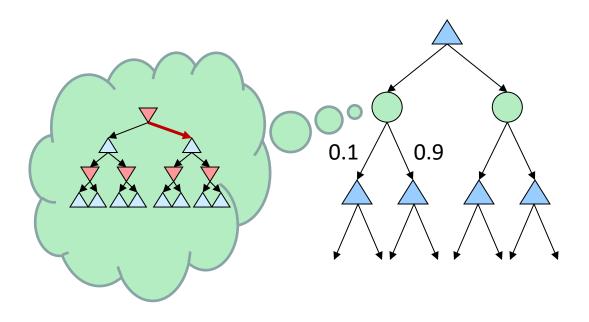
>

00

 $\mathbf{\Sigma}$

Quiz: Informed Probabilities

- Let's say you know that your opponent is actually running a depth 2 minimax, using the result 80% of the time, and moving randomly otherwise
- Question: What tree search should you use?



Answer: Expectimax!

- To figure out EACH chance node's probabilities, you have to run a simulation of your opponent
- This kind of thing gets very slow very quickly
- Even worse if you have to simulate your opponent simulating you...
- ... except for minimax, which has the nice property that it all collapses into one game tree

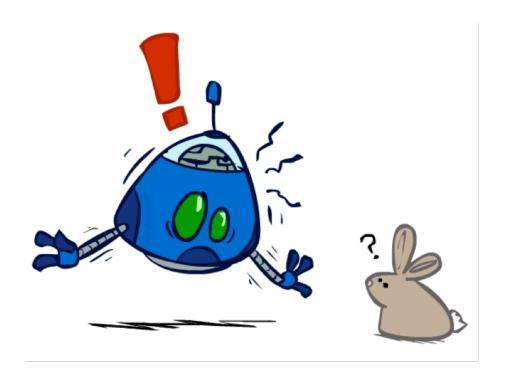
Modeling Assumptions



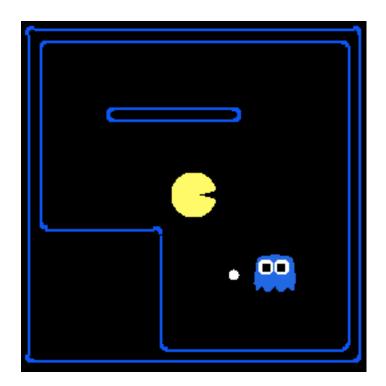
The Dangers of Optimism and Pessimism

Dangerous Optimism Assuming chance when the world is adversarial

Dangerous Pessimism Assuming the worst case when it's not likely



Assumptions vs. Reality



	Adversarial Ghost	Random Ghost
Minimax	Won 5/5	Won 5/5
Pacman	Avg. Score: 483	Avg. Score: 493
Expectimax	Won 1/5	Won 5/5
Pacman	Avg. Score: -303	Avg. Score: 503

Results from playing 5 games

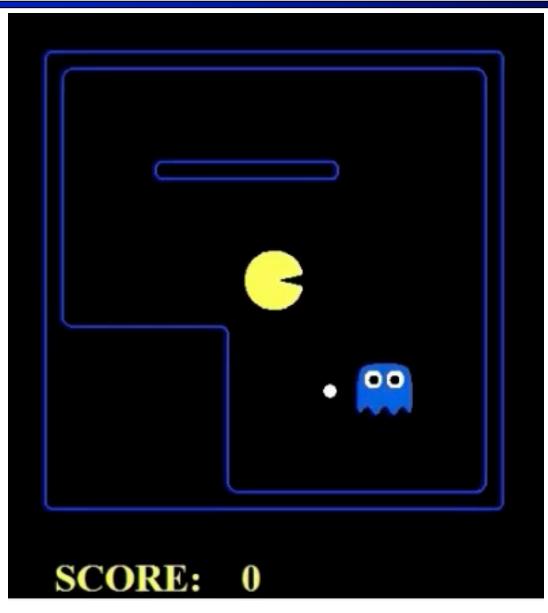
Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

[Demos: world assumptions (L7D3,4,5,6)]

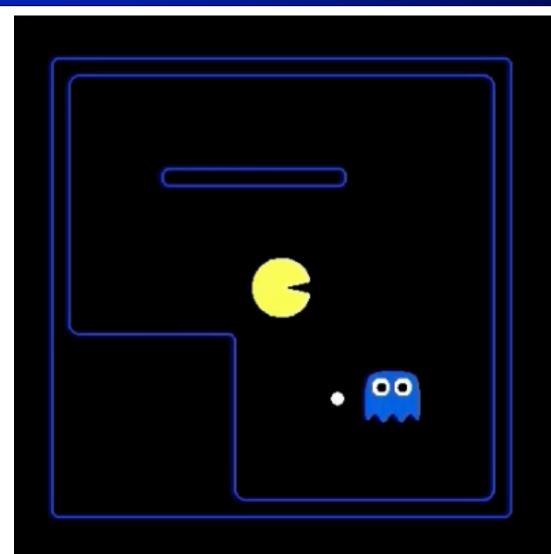
Video of Demo World Assumptions Random Ghost – Expectimax Pacman



Video of Demo World Assumptions Adversarial Ghost – Minimax Pacman



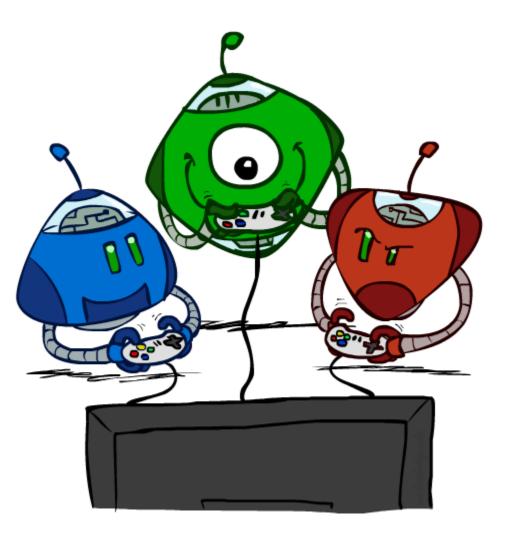
Video of Demo World Assumptions Adversarial Ghost – Expectimax Pacman



Video of Demo World Assumptions Random Ghost – Minimax Pacman

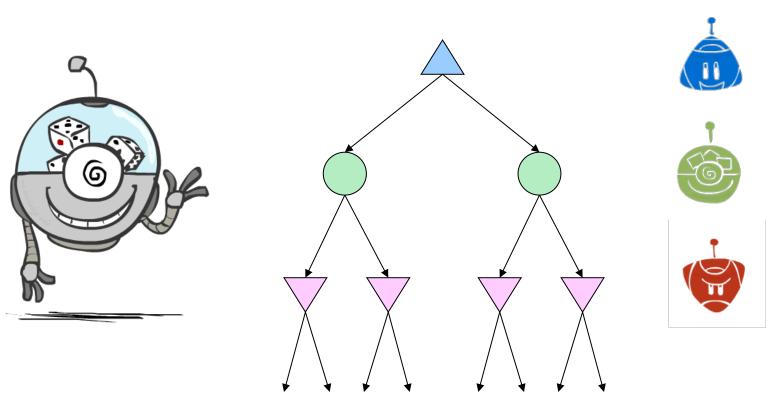


Other Game Types



Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
 - Environment is an extra "random agent" player that moves after each min/max agent
 - Each node computes the appropriate combination of its children



Example: Backgammon

- Dice rolls increase b: 21 possible rolls with 2 dice
 - Backgammon ≈ 20 legal moves
 - Depth 2 = 20 x (21 x 20)³ = 1.2 x 10⁹
- As depth increases, probability of reaching a given search node shrinks
 - So usefulness of search is diminished
 - So limiting depth is less damaging
 - But pruning is trickier...
- Historic AI: TDGammon uses depth-2 search + very good evaluation function + reinforcement learning: world-champion level play
- 1st AI world champion in any game!

Multi-Agent Utilities

- What if the game is not zero-sum, or has multiple players?
- Generalization of minimax:
 - Terminals have utility tuples
 - Node values are also utility tuples
 - Each player maximizes its own component
 - Can give rise to cooperation and competition dynamically...

