CSE 473: Artificial Intelligence

Constraint Satisfaction Problems

Instructor: Luke Zettlemoyer

University of Washington

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

What is Search For?

= Assumptions about the world: a single agent, deterministic actions, fully observed
state, discrete state space

Wali
= Planning: sequences of actions

= The path to the goal is the important thing
= Paths have various costs, depths

= Heuristics give problem-specific guidance

= |dentification: assignments to variables
= The goal itself is important, not the path

= All paths at the same depth (for some formulations)
= (CSPs are specialized for identification problems

Constraint Satisfaction Problems

Constraint Satisfaction Problems

Standard search problems:
= State is a “black box”: arbitrary data structure
= Goal test can be any function over states
= Successor function can also be anything

Constraint satisfaction problems (CSPs):
= A special subset of search problems

= State is defined by variables X; with values from a
domain D (sometimes D depends on i)

= Goal testis a set of constraints specifying allowable
combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more
power than standard search algorithms

CSP Examples

Example: Map Coloring

Variables: WA, NT, Q, NSW, V, SA, T

Domains: D = {red, green, blue}

Constraints: adjacent regions must have different
colors

Implicit: WA = NT

Explicit: (WA,NT) € {(red,green), (red, blue), ...}

Solutions are assignments satisfying all
constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green,
V=red, SA=Dblue, T=green}

Example: N-Queens

" Formulation 1:
" Variables: X,
= Domains: {0,1}
= Constraints

Vi, j, k (X5, X)) € {(0,0),(0,1),(1,0)}

Vi,j.k (Xij Xg;) € {(0,0),(0,1), (1,0} X, =
Vi, j, k (Xij, Xitk j+k) € 1(0,0),(0,1),(1,0)} 0,
Vi, j, k (X, Xiqr i—k) € 1(0,0),(0,1),(1,0)}

Example: N-Queens

= Formulation 2:

Q1

» Variables: Qg Q2
| @3

" Domains: {1,2,3,...N} Qa

® Constraints:

Implicit: Vi,j non-threatening(Q;, Q;)

it (Q1,Q2) € {(1,3),(1,4),...}

Constraint Graphs

Constraint Graphs

= Binary CSP: each constraint relates (at most) two @

variables @
o]~

= Binary constraint graph: nodes are variables, arcs
show constraints

= General-purpose CSP algorithms use the graph @
structure to speed up search. E.g., Tasmania is an
independent subproblem!

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Example: Cryptarithmetic

= \/ariables:

FTUWRO X1 Xo X3
= Domains:
{0,1,2,3,4,5,6,7,8,9}
= Constraints:

alldiff(F, T, U, W, R, O)

O+0=R+10-X;

Example: Sudoku

= Variables:
= Each (open) square

= Domains:

il i 8|~ = {1,2,..,9}
8 | 4 1161 7 ’ = Constraints:

5 o1l

1 318 9 9-way alldiff for each column

6 2 9 ;1 :13 9-way alldiff for each row

. > 9-way alldiff for each region
/ (or can have a bunch of

718 2|6 7 pairwise inequality

2 3 constraints)

Example: The Waltz Algorithm

= The Waltz algorithm is for interpreting
line drawings of solid polyhedra as 3D
objects

= An early example of an Al computation
posed as a CSP

= Approach:
= Each intersection is a variable

= Adjacent intersections impose constraints
on each other

= Solutions are physically realizable 3D
interpretations

Varieties of CSPs and Constraints

Varieties of CSPs

= Dijscrete Variables
" Finite domains

= Size d means O(d") complete assignments

= E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)

* |nfinite domains (integers, strings, etc.)
= E.g., job scheduling, variables are start/end times for each job
= Linear constraints solvable, nonlinear undecidable

= Continuous variables
= E.g., start/end times for Hubble Telescope observations

= Linear constraints solvable in polynomial time by LP methods
(see ¢s170 for a bit of this theory)

Varieties of Constraints

= Varieties of Constraints

= Unary constraints involve a single variable (equivalent to
reducing domains), e.g.:

SA #* green
= Binary constraints involve pairs of variables, e.g.:

SA £ WA

= Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

= Preferences (soft constraints):
= E.g., redis better than green
= Often representable by a cost for each variable assignment
= @Gives constrained optimization problems
= (WEe'll ignore these until we get to Bayes’ nets)

Real-World CSPs

Assignment problems: e.g., who teaches what class

Timetabling problems: e.g., which class is offered when and where?
Hardware configuration
Transportation scheduling

Factory scheduling

Circuit layout

Fault diagnosis

... lots more!

Many real-world problems involve real-valued variables...

Solving CSPs

Standard Search Formulation

= Standard search formulation of CSPs

= States defined by the values assigned
so far (partial assignments)
" |nitial state: the empty assignment, {}

= Successor function: assign a value to an
unassigned variable

= Goal test: the current assignment is
complete and satisfies all constraints

= We'll start with the straightforward,
naive approach, then improve it

Search Methods

= \What would BFS do?

= \What would DFS do?

= What problems does naive search have? @

[Demo: coloring -- dfs]

Video of Demo Coloring -- DFS

Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time
= Variable assignments are commutative, so fix ordering
= |.e., [WA=redthen NT = green] same as [NT = green then WA = red]
= Only need to consider assignments to a single variable at each step

ldea 2: Check constraints as you go
= |.e. consider only values which do not conflict previous assignments
= Might have to do some computation to check the constraints
= “Incremental goal test”

Depth-first search with these two improvements
is called backtracking search (not the best name)

Can solve n-queens for n = 25

Backtracking Example

5

A

- ¢ ¢

/\

N 4@
— %

Backtracking Search

function BACKTRACKING-SEARCH(c¢sp) returns solution /failure
return RECURSIVE-BACKTRACKING({ }, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
if assignment is complete then return assignment
var«— SELECT-UNASSIGNED- VARIABLE(VARIABLES[csp|, assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp| then
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING(assignment, c¢sp)
if result # failure then return result
remove {var = value} from assignment
return failure

= Backtracking = DFS + variable-ordering + fail-on-violation
* What are the choice points?

[Demo: coloring -- backtracking]

Video of Demo Coloring — Backtracking

Improving Backtracking

General-purpose ideas give huge gains in speed
= .. butit’sall still NP-hard

Filtering: Can we detect inevitable failure early?

Ordering:
= Which variable should be assigned next? (MRV)
= |n what order should its values be tried? (LCV)

Structure: Can we exploit the problem structure?

Arc Consistency and Beyond

Forward Checking

= |dea: Keep track of remaining legal values for unassigned
variables (using immediate constraints)

= |dea: Terminate when any variable has no legal values

SN

—

WA NT Q NSW \"4 SA

WA

NT
SA

T

AW e
\%

Forward
Checking

10 &0 ¢ l\\
Jp%ew

Mﬁx

I

I*. o/ ‘,
O

Are We Done?

Constraint Propagation

WA

NT
SA

Q
-

AW e
\%

Forward checking propagates information from assigned to adjacent unassigned variaoies, put aoesn t
detect more distant failures:

SSE =

S5—o-

|

WA NT Q

NSW

¥

\"

(mMrEErEErEErEErEmr e]

NT and SA cannot both be blue!
Why didn’t we detect this yet?

Constraint propagation repeatedly enforces constraints (locally)

Arc Consistency of an Entire CSP

= Asimple form of propagation makes sure all arcs are simultaneously consistent:

WA NT Q NSW \'

SA

NT
Q
‘ 7 T s =] [m[meE] =]
NSW
Rhvat

— ~—

" Arc consistency detects failure earlier than forward checking
= |mportant: If X loses a value, neighbors of X need to be rechecked!
= Must rerun after each assignment!

Remember: Delete
from the tail!

I® o‘o
(N
s.r;a‘

‘b’l
o ovd‘\\
£ o. .

‘ " b

T

. . m

+ . m.

0 i

Constraint
Propagation

Are We Done?

[| Auton's Graphics I .

DO O A AD 0 AO0Ha0
Q"\Q""Q"a\&%%@ya'& | I
& ‘9{‘2‘@ sg,@ CEOHQ A @

AR AR AN AN " % ’.‘%9
2 S— ; i &‘&,& 2
5 &'ﬂw . . g‘g AR
& &g’a‘& g S & ©
&'@“&&‘@... . o B
e
% &‘&,& o %‘ﬁ'&‘%
& & &' % @'&‘& . %.ﬁ a‘g
B (XIN
a«%& G a#a,‘e‘,‘@
R B a'm aﬁ&;@
S & O
A A Ml Rl

= After enforcing arc
consistency:

= Can have one solution left

" Can have multiple solutions left

" Can have no solutions left (and
not know it)

= Arc consistency still runs
inside a backtracking search!

Limitations of Arc Consistency

What went
wrong here?

Ordering: Minimum Remaining Values

= Minimum remaining values (MRV):

" Choose the variable with the fewest legal values

SSE =

= Why min rather than max?

= Also called “most constrained variable”

= “Fail-fast” ordering

Ordering: Degree Heuristic

= Tie-breaker among MRV variables

= Degree heuristic:
®" Choose the variable participating in the most constraints on remaining variables

CS S — S —

]\]_\ ~— ~—

= Why most rather than fewest constraints?

Ordering: Least Constraining Value

= Given a choice of variable:
= Choose the least constraining value

= The one that rules out the fewest values in the
remaining variables

= Note that it may take some computation to
determine this!

VS

o

<<

= Why least rather than most?

= Combining these heuristics makes 1000
gueens feasible

Auton's Graphics

0ol

m..,Qs’n.«ﬁv Aﬁ\@ &

PP Haiaie IR
Yo o N ¢
to)

>
Q&ﬂ&bﬁ e SHES .
LI Fe P
@0&’&’9\ QB 6 %&A& €
T 1T IXIX) o
SR B B B Gl a0 B 6
e elel oo b o Wea ' &
NI IXE Lo 1IN
TR E O R T ap o0
&'&’a % a@ e e @‘m D €

>

[XT S XKINT \ |
&lﬁ\&d&’& ¥ a'a. R R ek
S o 60 B B e o o

Propagation with
Ordering

K-Consistency

K-Consistency

" |ncreasing degrees of consistency

= 1-Consistency (Node Consistency): Each single node’s domain has a Q
value which meets that node’s unary constraints

= 2-Consistency (Arc Consistency): For each pair of nodes, any Q =) O
consistent assignment to one can be extended to the other

= K-Consistency: For each k nodes, any consistent assignment to k-1 @
can be extended to the k" node.

= Higher k more expensive to compute

= (You need to know the k=2 case: arc consistency) m

Strong K-Consistency

Strong k-consistency: also k-1, k-2, ... 1 consistent
Claim: strong n-consistency means we can solve without backtracking!

Why?
= Choose any assignment to any variable
= Choose a new variable

= By 2-consistency, there is a choice consistent with the first
= Choose a new variable

= By 3-consistency, there is a choice consistent with the first 2

Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called
path consistency)

Structure

Problem Structure

Extreme case: independent subproblems
= Example: Tasmania and mainland do not interact

Independent subproblems are identifiable as
connected components of constraint graph

Suppose a graph of n variables can be broken into
subproblems of only c variables:

= Worst-case solution cost is O((n/c)(d®)), linear in n

= Eg,n=80,d=2,c=20

= 280 =4 billion years at 10 million nodes/sec

= (4)(2%°) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

= Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d?) time
= Compare to general CSPs, where worst-case time is O(d")

= This property also applies to probabilistic reasoning (earlier): an example of the
relation between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

= Algorithm for tree-structured CSPs:
= Order: Choose a root variable, order variables so that parents precede children

2

= Remove backward: Fori=n: 2, apply Removelnconsistent(Parent(X),X)

Tree-Structured CSPs

= Algorithm for tree-structured CSPs:
= Order: Choose a root variable, order variables so that parents precede children

;GG

= Remove backward: Fori=n: 2, apply Removelnconsistent(Parent(X;),X;)
= Assign forward: Fori=1:n, assign X; consistently with Parent(X)

= Runtime: O(n d?) (why?)

Tree-Structured CSPs

Claim 1: After backward pass, all root-to-leaf arcs are consistent

Proof: Each X—Y was made consistent at one point and Y’s domain could not have
been reduced thereafter (because Y’s children were processed before Y)

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
Proof: Induction on position

Why doesn’t this algorithm work with cycles in the constraint graph?

Note: same basic idea as variable elimination in Bayes’ nets

Improving Structure

Nearly Tree-Structured CSPs

@‘:""@

O
@

Nearly Tree-Structured CSPs

@‘@"’ &
g &
O ®

= Conditioning: instantiate a variable, prune its neighbors' domains

= Cutset conditioning: instantiate (in all ways) a set of variables such that
the remaining constraint graph is a tree

= Cutset size c gives runtime O((d¢) (n-c) d?), very fast for small c

Cutset Conditioning

N

Choose a cutset

/

4

[J

Instantiate the cutset /
[(all possible ways) J - ‘W"e
[J
[J

o

9‘:‘9

&
O

l

g

Compute residual CSP
for each assignment

4_
4_

Solve the residual CSPs
(tree structured)

Cutset Quiz

" Find the smallest cutset for the graph below.

Tree Decomposition™

= |dea: create a tree-structured graph of mega-variables
= Each mega-variable encodes part of the original CSP
= Subproblems overlap to ensure consistent solutions @

sJeA paJeys | uo aa.by
sJeA paleys | uo saiby
sJen paleys | uo salby

{(WA=r,SA=g,NT=b), {(NT=r,SA=g,Q=b), Agree: (M1,M2)
(V\;A=b,SA=r,NT=g), (N;’=b,SA=g,Q=r), {((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)), ...}

Iterative Improvement

=

Iterative Algorithms for CSPs

" Local search methods typically work with “complete” states, i.e., all variables assigned

= To apply to CSPs:

= Take an assignment with unsatisfied constraints
= Qperators reassign variable values

= No fringe! Live on the edge.

0 00

= Algorithm: While not solved,

= Variable selection: randomly select any conflicted variable
= Value selection: min-conflicts heuristic:

= Choose a value that violates the fewest constraints

= |.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

= States: 4 queens in 4 columns (4% = 256 states)
= QOperators: move queen in column

= Goal test: no attacks

= Evaluation: c(n) = number of attacks

[Demo: n-queens — iterative improvement (L5D1)]
[Demo: coloring — iterative improvement]

Video of Demo lterative Improvement — n Queens

Video of Demo lterative Improvement — Coloring

Performance of Min-Conflicts

= Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n =10,000,000)!

= The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

o number of constraints
number of variables

CPU
time

|
critical
ratio

Summary: CSPs

" CSPs are a special kind of search problem:
= States are partial assignments
" Goal test defined by constrai

= Basic solution: backtracking sea

= Speed-ups:
= Ordering
= Filtering
= Structure

" |terative min-conflicts is often effective in practice

