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The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, p* Value / policy iteration

Evaluate a fixed policy p Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, p* VI/PI on approx. MDP

Evaluate a fixed policy p PE on approx. MDP

Goal Technique

Compute V*, Q*, p* Q-learning

Evaluate a fixed policy p Value Learning



Active Reinforcement Learning



Model-Free Learning

o act according to current optimal (based on Q-Values)
o but also explore…



Model-Based Learning
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act according to current optimal
also explore!  



Exploration vs. Exploitation



Video of Demo Q-learning – Manual Exploration – Bridge 
Grid 



How to Explore?

o Several schemes for forcing exploration
o Simplest: random actions (e-greedy)

oEvery time step, flip a coin
oWith (small) probability e, act randomly
oWith (large) probability 1-e, act on current policy

o Problems with random actions?
oYou do eventually explore the space, but keep 

thrashing around once learning is done
oOne solution: lower e over time
oAnother solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)] 
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]



Video of Demo Q-learning – Epsilon-Greedy – Crawler 



Exploration Functions

o When to explore?
o Random actions: explore a fixed amount
o Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

o Exploration function
o Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

o Note: this propagates the “bonus” back to states that lead to unknown states 
as well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]



Video of Demo Q-learning – Exploration Function –
Crawler 



Regret

o Even if you learn the optimal 
policy, you still make mistakes 
along the way!

o Regret is a measure of your total 
mistake cost: the difference 
between your (expected) rewards, 
including youthful suboptimality, 
and optimal (expected) rewards

o Minimizing regret goes beyond 
learning to be optimal – it requires 
optimally learning to be optimal

o Example: random exploration and 
exploration functions both end up 
optimal, but random exploration 
has higher regret



Approximate Q-Learning



Generalizing Across States

o Basic Q-Learning keeps a table of all q-values

o In realistic situations, we cannot possibly learn 
about every single state!
o Too many states to visit them all in training
o Too many states to hold the q-tables in memory

o Instead, we want to generalize:
o Learn about some small number of training states 

from experience
o Generalize that experience to new, similar situations
o This is a fundamental idea in machine learning, and 

we’ll see it over and over again

[demo – RL pacman]



Video of Demo Q-Learning Pacman – Tiny – Watch 
All



Video of Demo Q-Learning Pacman – Tiny – Silent 
Train



Video of Demo Q-Learning Pacman – Tricky – Watch 
All



Example: Pacman

[Demo: Q-learning – pacman – tiny – watch all (L11D5)]
[Demo: Q-learning – pacman – tiny – silent train (L11D6)] 
[Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Let’s say we discover 
through experience 

that this state is bad:

In naïve q-learning, 
we know nothing 
about this state:

Or even this one!



Feature-Based Representations

o Solution: describe a state using a vector of 
features (properties)
o Features are functions from states to real numbers 

(often 0/1) that capture important properties of the 
state

o Example features:
o Distance to closest ghost
o Distance to closest dot
o Number of ghosts
o 1 / (dist to dot)2

o Is Pacman in a tunnel? (0/1)
o …… etc.
o Is it the exact state on this slide?

o Can also describe a q-state (s, a) with features (e.g. 
action moves closer to food)



Linear Value Functions

o Using a feature representation, we can write a q function (or value function) 
for any state using a few weights:

o Advantage: our experience is summed up in a few powerful numbers

o Disadvantage: states may share features but actually be very different in 
value!



Approximate Q-Learning

o Q-learning with linear Q-functions:

o Intuitive interpretation:
o Adjust weights of active features
o E.g., if something unexpectedly bad happens, blame the features that were 

on: disprefer all states with that state’s features

o Formal justification: online least squares

Exact Q’s

Approximate Q’s



Example: Q-Pacman

[Demo: approximate Q-
learning pacman (L11D10)]



Video of Demo Approximate Q-Learning --
Pacman



Q-Learning and Least Squares
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Optimization: Least Squares
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Minimizing Error

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”
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New in Model-Free RL
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Policy Search



Policy Search

o Problem: often the feature-based policies that work well (win games, maximize 
utilities) aren’t the ones that approximate V / Q best
o E.g. your value functions from project 2 were probably horrible estimates of future rewards, 

but they still produced good decisions
o Q-learning’s priority: get Q-values close (modeling)
o Action selection priority: get ordering of Q-values right (prediction)
o We’ll see this distinction between modeling and prediction again later in the course

o Solution: learn policies that maximize rewards, not the values that predict them

o Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill 
climbing on feature weights



Policy Search

o Simplest policy search:
o Start with an initial linear value function or Q-function
o Nudge each feature weight up and down and see if your policy is better than 

before

o Problems:
o How do we tell the policy got better?
o Need to run many sample episodes!
o If there are a lot of features, this can be impractical

o Better methods exploit lookahead structure, sample wisely, change 
multiple parameters…



The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, p* Value / policy iteration

Evaluate a fixed policy p Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, p* VI/PI on approx. MDP

Evaluate a fixed policy p PE on approx. MDP

Goal Technique

Compute V*, Q*, p* Q-learning

Evaluate a fixed policy p Value Learning

*use features
to generalize

*use features
to generalize



Discussion: Model-Based vs Model-Free RL
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Conclusion

o We’re done with Part I: Search and 
Planning!

o We’ve seen how AI methods can solve 
problems in:
o Search
o Constraint Satisfaction Problems
o Games
o Markov Decision Problems
o Reinforcement Learning

o Next up: Part II: Uncertainty and 
Learning!


