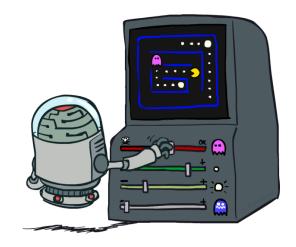
CSE 473: Introduction to Artificial Intelligence

Hanna Hajishirzi Reinforcement Learning II

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettelmoyer



The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V^* , Q^* , π^* Value / policy iteration

Evaluate a fixed policy π Policy evaluation

Unknown MDP: Model-Based

Goal Technique

Compute V*, Q*, π * VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

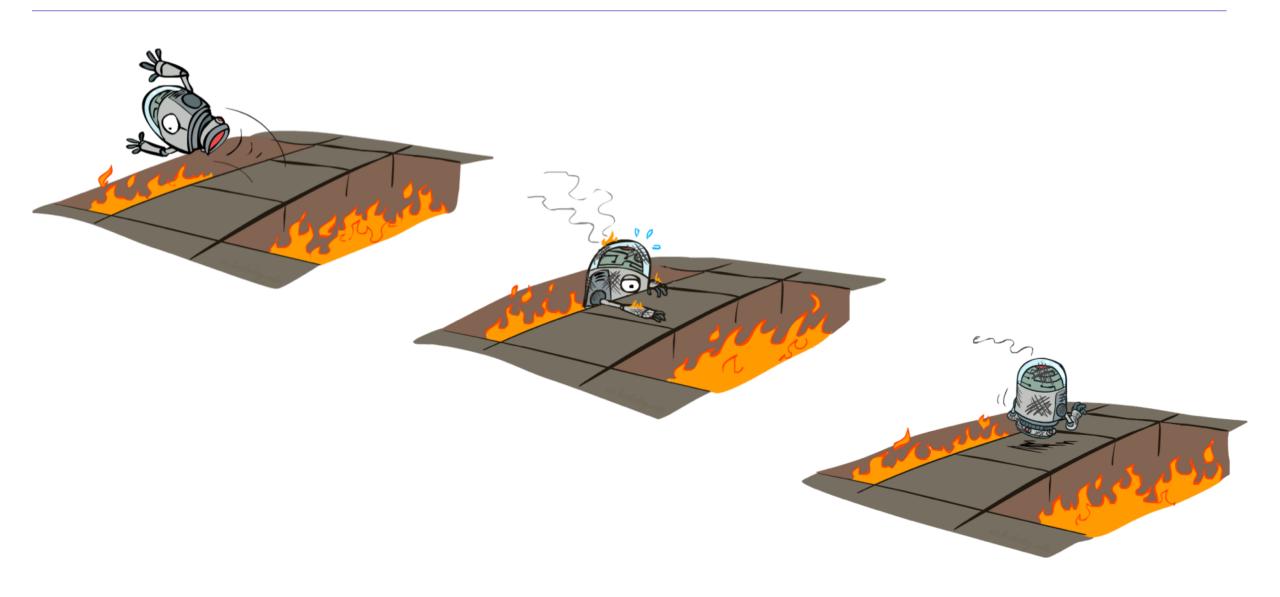
Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, π * Q-learning

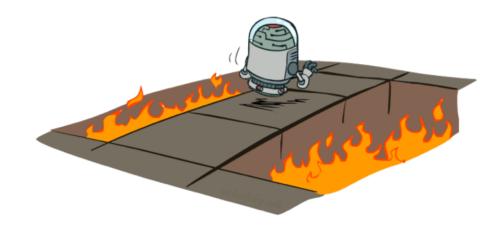
Evaluate a fixed policy π Value Learning

Active Reinforcement Learning



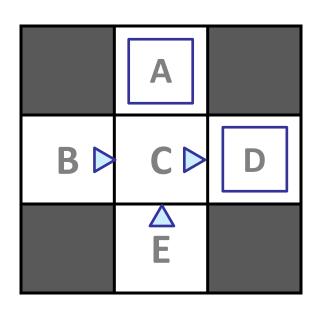
Model-Free Learning

- act according to current optimal (based on Q-Values)
- but also explore...



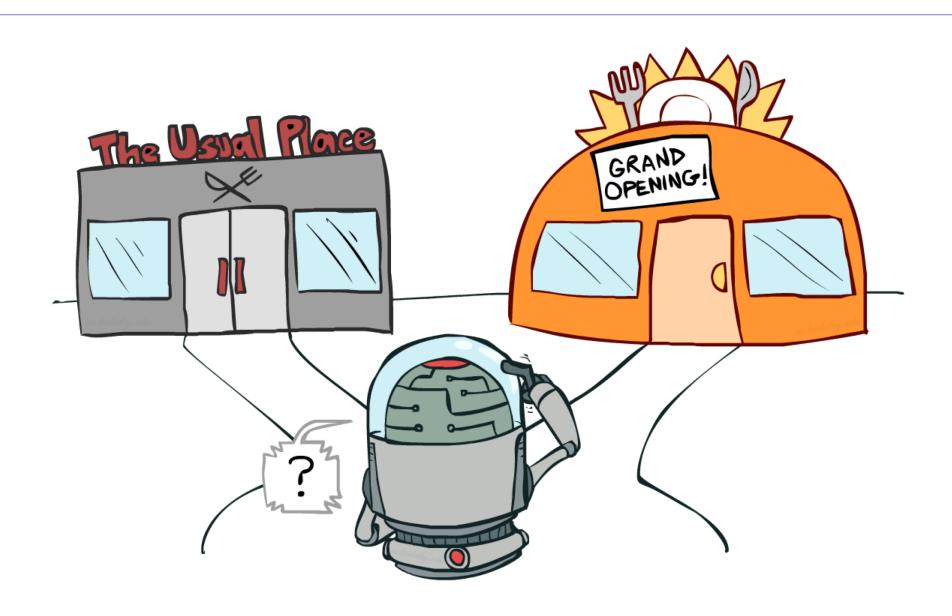
Model-Based Learning

Input Policy π

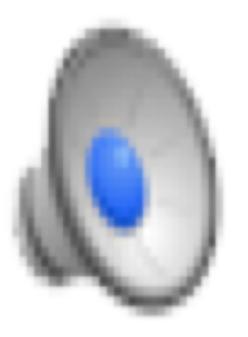


act according to current optimal also explore!

Exploration vs. Exploitation



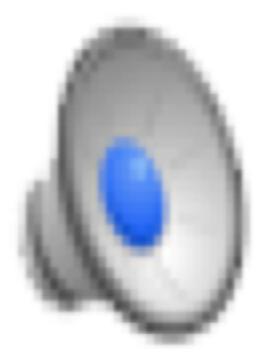
Video of Demo Q-learning – Manual Exploration – Bridge Grid



How to Explore?

- Several schemes for forcing exploration
 - ο Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - ο With (small) probability ε, act randomly
 - ο With (large) probability 1-ε, act on current policy
 - o Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - o One solution: lower ε over time
 - Another solution: exploration functions

Video of Demo Q-learning – Epsilon-Greedy – Crawler



Exploration Functions

• When to explore?

- o Random actions: explore a fixed amount
- o Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

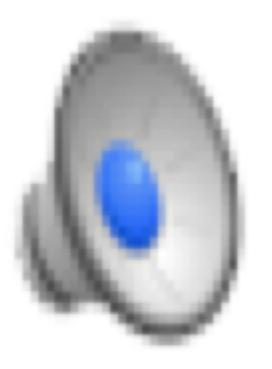
Exploration function

o Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u, n) = u + k/n

Regular Q-Update:
$$Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

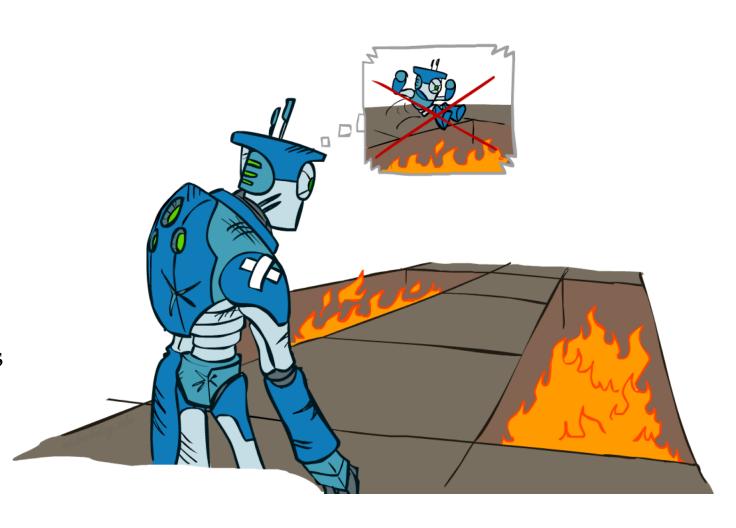
Modified Q-Update:
$$Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))$$

Video of Demo Q-learning – Exploration Function – Crawler

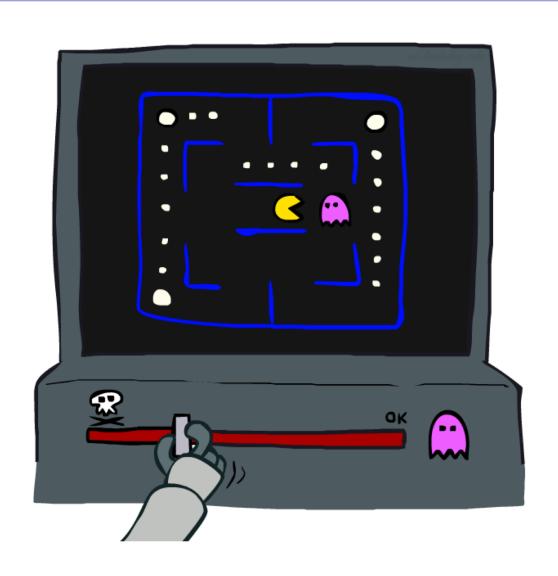


Regret

- Even if you learn the optimal policy, you still make mistakes along the way!
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret

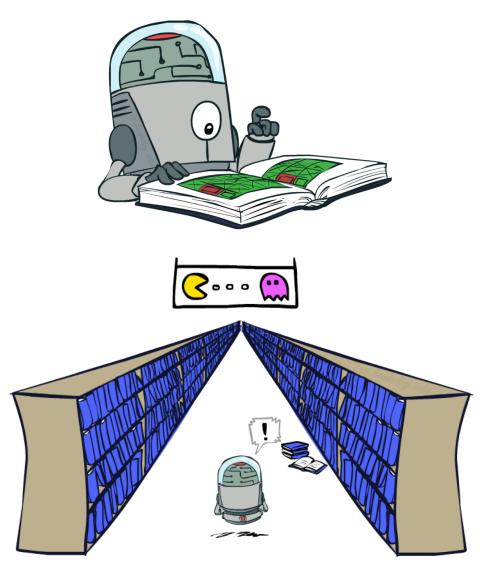


Approximate Q-Learning

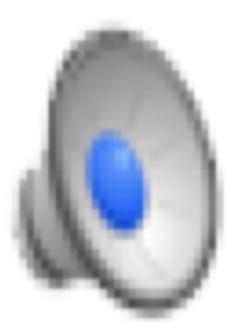


Generalizing Across States

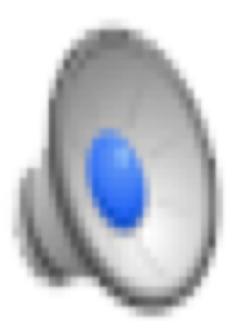
- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - o Generalize that experience to new, similar situations
 - o This is a fundamental idea in machine learning, and we'll see it over and over again



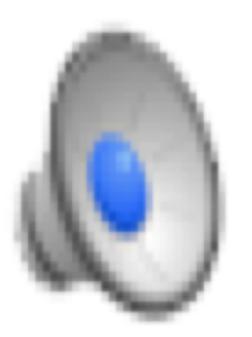
Video of Demo Q-Learning Pacman – Tiny – Watch All



Video of Demo Q-Learning Pacman – Tiny – Silent Train



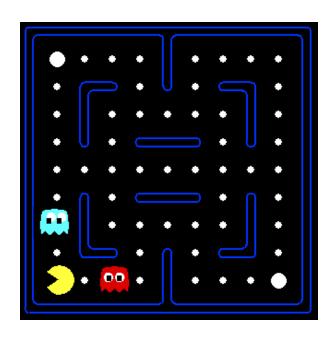
Video of Demo Q-Learning Pacman – Tricky – Watch All

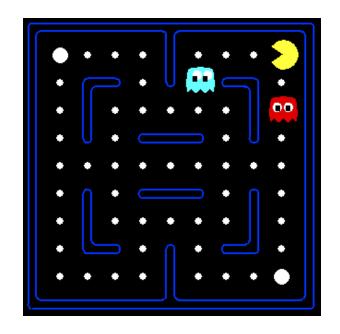


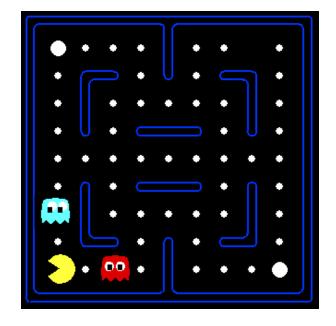
Example: Pacman

Let's say we discover through experience that this state is bad: In naïve q-learning, we know nothing about this state:

Or even this one!







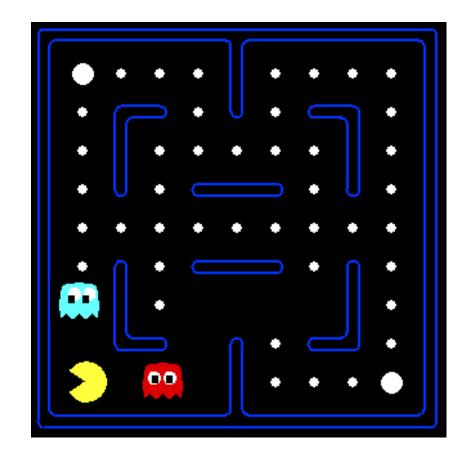
[Demo: Q-learning – pacman – tiny – watch all (L11D5)]

[Demo: Q-learning – pacman – tiny – silent train (L11D6)]

[Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - o Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - o Example features:
 - Distance to closest ghost
 - o Distance to closest dot
 - Number of ghosts
 - \circ 1 / (dist to dot)²
 - \circ Is Pacman in a tunnel? (0/1)
 - o etc.
 - o Is it the exact state on this slide?
 - o Can also describe a q-state (s, a) with features (e.g. action moves closer to food)



Linear Value Functions

 Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$
$$Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \dots + w_n f_n(s, a)$$

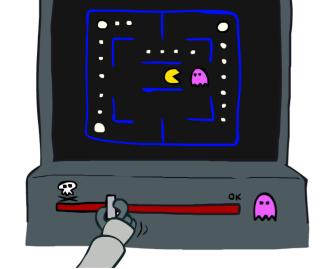
- o Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Q-learning with linear Q-functions:

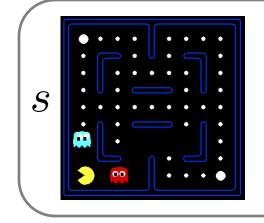
$$\begin{aligned} & \text{transition } = (s, a, r, s') \\ & \text{difference} = \left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a) \\ & Q(s, a) \leftarrow Q(s, a) + \alpha \text{ [difference]} \end{aligned} \quad & \text{Exact Q's} \\ & w_i \leftarrow w_i + \alpha \text{ [difference]} f_i(s, a) \quad & \text{Approximate Q's} \end{aligned}$$



- Intuitive interpretation:
 - Adjust weights of active features
 - o E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares

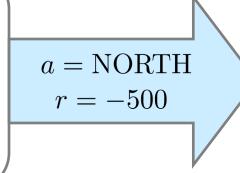
Example: Q-Pacman

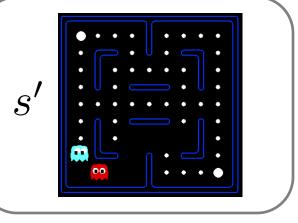
$$Q(s, a) = 4.0 f_{DOT}(s, a) - 1.0 f_{GST}(s, a)$$



 $f_{DOT}(s, NORTH) = 0.5$

 $f_{GST}(s, NORTH) = 1.0$





$$Q(s',\cdot)=0$$

$$Q(s, NORTH) = +1$$

 $r + \gamma \max_{a'} Q(s', a') = -500 + 0$

difference
$$= -501$$

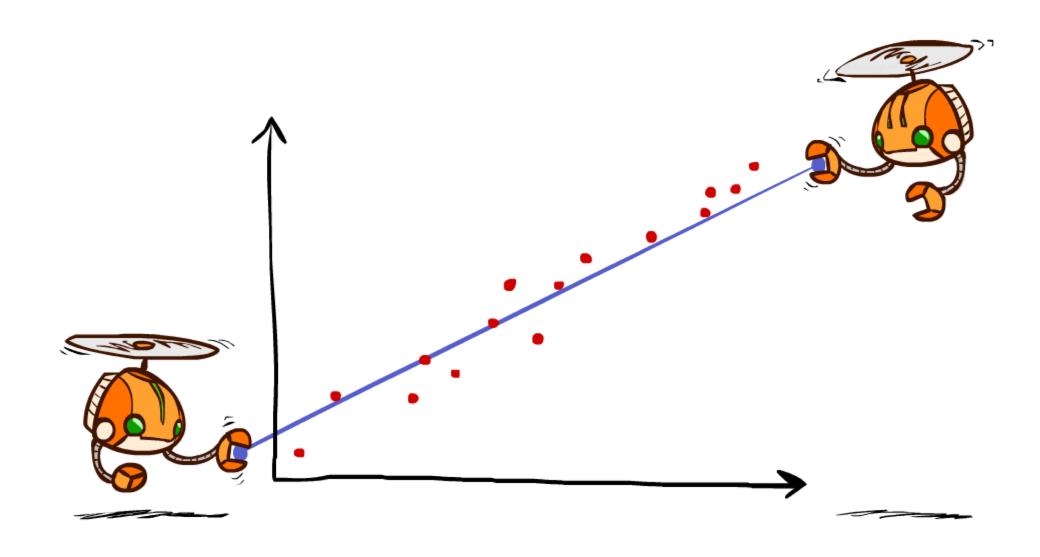
$$w_{DOT} \leftarrow 4.0 + \alpha [-501] 0.5$$

 $w_{GST} \leftarrow -1.0 + \alpha [-501] 1.0$

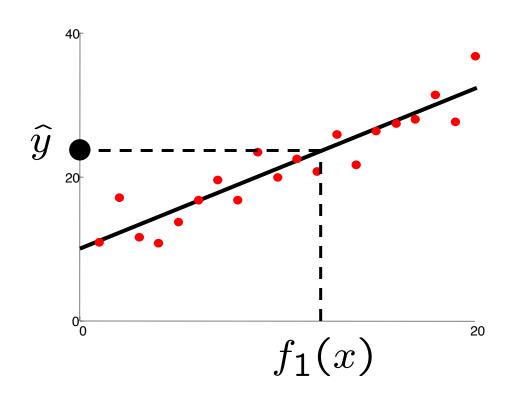
$$Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$$

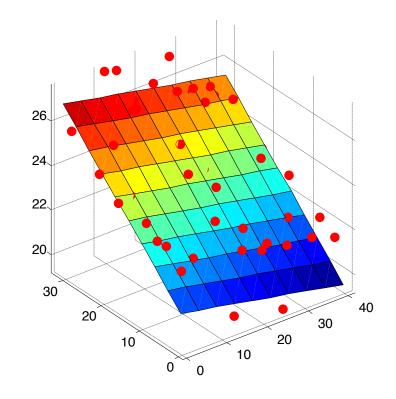
Video of Demo Approximate Q-Learning --Pacman

Q-Learning and Least Squares



Linear Approximation: Regression





Prediction:

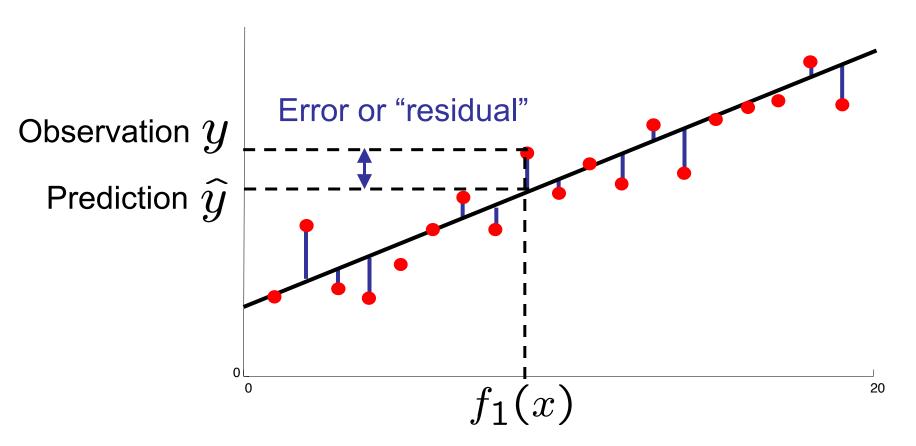
$$\hat{y} = w_0 + w_1 f_1(x)$$

Prediction:

$$\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$$

Optimization: Least Squares

total error =
$$\sum_{i} (y_i - \hat{y_i})^2 = \sum_{i} \left(y_i - \sum_{k} w_k f_k(x_i)\right)^2$$



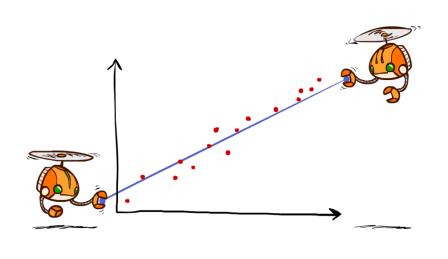
Minimizing Error

Imagine we had only one point x, with features f(x), target value y, and weights w:

$$\operatorname{error}(w) = \frac{1}{2} \left(y - \sum_{k} w_{k} f_{k}(x) \right)^{2}$$

$$\frac{\partial \operatorname{error}(w)}{\partial w_{m}} = -\left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

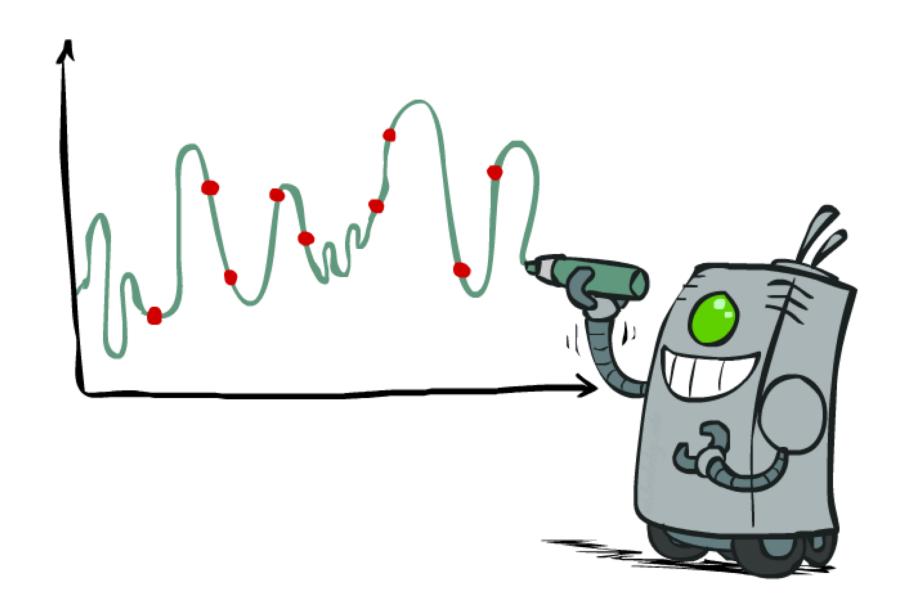
$$w_{m} \leftarrow w_{m} + \alpha \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$



Approximate q update explained:

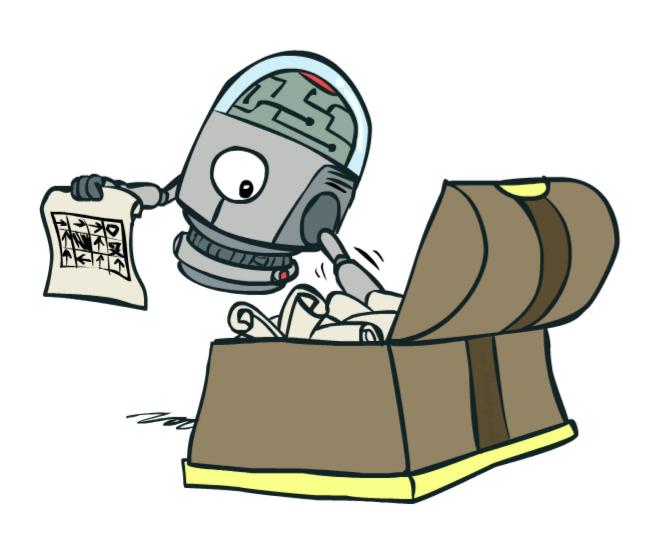
$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$
 "target" "prediction"

Overfitting: Why Limiting Capacity Can Help



New in Model-Free RL

Policy Search



Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren't the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - o Q-learning's priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
 - o We'll see this distinction between modeling and prediction again later in the course
- Solution: learn policies that maximize rewards, not the values that predict them
- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights

Policy Search

Simplest policy search:

- o Start with an initial linear value function or Q-function
- Nudge each feature weight up and down and see if your policy is better than before

o Problems:

- o How do we tell the policy got better?
- o Need to run many sample episodes!
- o If there are a lot of features, this can be impractical
- Better methods exploit lookahead structure, sample wisely, change multiple parameters...

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, π * Value / policy iteration

Evaluate a fixed policy π Policy evaluation

Unknown MDP: Model-Based

*use features
to generalize Technique

Compute V*, Q*, π * VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Goal

Unknown MDP: Model-Free

*use features

Goal to generalize Technique

Compute V^* , Q^* , π^* Q-learning

Evaluate a fixed policy π Value Learning

Discussion: Model-Based vs Model-Free RL

Conclusion

- We're done with Part I: Search and Planning!
- We've seen how AI methods can solve problems in:
 - o Search
 - o Constraint Satisfaction Problems
 - o Games
 - o Markov Decision Problems
 - Reinforcement Learning
- Next up: Part II: Uncertainty and Learning!

