
CSE 473: Introduction to
Artificial Intelligence

Hanna Hajishirzi
Reinforcement Learning II

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettelmoyer

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, p* Value / policy iteration

Evaluate a fixed policy p Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, p* VI/PI on approx. MDP

Evaluate a fixed policy p PE on approx. MDP

Goal Technique

Compute V*, Q*, p* Q-learning

Evaluate a fixed policy p Value Learning

Active Reinforcement Learning

Model-Free Learning

o act according to current optimal (based on Q-Values)
o but also explore…

Model-Based Learning

Input Policy p

A

B C D

E

act according to current optimal
also explore!

Exploration vs. Exploitation

Video of Demo Q-learning – Manual Exploration – Bridge
Grid

How to Explore?

o Several schemes for forcing exploration
o Simplest: random actions (e-greedy)

oEvery time step, flip a coin
oWith (small) probability e, act randomly
oWith (large) probability 1-e, act on current policy

o Problems with random actions?
oYou do eventually explore the space, but keep

thrashing around once learning is done
oOne solution: lower e over time
oAnother solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)]
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]

Video of Demo Q-learning – Epsilon-Greedy – Crawler

Exploration Functions

o When to explore?
o Random actions: explore a fixed amount
o Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

o Exploration function
o Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

o Note: this propagates the “bonus” back to states that lead to unknown states
as well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

Video of Demo Q-learning – Exploration Function –
Crawler

Regret

o Even if you learn the optimal
policy, you still make mistakes
along the way!

o Regret is a measure of your total
mistake cost: the difference
between your (expected) rewards,
including youthful suboptimality,
and optimal (expected) rewards

o Minimizing regret goes beyond
learning to be optimal – it requires
optimally learning to be optimal

o Example: random exploration and
exploration functions both end up
optimal, but random exploration
has higher regret

Approximate Q-Learning

Generalizing Across States

o Basic Q-Learning keeps a table of all q-values

o In realistic situations, we cannot possibly learn
about every single state!
o Too many states to visit them all in training
o Too many states to hold the q-tables in memory

o Instead, we want to generalize:
o Learn about some small number of training states

from experience
o Generalize that experience to new, similar situations
o This is a fundamental idea in machine learning, and

we’ll see it over and over again

[demo – RL pacman]

Video of Demo Q-Learning Pacman – Tiny – Watch
All

Video of Demo Q-Learning Pacman – Tiny – Silent
Train

Video of Demo Q-Learning Pacman – Tricky – Watch
All

Example: Pacman

[Demo: Q-learning – pacman – tiny – watch all (L11D5)]
[Demo: Q-learning – pacman – tiny – silent train (L11D6)]
[Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Let’s say we discover
through experience

that this state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

Feature-Based Representations

o Solution: describe a state using a vector of
features (properties)
o Features are functions from states to real numbers

(often 0/1) that capture important properties of the
state

o Example features:
o Distance to closest ghost
o Distance to closest dot
o Number of ghosts
o 1 / (dist to dot)2

o Is Pacman in a tunnel? (0/1)
o …… etc.
o Is it the exact state on this slide?

o Can also describe a q-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

o Using a feature representation, we can write a q function (or value function)
for any state using a few weights:

o Advantage: our experience is summed up in a few powerful numbers

o Disadvantage: states may share features but actually be very different in
value!

Approximate Q-Learning

o Q-learning with linear Q-functions:

o Intuitive interpretation:
o Adjust weights of active features
o E.g., if something unexpectedly bad happens, blame the features that were

on: disprefer all states with that state’s features

o Formal justification: online least squares

Exact Q’s

Approximate Q’s

Example: Q-Pacman

[Demo: approximate Q-
learning pacman (L11D10)]

Video of Demo Approximate Q-Learning --
Pacman

Q-Learning and Least Squares

0 20
0

20

40

0
10

20
30

40

0

10

20

30

20

22

24

26

Linear Approximation: Regression

Prediction: Prediction:

Optimization: Least Squares

0 20
0

Error or “residual”

Prediction

Observation

Minimizing Error

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting: Why Limiting Capacity Can Help

New in Model-Free RL

30

Policy Search

Policy Search

o Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best
o E.g. your value functions from project 2 were probably horrible estimates of future rewards,

but they still produced good decisions
o Q-learning’s priority: get Q-values close (modeling)
o Action selection priority: get ordering of Q-values right (prediction)
o We’ll see this distinction between modeling and prediction again later in the course

o Solution: learn policies that maximize rewards, not the values that predict them

o Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill
climbing on feature weights

Policy Search

o Simplest policy search:
o Start with an initial linear value function or Q-function
o Nudge each feature weight up and down and see if your policy is better than

before

o Problems:
o How do we tell the policy got better?
o Need to run many sample episodes!
o If there are a lot of features, this can be impractical

o Better methods exploit lookahead structure, sample wisely, change
multiple parameters…

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, p* Value / policy iteration

Evaluate a fixed policy p Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, p* VI/PI on approx. MDP

Evaluate a fixed policy p PE on approx. MDP

Goal Technique

Compute V*, Q*, p* Q-learning

Evaluate a fixed policy p Value Learning

*use features
to generalize

*use features
to generalize

Discussion: Model-Based vs Model-Free RL

35

Conclusion

o We’re done with Part I: Search and
Planning!

o We’ve seen how AI methods can solve
problems in:
o Search
o Constraint Satisfaction Problems
o Games
o Markov Decision Problems
o Reinforcement Learning

o Next up: Part II: Uncertainty and
Learning!

