
CSE 473: Introduction to
Artificial Intelligence

Hanna Hajishirzi
Reinforcement Learning II

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettelmoyer

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, p* Value / policy iteration

Evaluate a fixed policy p Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, p* VI/PI on approx. MDP

Evaluate a fixed policy p PE on approx. MDP

Goal Technique

Compute V*, Q*, p* Q-learning

Evaluate a fixed policy p Value Learning

Question? Model-Based Learning

Input Policy p

Assume: g = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1

C, east, D, -1

D, exit, x, +10

B, east, C, -1

C, east, D, -1

D, exit, x, +10

E, north, C, -1

C, east, A, -1

A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1

C, east, D, -1

D, exit, x, +10

T(s,a,s’).

T(B, east, C) = 1.00

T(C, east, D) = 0.75

T(C, east, A) = 0.25

…

R(s,a,s’).

R(B, east, C) = -1

R(C, east, D) = -1

R(D, exit, x) = +10

…

Question: Are all episodes observed before learning the model?

Model Free: Direct Evaluation

Input Policy p

Assume: g = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

+8 +4 +10

-10

-2

Question: Are all episodes observed before learning the model?

Model Free: Temporal Difference Learning

Assume: g = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

Question: Are all episodes observed before learning the model?

Q-Learning

o Q-Learning: sample-based Q-value iteration

o Learn Q(s,a) values as you go
o Receive a sample (s,a,s’,R(s,a,s’))
o Consider your old estimate:
o Consider your new sample estimate:

o Incorporate the new estimate into a running average:

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]

no longer policy
evaluation!

Q-Learning Demo

Video of Demo Q-Learning -- Crawler

Q-Learning:
act according to current optimal (and also explore…)

o Full reinforcement learning: optimal policies
o You don’t know the transitions T(s,a,s’)
o You don’t know the rewards R(s,a,s’)
o You choose the actions now
o Goal: learn the optimal policy / values

o In this case:
o Learner makes choices!
o Fundamental tradeoff: exploration vs. exploitation
o This is NOT offline planning! You actually take actions in the world

and find out what happens…

Q-Learning Properties

o Amazing result: Q-learning converges to optimal policy --
even if you’re acting suboptimally!

o This is called off-policy learning

o Caveats:
o You have to explore enough
o You have to eventually make the learning rate

small enough
o … but not decrease it too quickly
o Basically, in the limit, it doesn’t matter how you select actions (!)

Exploration vs. Exploitation

Video of Demo Q-learning – Manual Exploration – Bridge
Grid

How to Explore?

o Several schemes for forcing exploration
o Simplest: random actions (e-greedy)

oEvery time step, flip a coin
oWith (small) probability e, act randomly
oWith (large) probability 1-e, act on current policy

o Problems with random actions?
oYou do eventually explore the space, but keep

thrashing around once learning is done
oOne solution: lower e over time
oAnother solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)]
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]

Video of Demo Q-learning – Epsilon-Greedy – Crawler

Exploration Functions

o When to explore?
o Random actions: explore a fixed amount
o Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

o Exploration function
o Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

o Note: this propagates the “bonus” back to states that lead to unknown states
as well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

Video of Demo Q-learning – Exploration Function –
Crawler

Regret

o Even if you learn the optimal
policy, you still make mistakes
along the way!

o Regret is a measure of your total
mistake cost: the difference
between your (expected) rewards,
including youthful suboptimality,
and optimal (expected) rewards

o Minimizing regret goes beyond
learning to be optimal – it requires
optimally learning to be optimal

o Example: random exploration and
exploration functions both end up
optimal, but random exploration
has higher regret

Announcements

o PS3 is due Nov. 15th.
o No class on Nov. 27th! Happy Thanksgiving.
o Although…. HW2 is due on Nov. 27th .

o You can only use three late day for HW2; we want to release
solutions.

o Minicontest: Due Dec. 2nd

Review

o Q-Learning o Exploration vs. Exploitation

o Regret

Approximate Q-Learning

Generalizing Across States

o Basic Q-Learning keeps a table of all q-values

o In realistic situations, we cannot possibly learn
about every single state!
o Too many states to visit them all in training
o Too many states to hold the q-tables in memory

o Instead, we want to generalize:
o Learn about some small number of training states

from experience
o Generalize that experience to new, similar situations
o This is a fundamental idea in machine learning, and

we’ll see it over and over again

[demo – RL pacman]

Video of Demo Q-Learning Pacman – Tiny – Watch
All

Video of Demo Q-Learning Pacman – Tiny – Silent
Train

Video of Demo Q-Learning Pacman – Tricky – Watch
All

Example: Pacman

[Demo: Q-learning – pacman – tiny – watch all (L11D5)]
[Demo: Q-learning – pacman – tiny – silent train (L11D6)]
[Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Let’s say we discover
through experience

that this state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

Feature-Based Representations

o Solution: describe a state using a vector of
features (properties)
o Features are functions from states to real numbers

(often 0/1) that capture important properties of the
state

o Example features:
o Distance to closest ghost
o Distance to closest dot
o Number of ghosts
o 1 / (dist to dot)2

o Is Pacman in a tunnel? (0/1)
o …… etc.
o Is it the exact state on this slide?

o Can also describe a q-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

o Using a feature representation, we can write a q function (or value function)
for any state using a few weights:

o Advantage: our experience is summed up in a few powerful numbers

o Disadvantage: states may share features but actually be very different in
value!

Approximate Q-Learning

o Q-learning with linear Q-functions:

o Intuitive interpretation:
o Adjust weights of active features
o E.g., if something unexpectedly bad happens, blame the features that were

on: disprefer all states with that state’s features

o Formal justification: online least squares

Exact Q’s

Approximate Q’s

Example: Q-Pacman

[Demo: approximate Q-
learning pacman (L11D10)]

Video of Demo Approximate Q-Learning --
Pacman

Q-Learning and Least Squares*

0 20
0

20

40

0
10

20
30

40

0

10

20

30

20

22

24

26

Linear Approximation: Regression*

Prediction: Prediction:

Optimization: Least Squares*

0 20
0

Error or “residual”

Prediction

Observation

Minimizing Error*

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting: Why Limiting Capacity Can Help*

Policy Search

Policy Search

o Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best
o E.g. your value functions from project 2 were probably horrible estimates of future rewards,

but they still produced good decisions
o Q-learning’s priority: get Q-values close (modeling)
o Action selection priority: get ordering of Q-values right (prediction)

o Solution: learn policies that maximize rewards, not the values that predict them

o Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill
climbing on feature weights

Policy Search

o Simplest policy search:
o Start with an initial linear value function or Q-function
o Nudge each feature weight up and down and see if your policy is better than

before

o Problems:
o How do we tell the policy got better?
o Need to run many sample episodes!
o If there are a lot of features, this can be impractical

o Better methods exploit lookahead structure, sample wisely, change
multiple parameters…

41

example from Pieter Abbeel

Example

o OpenAI Robotic Hand Solving Rubik Cube

42

https://www.youtube.com/watch?v=M1QD_3Kj7ms

https://www.youtube.com/watch?v=M1QD_3Kj7ms

New in Model-Free RL

Summary: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, p* Value / policy iteration

Evaluate a fixed policy p Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, p* VI/PI on approx. MDP

Evaluate a fixed policy p PE on approx. MDP

Goal Technique

Compute V*, Q*, p* Q-learning

Evaluate a fixed policy p Value Learning

*use features
to generalize

*use features
to generalize

Conclusion

o We’re done with Part I: Search and
Planning!

o We’ve seen how AI methods can solve
problems in:
o Search
o Games
o Markov Decision Problems
o Reinforcement Learning

o Next up: Part II: Uncertainty and
Learning!

