CSE 473: Introduction to
Artificial Intelligence

Hanna Hajishirzi
Reinforcement Learning Il

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettelmoyer

The Story So Far: MDPs and RL

Known MDP: Offline Solution

a2 I
Goal Technique
Compute V*, Q*, n* Value / policy iteration
Evaluate a fixed policy Policy evaluation
\ policy V4 /
Unknown MDP: Model-Based Unknown MDP: Model-Free
(" .) .
Goal Technique Goal Technique
Compute V*, Q*, n* VI/PI on approx. MDP Compute V*, Q*, n* Q-learning
- T
Evaluate a fixed policy PE on approx. MDP Evaluate a fixed policy Value Learning
\ J ___ — J

Question? Model-Based Learning

Question: Are all episodes observed before learning the model?

Input Policy &t

Observed Episodes (Training)

(N

Episo

S,_east,@
C, east

+
% D, exit, X, 10)

Assume:y=1

Episode 3

D, exit,
e

4 N
E, north, C, -1

C,east, D, -1

Episode 2
<

g B, east, C@l

7 N
% D, exit, X, 10)

C, east, D, -1

Episode 4

4 N
E, north, C, -1

, +10
YY)

% A, EXI_t, X, -1

C, east, A, -1

0
__/

Learned Model

(T(h,a,5)

T(C, east, D) =0.75

T(C, east, A) =0.25
_

[T Qg‘g@% 1.00 h

J

R(s,a,s")

(" R(B, east, C) = -1
R(C, east, D) =
R(D, exit, x) = +10

_

~

J

Model Free: Direct Evaluation

Question: Are all episodes observed before learning the model?

Input Policy =

Observed Episodes (Training)

Episode 1

-

Assume:y =1

_

C, east, D, -1
D, exit, x, +10

£ ¢
%

~N

J

Episode 3

-

_

E, north, C, -1
C,east, D, -1
D, exit, x, +10

~N

Episode 2

[®east, C -1 .)

C, east, D, -1 -
D, exit, x, +10

_ qLQé/

Episode 4

4 E, north, C, -1 8
C, east, A, -1

J

A, exit, x, -10

- J

Output Values

Model Free: Temporal Ditference Learning

Question: Are all episodes observed before learning the model?

States Observed Transitions
[B, east, C, -2] [C, east, D, -2]
 —

Assume:y=1,a=1/2 o~ S D ——
@(— (1- a)@@}%(s, m(s),s") + V()]

Q-Learning

o Q-Learning: sample-based Q-value iteration

Qit1(5,0) Y T(s,0,5) |R(s.a,5) +7 faxQi(s',a)

o Learn Q(s,a) va as you go NN
o Receive a sample (s,a,s’, >!4>!4! 1.00

o Consider your old estimatQ(s, a)

- - X ME
o Consider your new sample estimate:

sample = R(S, a,[s -|— ~ mgx Q(S/, CL,) ZSJIZIL%SJHI')Ohcy
L/\/'\/ - a — _— = !
o Incorporate the new estimate into a running average

Q(s,a) — (1 —a)Q(s,a) + (a) [sample]
— g N~ - LN

DD

Q-VALUES AFTER 1000 EPISODES

[Demo: Q-learning — gridworld (L10D2)]
[Demo: Q-learning — crawler (L10D3)]

Q-Learning Demo

CURRENT O-VALUES

Video of Demo Q-Learning -- Crawler

Q-Learning:
act according to current optimal (and also explore...)

o Full reinforcement learning: optimal policies
o You don’t know the transitions T(s,a,s’)
o You don’t know the rewards R(s,a,s’)
o You choose the actions now
o Goal: learn the optimal policy / values

o In this case:
o Learner makes choices!
o Fundamental tradeoff: exploration vs. exploitation

o This is NOT offline planning! You actually take actions in the world
and find out what happens...

Q-Learning Properties

o Amazing result: Q-learning converges to optimal policy --
even if you're acting suboptimally!

o This is called off-policy learning

o Caveats:
o You have to explore enough
o You have to eventually make the learning rate
small enough
o ... but not decrease it too quickly
o Basically, in the limit, it doesn’t matter how you select action:s

Exploration vs. Exploitation

b7

GRAND

T
O
=

Video of Demo Q-learning — Manual Exploration — Bridge
Grid

How to Explore?

o Several schemes for forcing exploration

o Simplest: random actions (e-greedy)
o Every time step, flip a coin

o With (small) probability @;z\ct randomly /|
o With (large) probability 1-g, act on current policy

o Problems with random actions?

o You do eventually explore the space, but keep

thrashing around once learning is done

o One solution: lower € over time e

o Another solution: exploration functions

[Demo: Q-learning — manual exploration — bridge grid (L11D2)]
[Demo: Q-learning — epsilon-greedy -- crawler (L11D3)]

Video of Demo Q-learning — Epsilon-Greedy — Crawler

Exploration Functions

o When to explore?
o Random actions: explore a fixed amount

o Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

o Exploration function

o Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g. f (u,@ =u|l+ k/n n=' <
(e VN (AR J</Z
Regular Q-Update: Q(s,a) <—a R(s,a,s") +ymaxQ(s,a)~ -2 < |7
N = \/-\/\/ a
Modified Q-Update: Q(s,a) <a R(s,a,s") + v max [(Q(sa), N(s',a)
_ o=
o Note: this propagates the “bonus” back to stites that Tead to unkmowh states

as well!

[Demo: exploration — Q-learning — crawler — exploration function (L11D4)]

Video of Demo Q-learning — Exploration Function —
Crawler

Regret

Even if you learn the optimal
policy, you still make mistakes
along the way!

Regret is a measure of your total
mistake cost: the difference
between your (expected) rewards,
including youthful suboptimality,
and optimal (expected) rewards
Minimizing regret goes beyond
learning to be optimal — it requires
optimally learning to be optimal

Example: random exploration and
exploration functions both end up
optimal, but random exploration

has higher regret

Announcements

o PS3 is due Nov. 15th.
o No class on Nov. 27%! Happy Thanksgiving.
o Although.... HW2 is due on Nov. 27t .

o You can only use three late day for HW2; we want to release
solutions.

o Minicontest: Due Dec. 2nd

Review

o Q-Learning o Exploration vs. Exploitation

e I
WIWI

PP

Approximate Q-Learning

Generalizing Across States

o Basic Q-Learning keeps a table of all g-values

o In realistic situations, we cannot possibly learn
about every single state!
o Too many states to visit them all in training
o Too many states to hold the g-tables in memory

o Instead, we want to generalize:

o Learn about some small number of training states
from experience

o Generalize that experience to new, similar situations

o This is a fundamental idea in machine learning, and
we'll see it over and over again

[demo — RL pacman]

Video of Demo Q-Learning Pacman — Tiny — Watch
All

Video of Demo Q-Learning Pacman — Tiny — Silent
Irain

Video of Demo Q-Learning Pacman — Tricky — Watch
All

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

[Demo: Q-learning — pacman — tiny — watch all (L11D5)]
[Demo: Q-learning — pacman — tiny — silent train (L11D6)]
[Demo: Q-learning — pacman — tricky — watch all (L11D7)]

Feature-Based Representations

o Solution: describe a state using a vector of
features (properties)

o Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state

o Example features:

o Distance to closest ghost

o Distance to closest dot

o Number of ghosts

o 1/ (dist to dot)?

o Is Pacman in a tunnel? (0/1)

o Is it the exact state on this slide?

o Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

o Using a feature representation, we can write a q function (or value function)
for any state using a few weights:

V(s) = wif1(s) + wzfz(S) t ot wafn(s)

O a) = w1 f1(s, a)Fwa (s, @)+ . Awnfn(s, a)

_

o Advantage: our experience is summed up in a few powerful numbers

o Disadvantage: states may share features but actually be very different in
value!

Approximate Q-Learning

Q(s,0) = wifa(s @) Fwafals,)+ Aunfals,a)
o Q-learning with linear Q-functions:

transition = (s,a,7,8") ()

\+zmaa,><Q(s’,a’)]\—Q(s,a) 7 4
Q(s,a) «— (;, a) + o [difference] Exact Qs

u); %\m[di%?e%]—ﬁ(; a) Approximate Q's

difference =

o Intuitive interpretation:
o Adjust weights of active features

o E.g., if something unexpectedly bad happens, blame the features that were
on: disprefer all states with that state’s features

o Formal justification: online least squares

Example: Q-Pacman

fDOT(S, NORTH) = 0.5
T — a = NORTH o/
r = —500
fasr(s, NORTH) = 1.0
), _

differenvce — —501 y YDOT 404 a[-501]0.5
— Y550 — | wasT ¢ —1.0 4+ a[-501]1.0)
/2 by

WJC Q@(S(/)LC)I' fL?igé[%(Ofg&?&g —@f GST (5 ; a) [Demo: approximate Q-

learning pacman (L11D10)]

Video of Demo Approximate Q-Learning --
Pacman

Q-Learning and Least Squares™

Linear Approximation: Regression™

40r

20

f1(x)
£P\rediction: Prediction:
Y = wo)+ wi f1(x) y; = wo + wi f1(x) + wo fo(x)
< T o & D

Optimization: Least Squares™

1

2
total error =Y (y; — §:)° =3 (yz- - Zwkfk:(%’)>
: k
(2

C

Observation Y

Prediction g

° f1(x) :

Minimizing Error®

Imagine we had only one point x, with features f(x), target value y, and weights w:
Q)error(w) = @(y — Z wkfk(ac)>

0 error(w)

y Z wkfk(ﬂ?) fm(x)

Q@ Y — Z%kak(fb‘) fm(x)

Approximate g update expla ne

Wi, <— Wm, -\-@ r -+~ max Q(s’, a/)J(— Q(s,a H fm(s,a)

“prediction”

Overfitting: Why Limiting Capacity Can Help*

Policy Search

Policy Search

o Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best

o E.g. your value functions from project 2 were probably horrible estimates of future rewards,
but they still produced good decisions

o Q-learning’s priority: get Q-values close (modeling)
o Action selection priority: get ordering of Q-values right (prediction)

o Solution: learn policies that maximize rewards, not the values that predict them

o Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill
climbing on feature weights

Policy Search

o Simplest policy search:
o Start with an initial linear value function or Q-function

o Nudge each feature weight up and down and see if your policy is better than
before

o Problems:
o How do we tell the policy got better?
o Need to run many sample episodes!
o If there are a lot of features, this can be impractical

o Better methods exploit lookahead structure, sample wisely, change
multiple parameters...

'te r(]tio N O example from Pieter Abbeel

Example

o OpenAl Robotic Hand Solving Rubik Cube

https://www.youtube.com/watch?v=M1QD 3Kj7/ms

42

https://www.youtube.com/watch?v=M1QD_3Kj7ms

New in Model-Free RL

Summary: MDPs and RL

Known MDP: Offline Solution

_

Goal
Compute V*, Q*, n*

Evaluate a fixed policy

Technique

Value / policy iteration

Policy evaluation

J

Unknown MDP: Model-Based
/ *use features \
Goal to generalize Technique

Compute V*, Q*, n*

Evaluate a fixed policy

-

VI/PIl on approx. MDP

PE on approx. MDP

)

Unknown MDP: Model-Free
f *use features \
Goal to generalize Technique
Compute V*, Q*, n* Q-learning
Evaluate a fixed policy Value Learning
\— J

Conclusion

o We’'re done with Part I: Search and
Planning!

o We’'ve seen how Al methods can solve
problems in:
o Search
o Games
o Markov Decision Problems
o Reinforcement Learning

o Next up: Part II: Uncertainty and
Learning!

