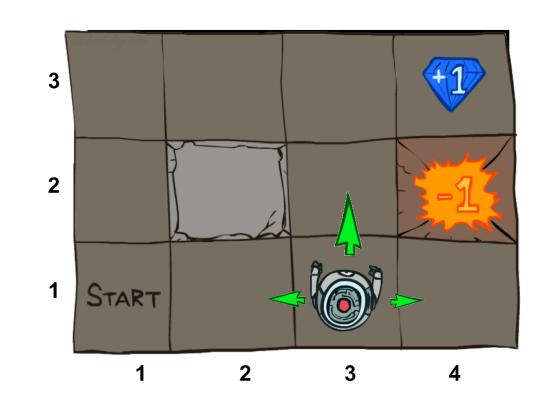
CSE 473: Introduction to Artificial Intelligence

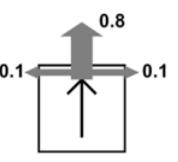
Hanna Hajishirzi Markov Decision Processes

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettelmoyer

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards





Recap: Defining MDPs

Markov decision processes:

- o Set of states S
- o Start state s₀
- o Set of actions A
- o Transitions P(s' | s,a) (or T(s,a,s'))
- o Rewards R(s,a,s') (and discount γ)

MDP quantities so far:

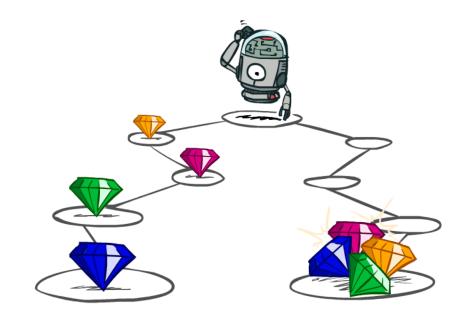
- Policy = Choice of action for each state
- O Utility = sum of (discounted) rewards

Utilities of Sequences

What preferences should an agent have over reward sequences?

More or less? [1, 2, 2] or [2, 3, 4]

Now or later? [0, 0, 1] or [1, 0, 0]



Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

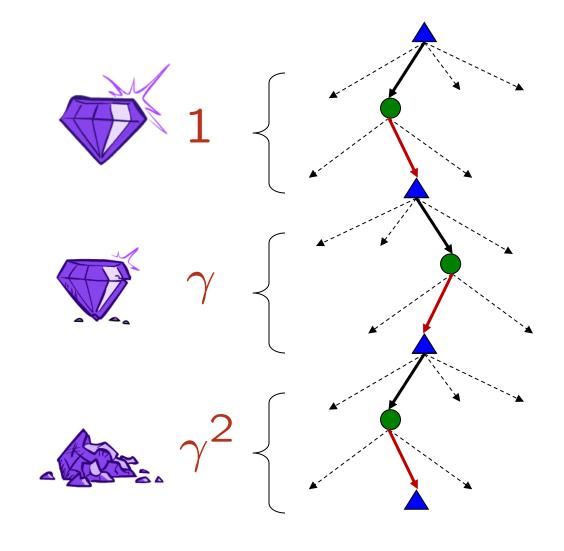
Discounting

o How to discount?

Each time we descend a level,
 we multiply in the discount once

o Why discount?

- Think of it as a gamma chance of ending the process at every step
- Also helps our algorithms converge
- Example: discount of 0.5
 - \circ U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - \circ U([1,2,3]) < U([3,2,1])



Quiz: Discounting

o Given:

- o Actions: East, West, and Exit (only available in exit states a, e)
- o Transitions: deterministic

• Quiz 1: For $\gamma = 1$, what is the optimal policy?

• Quiz 2: For $\gamma = 0.1$, what is the optimal policy?

Quiz 3: For which γ are West and East equally good when in state d?

$$1\gamma = 10 \gamma^3$$

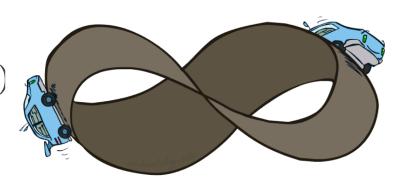
Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Policy π depends on time left

• Discounting: use
$$0 < \gamma < 1$$

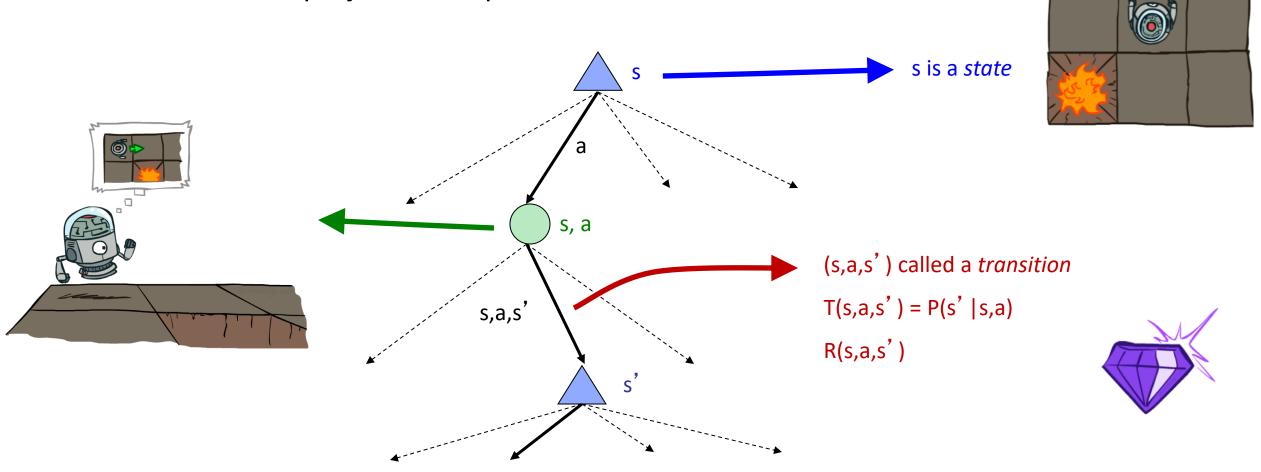
$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1 - \gamma)$$

- Smaller γ means smaller "horizon" shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)



MDP Search Trees

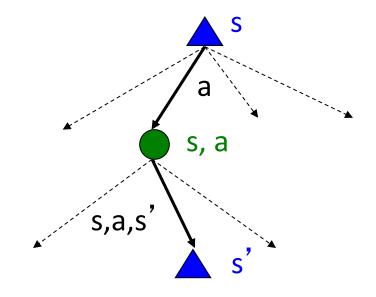
Each MDP state projects an expectimax-like search tree



Recap: Defining MDPs

Markov decision processes:

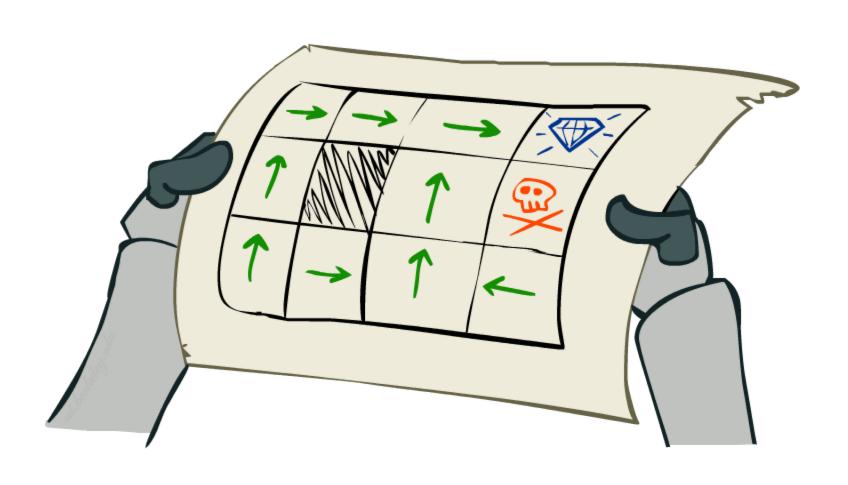
- o Set of states S
- o Start state s₀
- o Set of actions A
- o Transitions P(s' | s,a) (or T(s,a,s'))
- o Rewards R(s,a,s') (and discount γ)



MDP quantities so far:

- Policy = Choice of action for each state
- o Utility = sum of (discounted) rewards

Solving MDPs



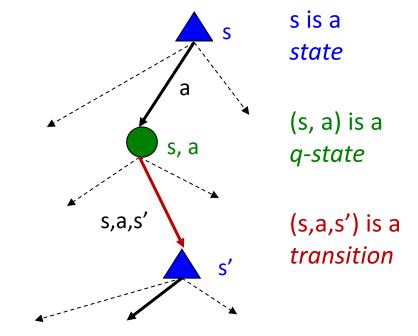
Optimal Quantities

The value (utility) of a state s:

V*(s) = expected utility starting in s and acting optimally

The value (utility) of a q-state (s,a):

Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

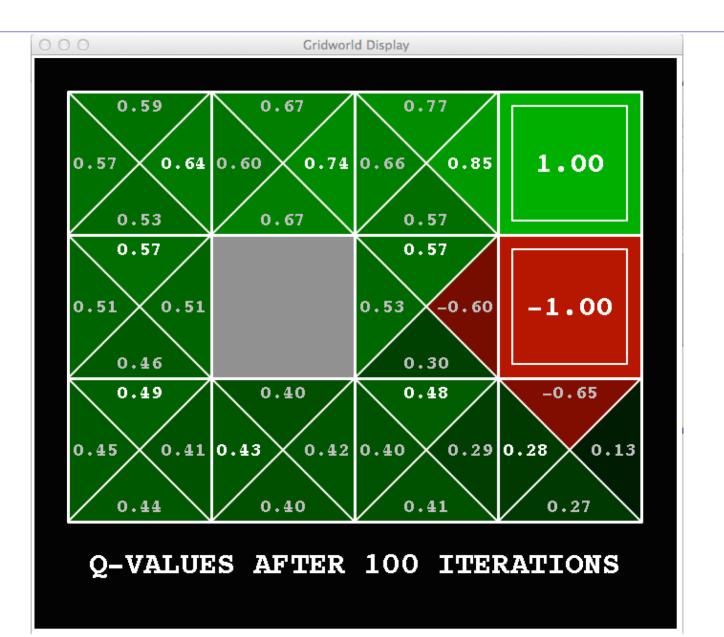


The optimal policy:

 $\pi^*(s)$ = optimal action from state s

Snapshot of Demo – Gridworld V Values

Snapshot of Demo – Gridworld Q Values



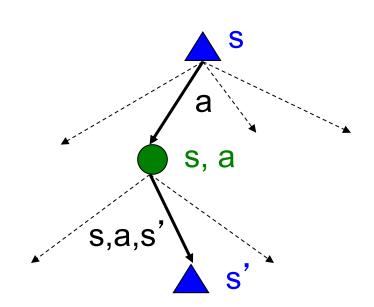
Values of States (Bellman Equations)

- o Fundamental operation: compute the (expectimax) value of a state
 - o Expected utility under optimal action
 - o Average sum of (discounted) rewards
 - o This is just what expectimax computed!
- Recursive definition of value:

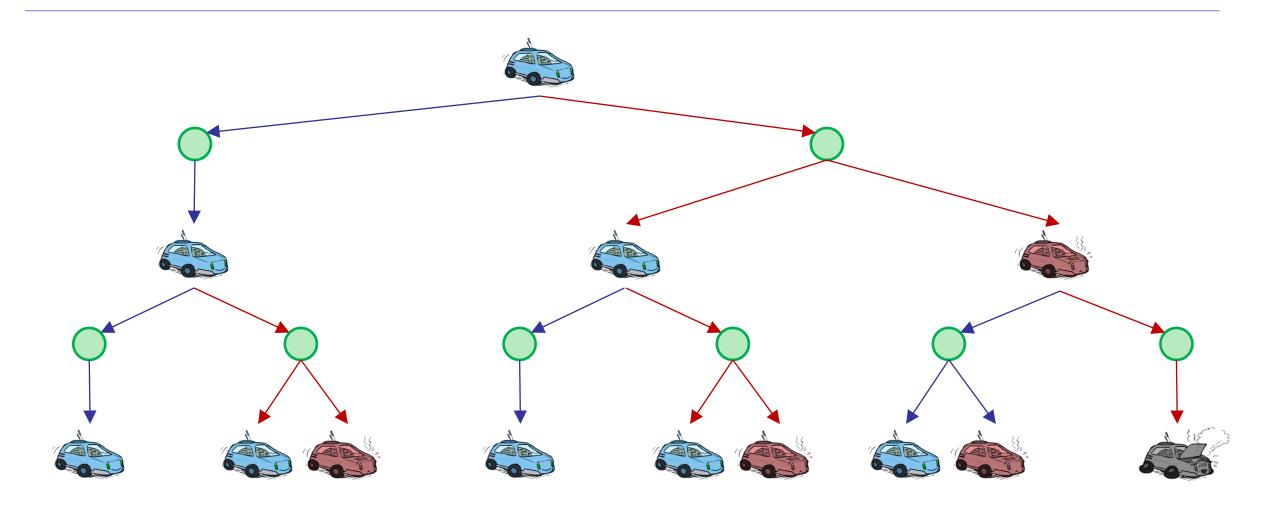
$$V^*(s) = \max_a Q^*(s, a)$$

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^{*}(s') \right]$$

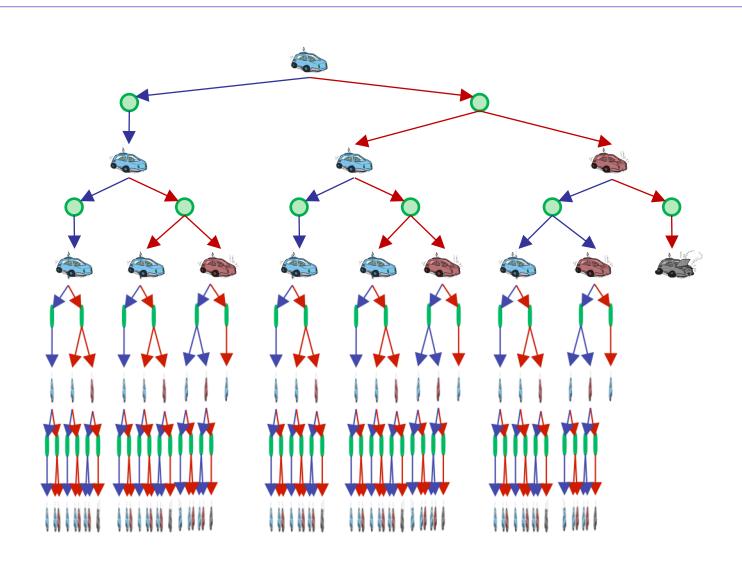
$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$



Racing Search Tree

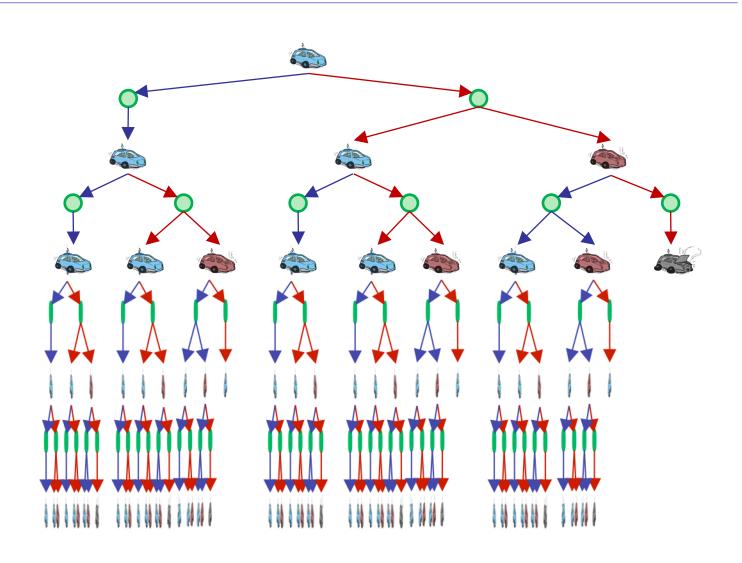


Racing Search Tree



Racing Search Tree

- We're doing way too much work with expectimax!
- Problem: States are repeated
 - o Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - o Note: deep parts of the tree eventually don't matter if $\gamma < 1$



Values of States

Recursive definition of value:

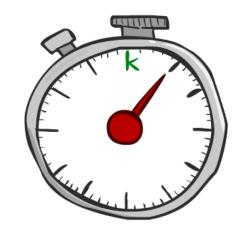
$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

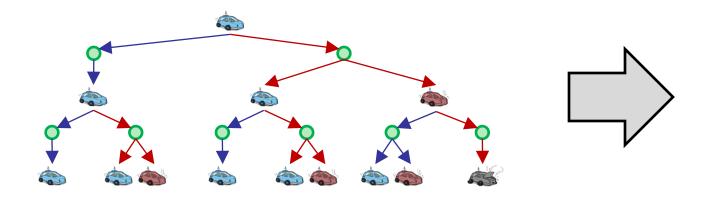
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$
s,a,s'

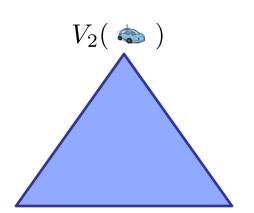
$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

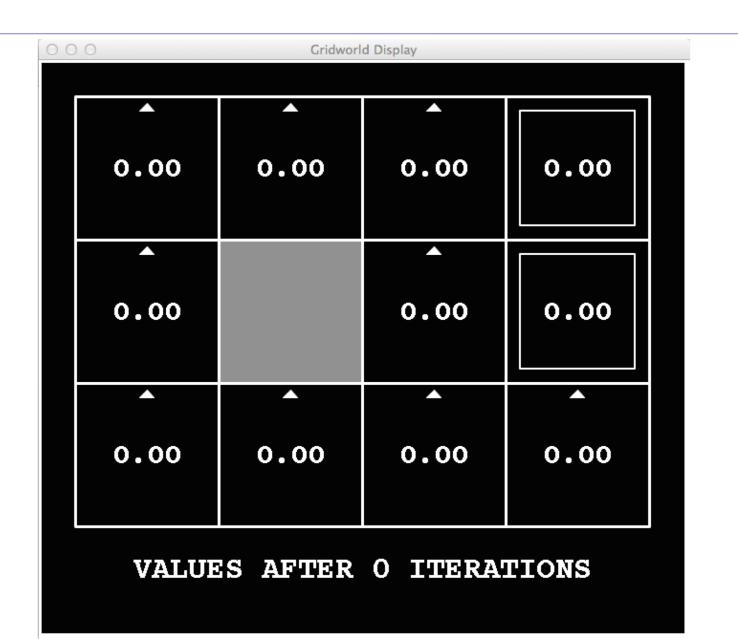
Time-Limited Values

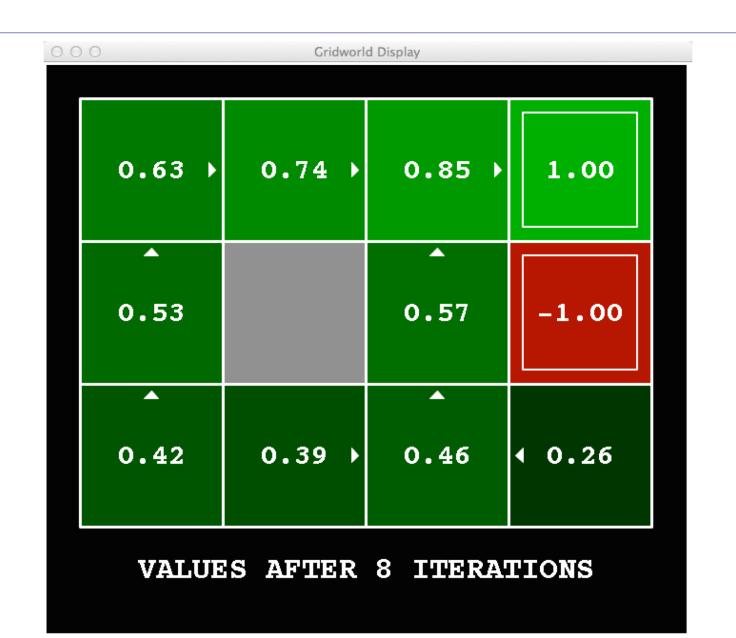
- Key idea: time-limited values
- Opening $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - o Equivalently, it's what a depth-k expectimax would give from s

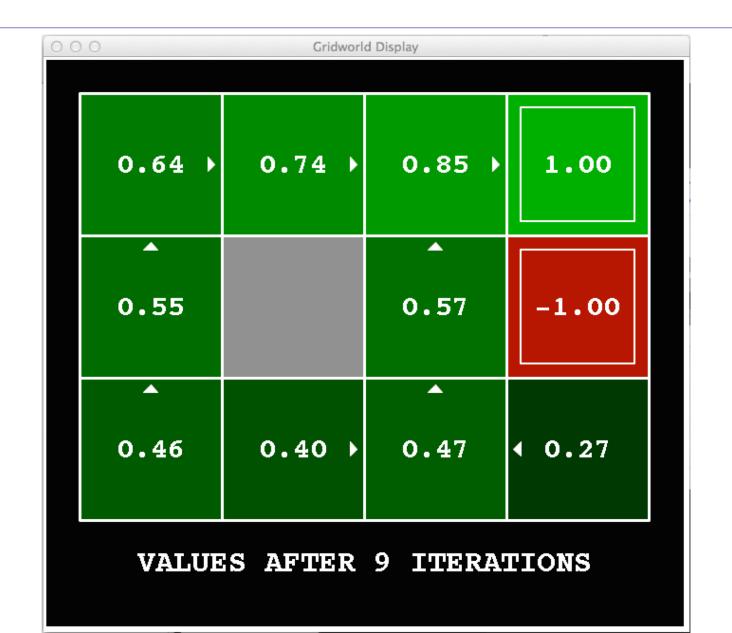






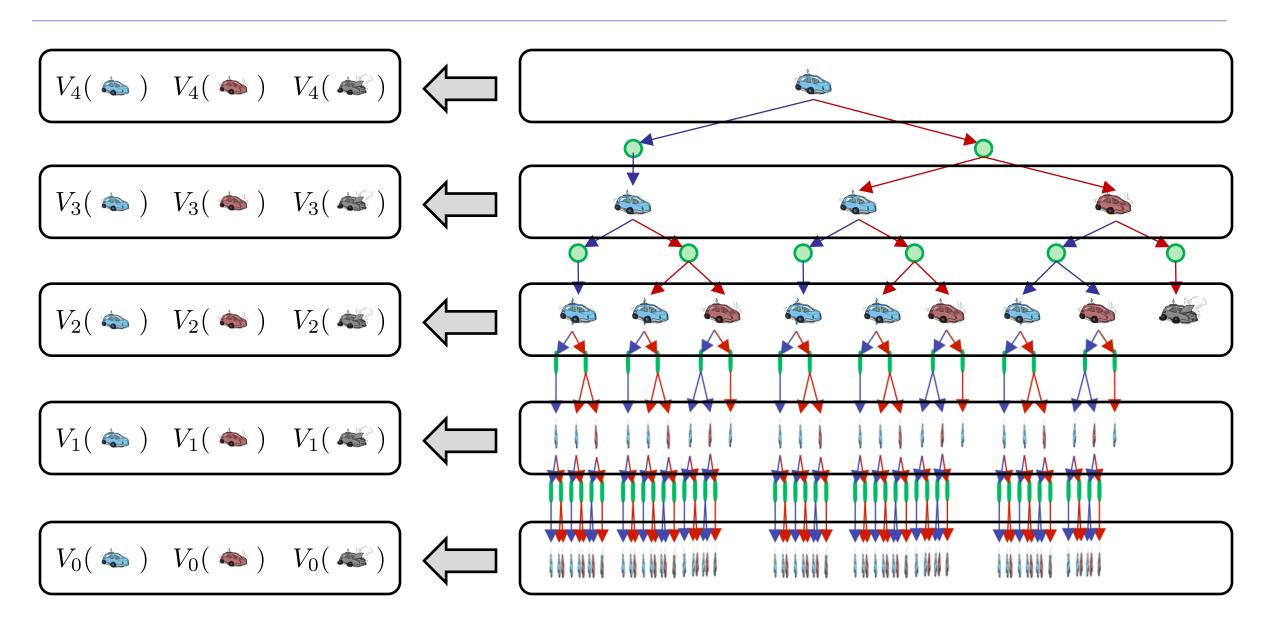




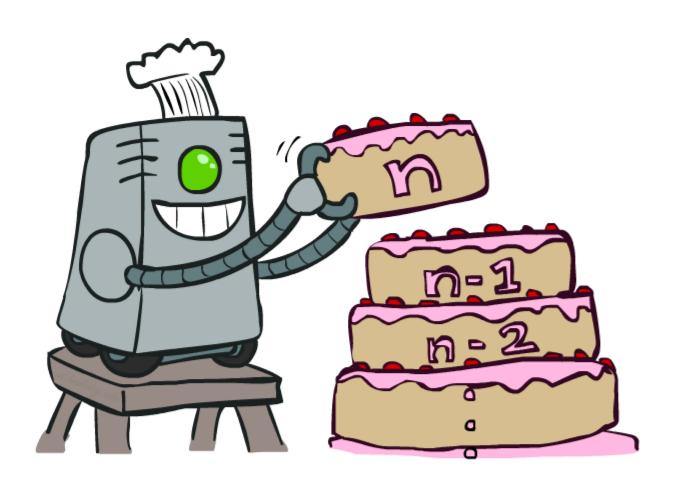


k = 100

Computing Time-Limited Values



Value Iteration

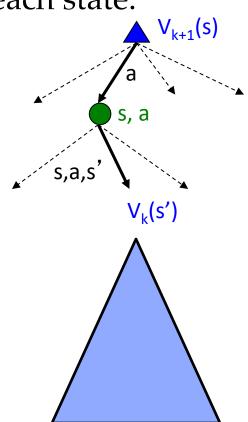


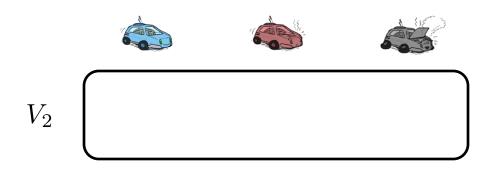
Value Iteration

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- \circ Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

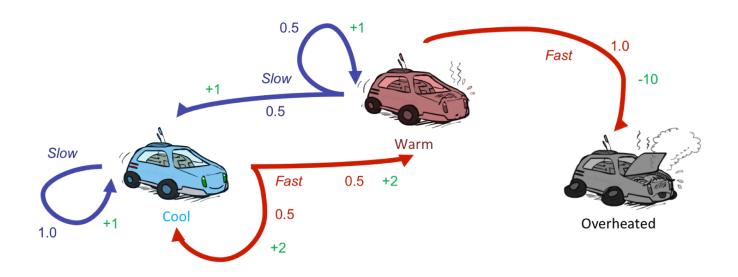
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - o Basic idea: approximations get refined towards optimal values
 - o Policy may converge long before values do



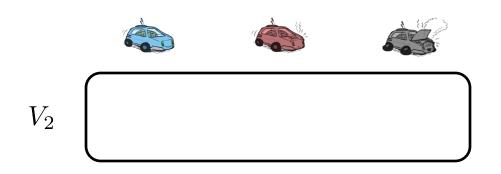


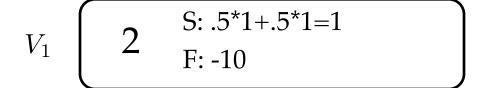
$$V_1$$
 S: 1
F: .5*2+.5*2=2

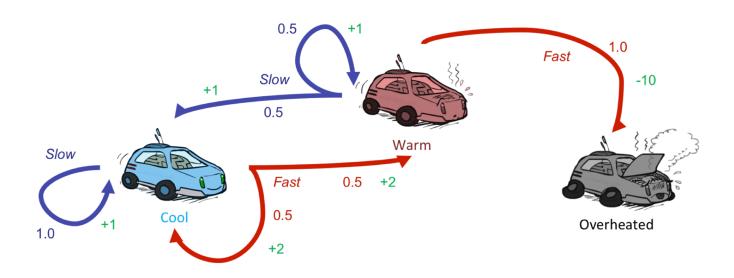


Assume no discount!

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

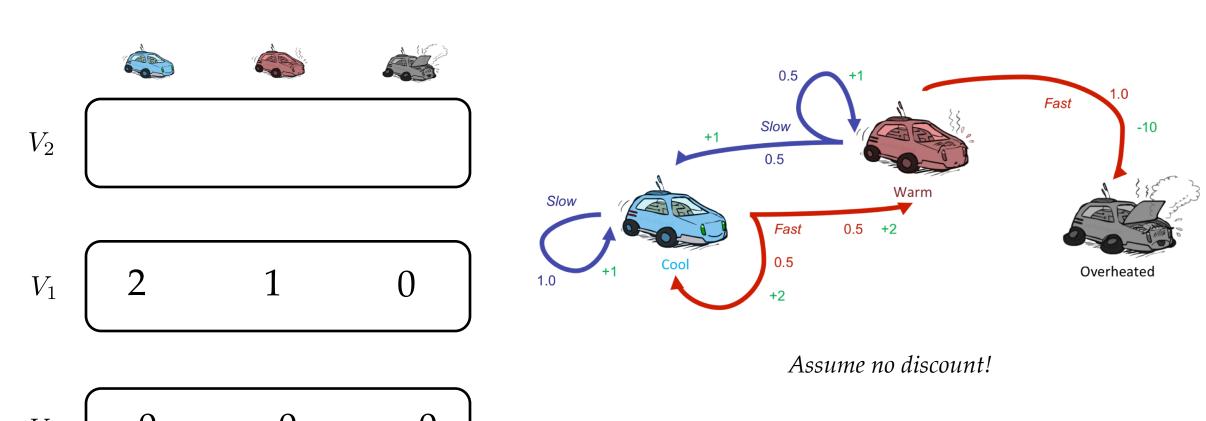




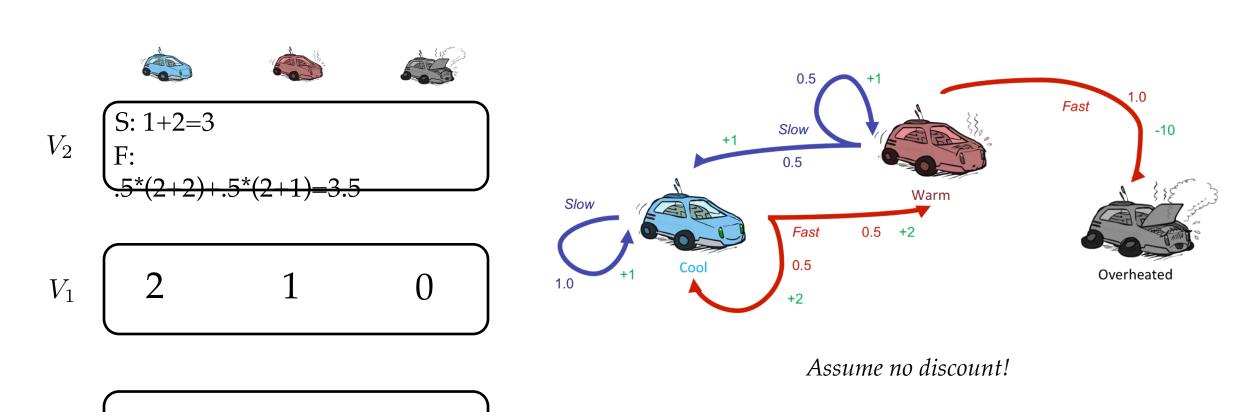


Assume no discount!

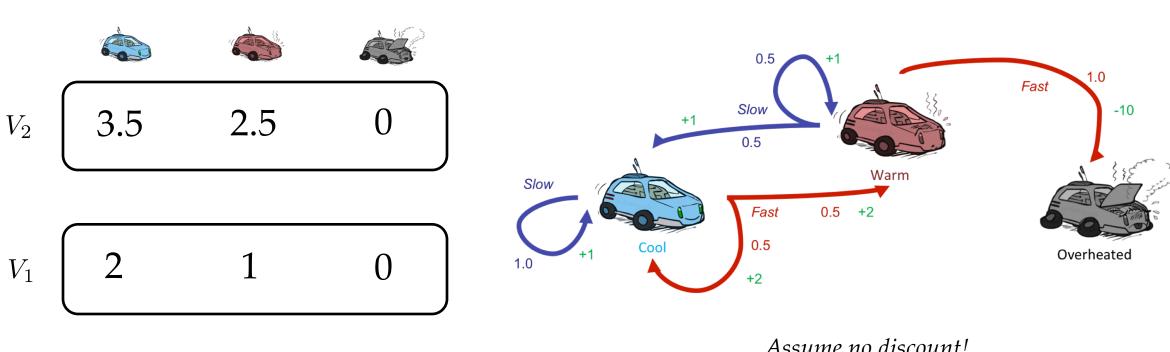
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$



$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$



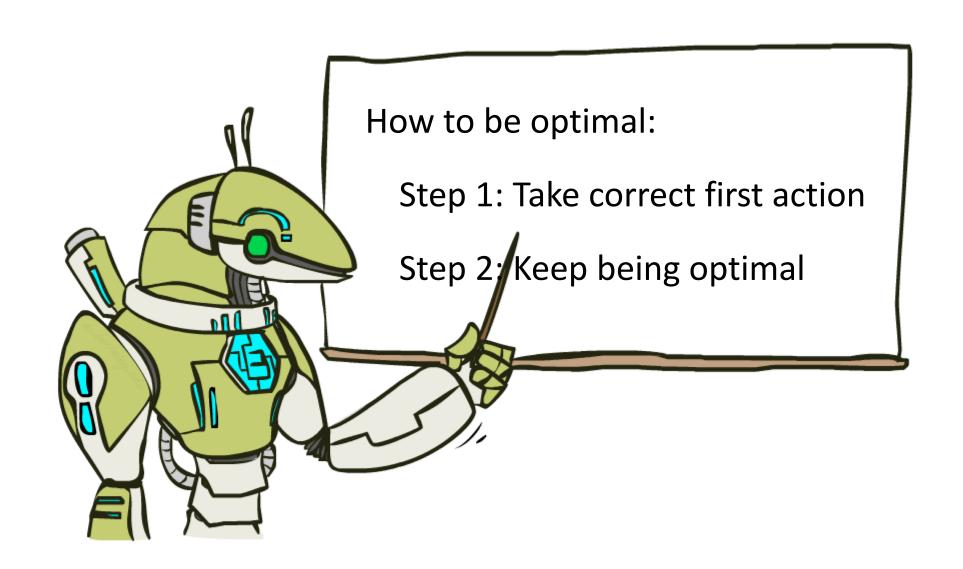
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$



Assume no discount!

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

The Bellman Equations



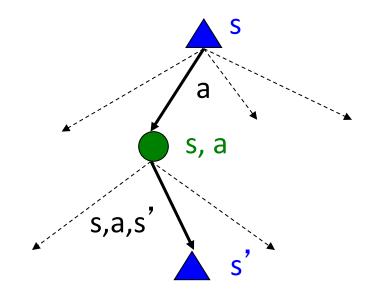
The Bellman Equations

 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$



 These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

Value Iteration

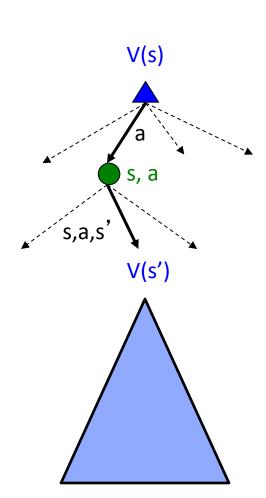
Bellman equations characterize the optimal values:

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

Value iteration computes them:

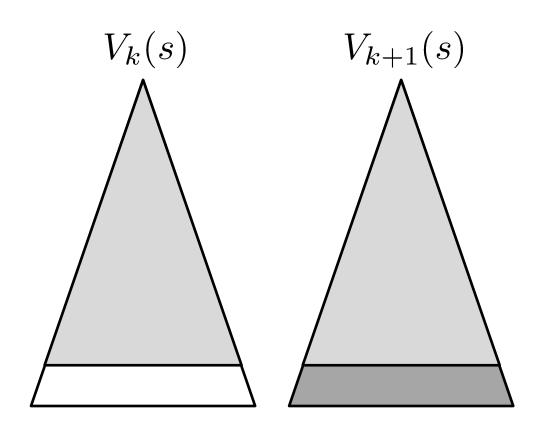
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

 \circ ... though the V_k vectors are also interpretable as time-limited values

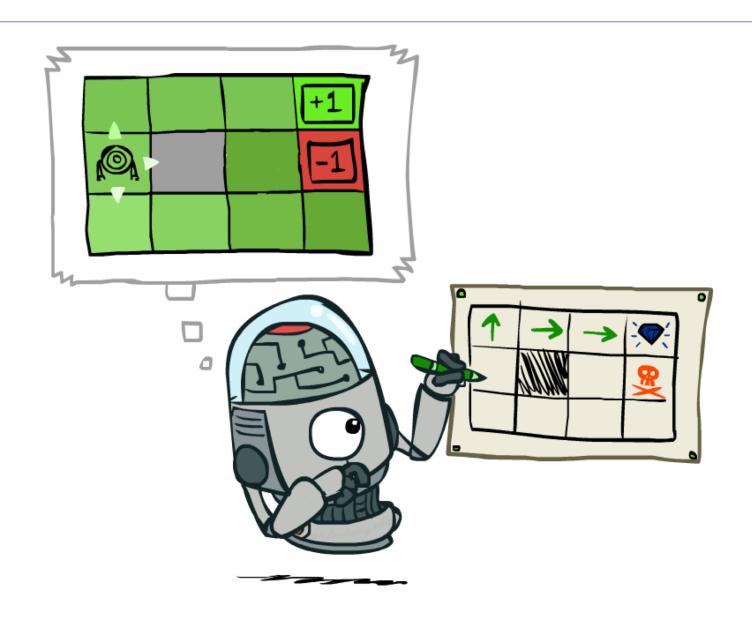


Convergence*

- \circ How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - O Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - \circ The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by γ^k that far out
 - \circ So V_k and V_{k+1} are at most γ^k max |R| different
 - So as k increases, the values converge

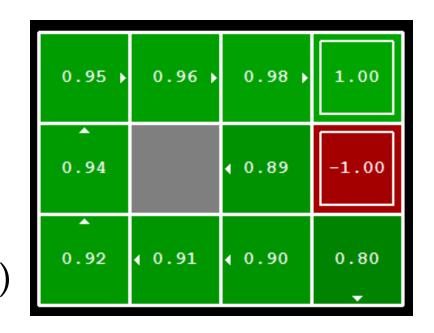


Policy Extraction



Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- O How should we act?
 - o It's not obvious!
- We need to do a mini-expectimax (one step)



$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

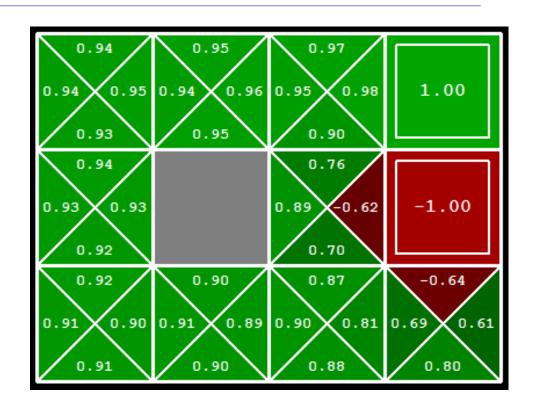
 This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

Let's imagine we have the optimal q-values:

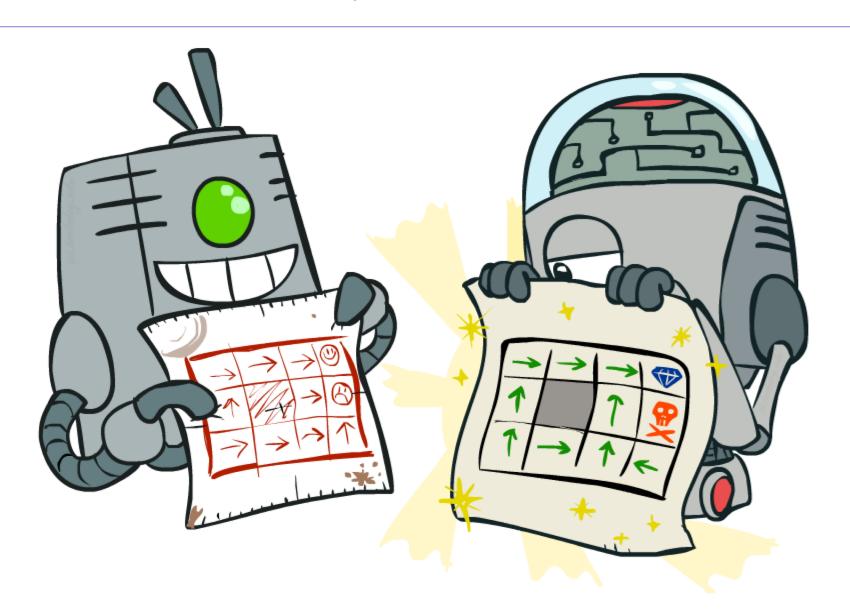
- O How should we act?
 - o Completely trivial to decide!

$$\pi^*(s) = \arg\max_a Q^*(s, a)$$

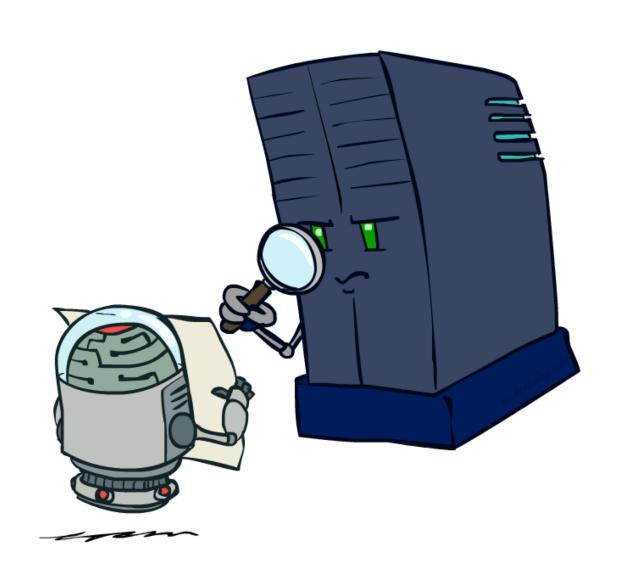


 Important lesson: actions are easier to select from q-values than values!

Policy Methods

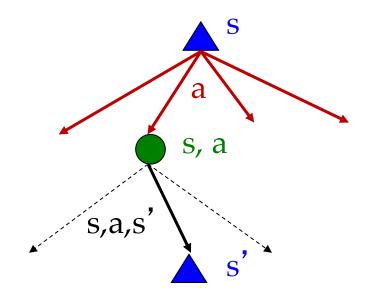


Policy Evaluation

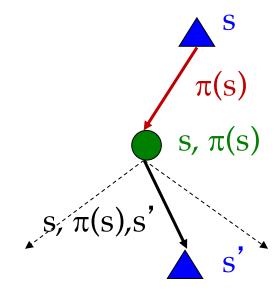


Fixed Policies

Do the optimal action



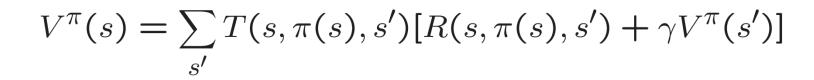
Do what π says to do

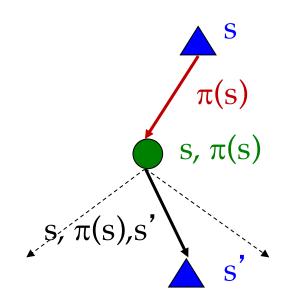


- Expectimax trees max over all actions to compute the optimal values
- O If we fixed some policy π (s), then the tree would be simpler only one action per state
 - o ... though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- O Define the utility of a state s, under a fixed policy π : $V^{\pi}(s) = \text{expected total discounted rewards starting in s and following } \pi$
- Recursive relation (one-step look-ahead / Bellman equation):

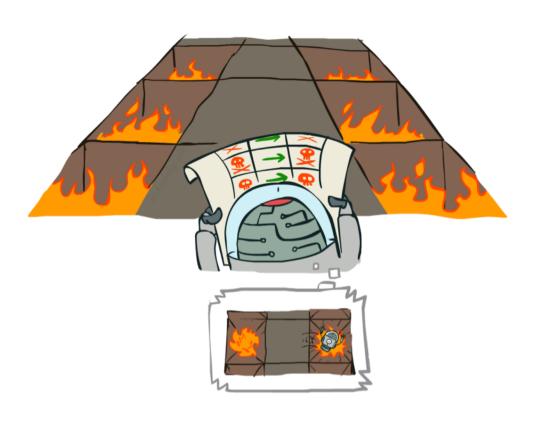


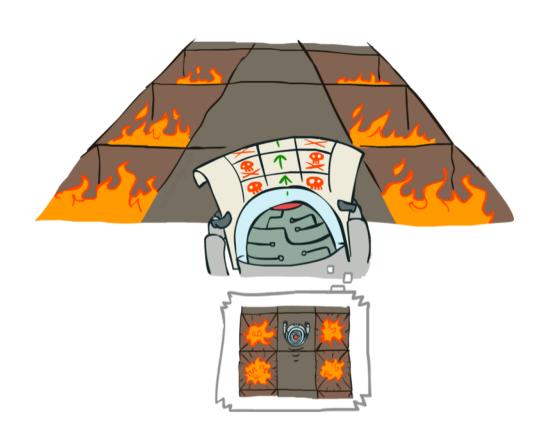


Example: Policy Evaluation

Always Go Right

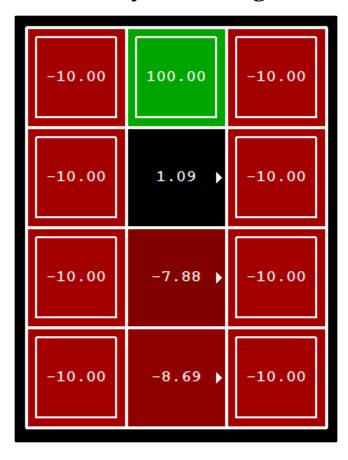
Always Go Forward



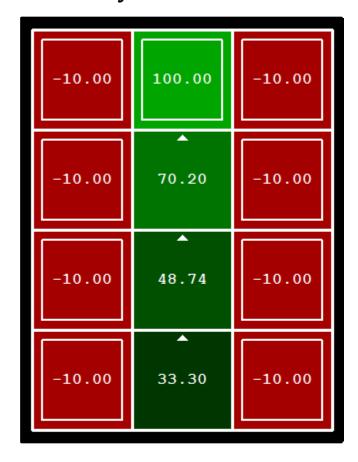


Example: Policy Evaluation

Always Go Right



Always Go Forward

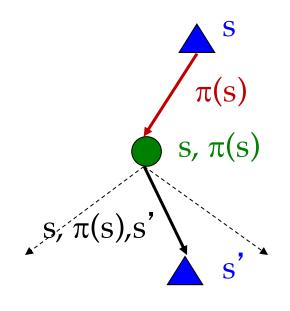


Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

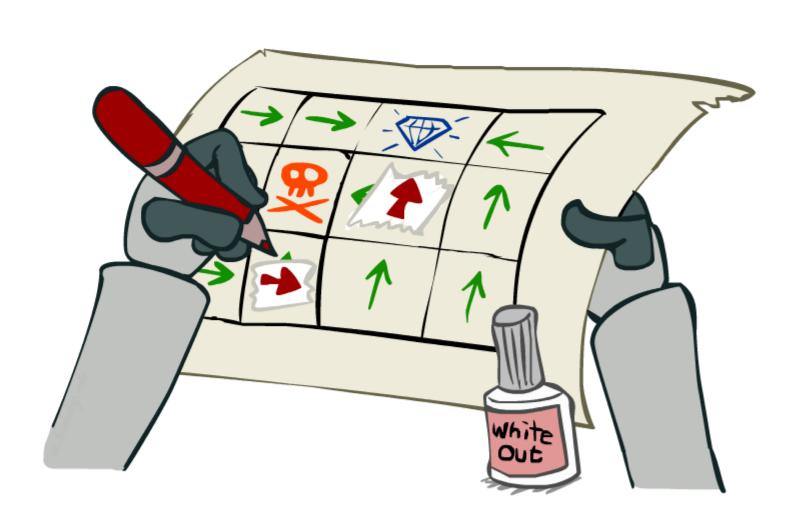
$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$



- Efficiency: O(S²) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)

Policy Iteration



Problems with Value Iteration

Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

s,a,s'

- o Problem 1: It's slow O(S²A) per iteration
- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values

k=12

Noise = 0.2 Discount = 0.9 Living reward = 0

k = 100

Noise = 0.2 Discount = 0.9 Living reward = 0

Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - o Repeat steps until policy converges
- This is policy iteration
 - o It's still optimal!
 - o Can converge (much) faster under some conditions

Policy Iteration

- \circ Evaluation: For fixed current policy π , find values with policy evaluation:
 - o Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- o Improvement: For fixed values, get a better policy using policy extraction
 - o One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- o In value iteration:
 - o Every iteration updates both the values and (implicitly) the policy
 - o We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - o After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - o The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

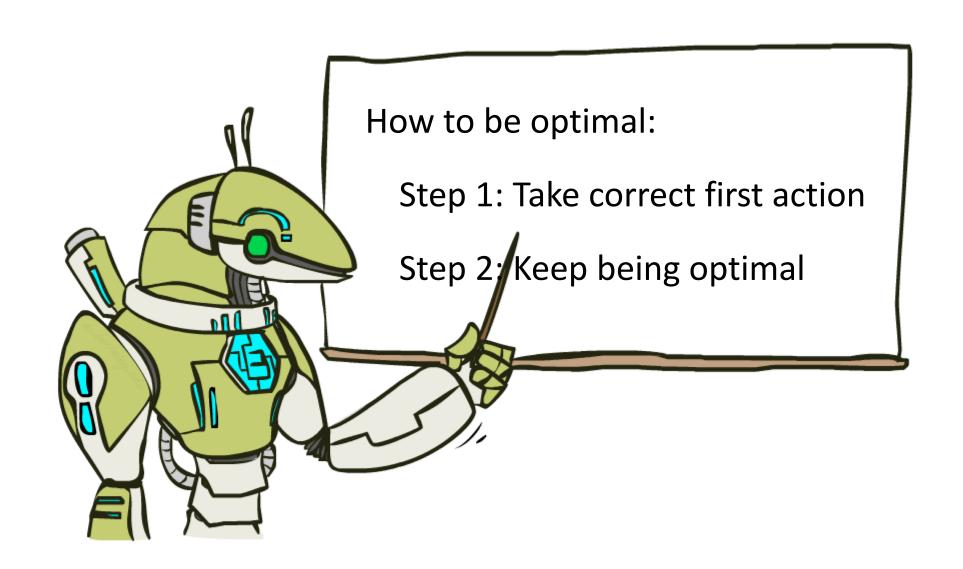
So you want to....

- o Compute optimal values: use value iteration or policy iteration
- o Compute values for a particular policy: use policy evaluation
- o Turn your values into a policy: use policy extraction (one-step lookahead)

• These all look the same!

- o They basically are they are all variations of Bellman updates
- o They all use one-step lookahead expectimax fragments
- o They differ only in whether we plug in a fixed policy or max over actions

The Bellman Equations



Next Time: Reinforcement Learning!