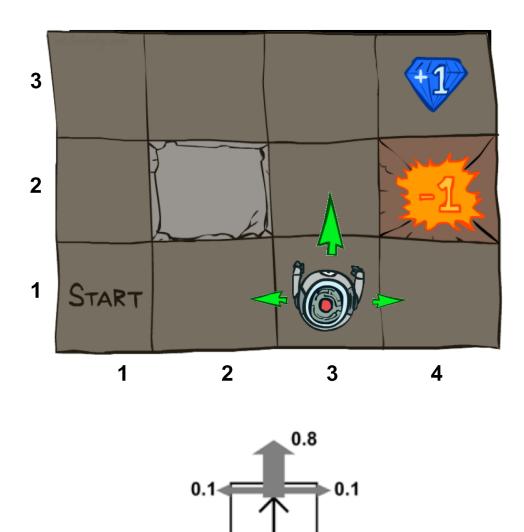
CSE 473: Introduction to Artificial Intelligence

Hanna Hajishirzi Markov Decision Processes

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettelmoyer

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North
 (if there is no well there)
 - (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards



Recap: Defining MDPs

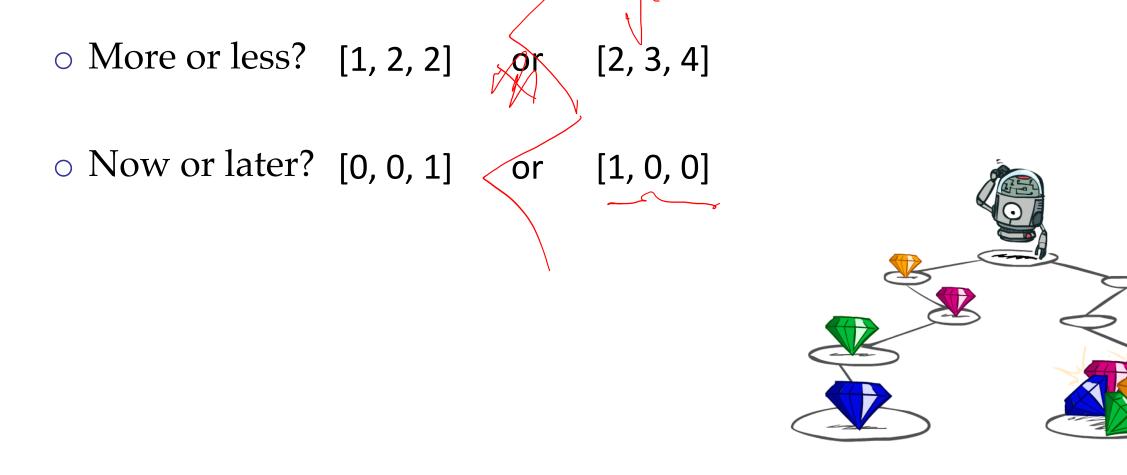
Markov decision processes:

 Set of states S
 Start state s₀
 Set of actions A
 Transitions P(s' | s,a) (or T(s,a,s'))
 Rewards R(s,a,s') (and discount γ)

MDP quantities so far:
 Policy = Choice of action for each state
 Utility = sum of (discounted) rewards

Utilities of Sequences

• What preferences should an agent have over reward sequences?



Discounting

It's reasonable to maximize the sum of rewards
It's also reasonable to prefer rewards now to rewards later
One solution: values of rewards decay exponentially

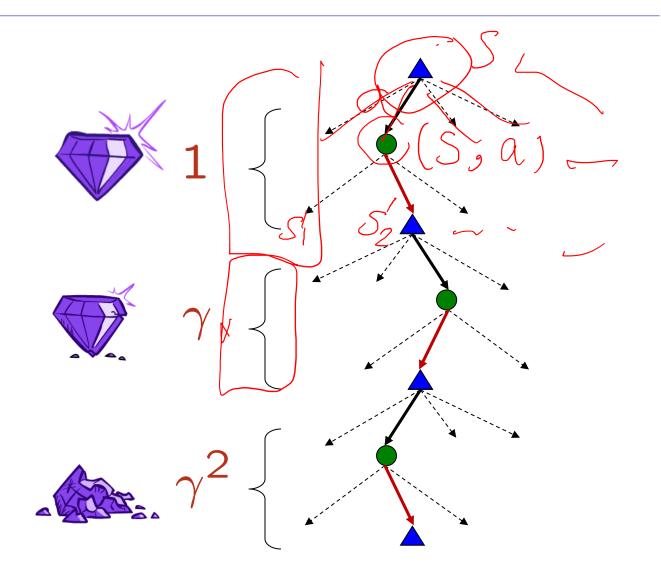
Discounting

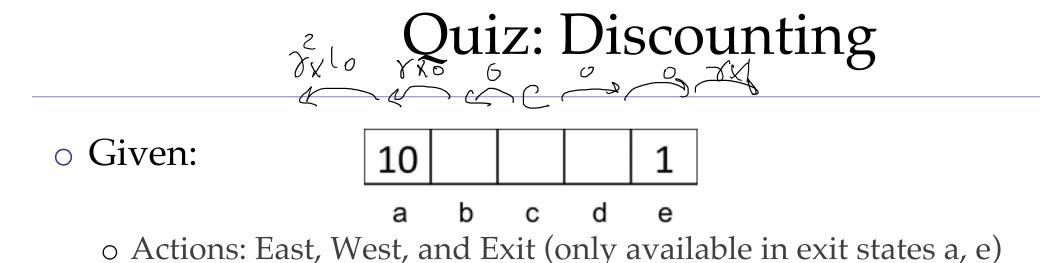
• How to discount?

 Each time we descend a level, we multiply in the discount once

• Why discount?

- Think of it as a gamma chance of ending the process at every step
- Also helps our algorithms converge
- Example: discount of 0.5
 U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 U([1,2,3]) < U([3,2,1])



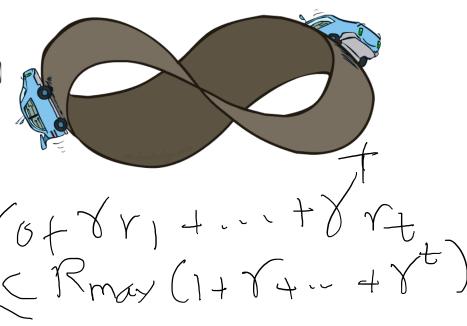


o Transitions: deterministic

• Quiz 1: For $\gamma = 1$, what is the optimal policy? • Quiz 2: For $\gamma = 0.1$, what is the optimal policy? • Quiz 3: For which γ are West and East equally good when in state d? • $\gamma = 10 \gamma^3 \gamma^2 \chi \mid 0 = \sqrt{10^2 \gamma^2 \gamma^2} \gamma^2 \chi \mid 0 = \sqrt{10^2 \gamma^2} \gamma^2 \chi \mid 0 = \sqrt{10$

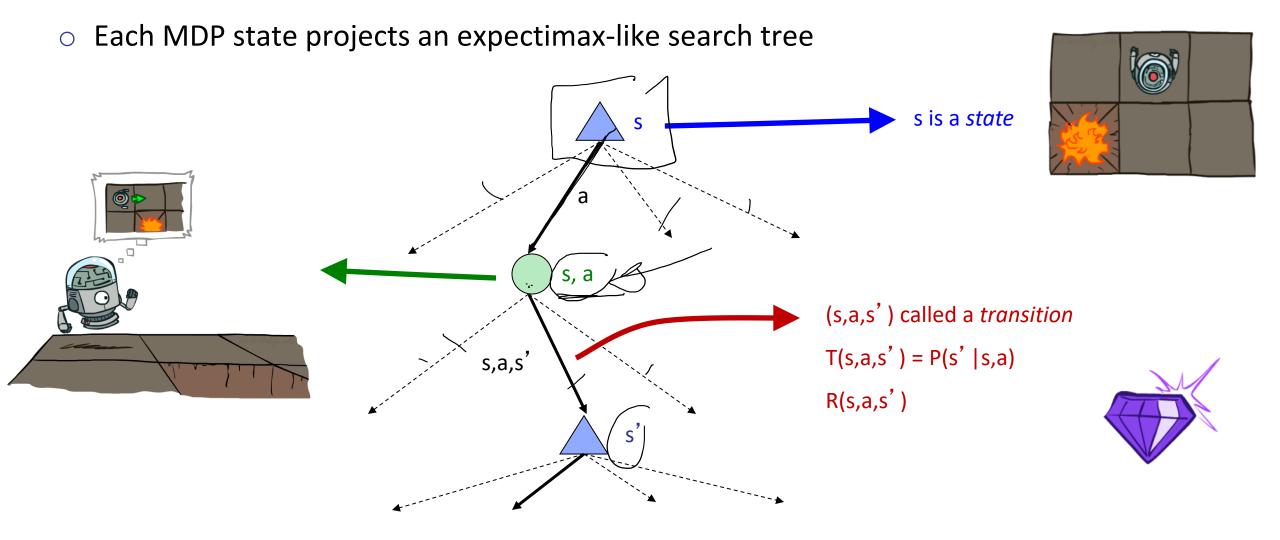
Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Policy π depends on time left
 - Discounting: use $0 < \gamma < 1$ $U([r_0, \dots, r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \leq R_{max}/(1-\gamma)$ $V_{GF} \forall r_1 + \dots + \gamma \uparrow \gamma_{t-1}$ $R_{max}/(1-\gamma)$ $R_{max}/(1+\gamma_{t-1}+\gamma^t)$



- Smaller γ means smaller "horizon" shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

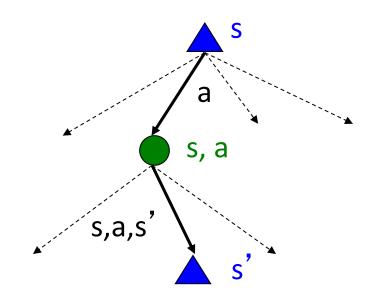
MDP Search Trees



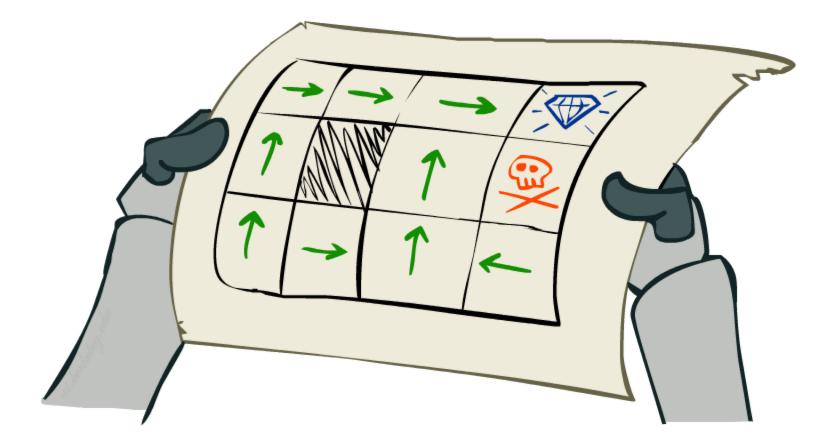
Recap: Defining MDPs

- Markov decision processes:

 Set of states S
 Start state s₀
 Set of actions A
 Transitions P(s' | s,a) (or T(s,a,s'))
 Rewards R(s,a,s') (and discount γ)
- MDP quantities so far:
 Policy = Choice of action for each state
 Utility = sum of (discounted) rewards

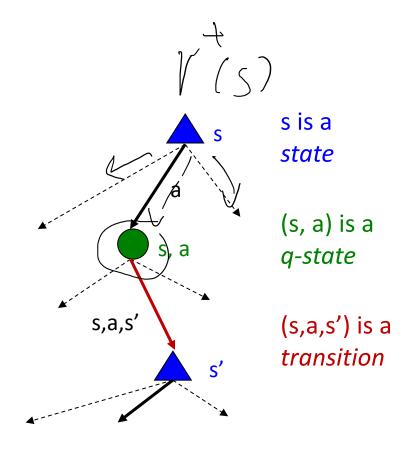


Solving MDPs



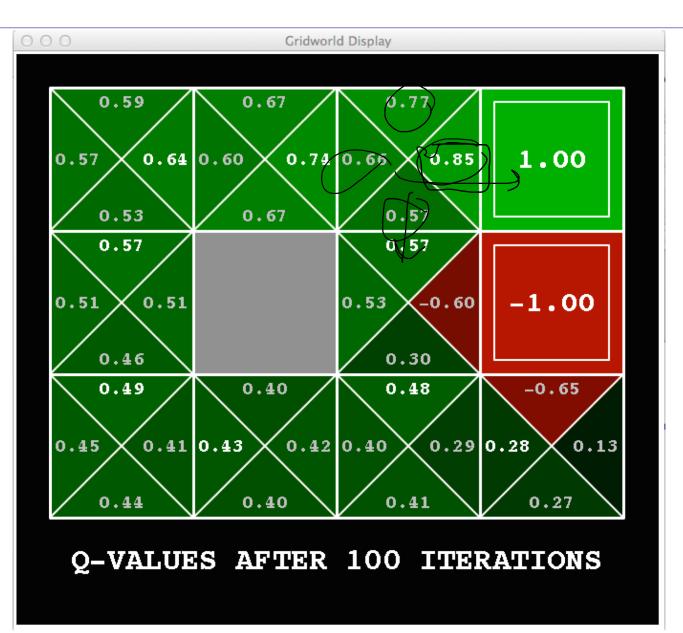
Optimal Quantities

- The value (utility) of a state s: V(S) $V^*(s)$ = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 - Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:
 π^{*}(s) = optimal action from state s



Snapshot of Demo – Gridworld V Values

Snapshot of Demo – Gridworld Q Values



Announcements

- Midterm (Search-Games-MDPs)
 - o Take home (Nov. 4th-Nov 6th)
 - o Midterm Review Session:
 - Respond to the Piazza poll regarding Review session for next week.
 - o Additional office hour
- Programming assignment 2 is due Oct. 30th

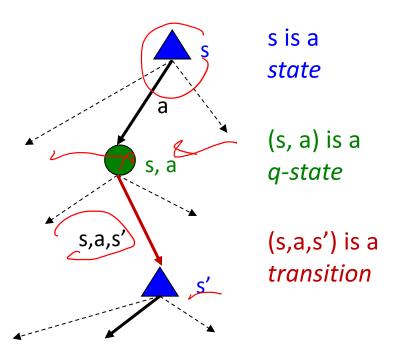
Mid-Quarter Review

Recap: MDPs Optimal Quantities

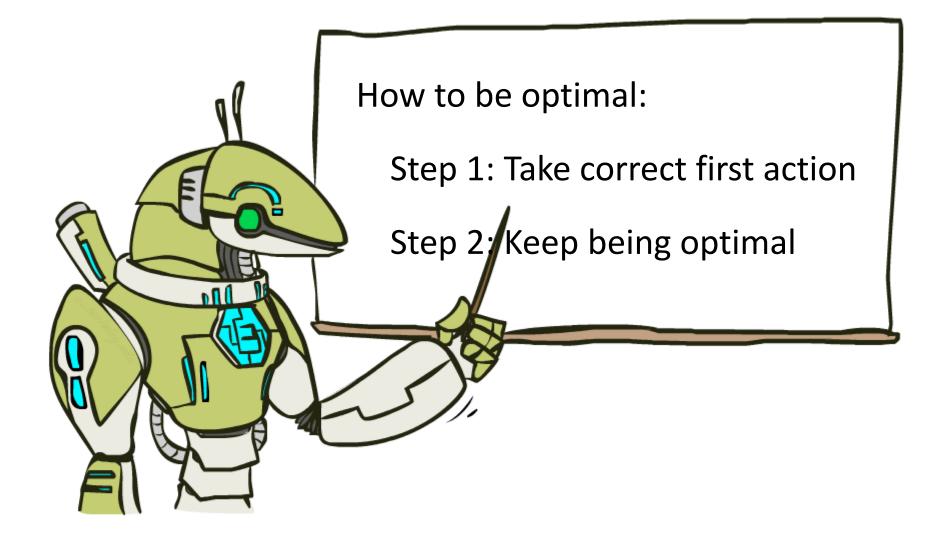
- The value (utility) of a state s:
 V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):

Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

The optimal policy:
 π^{*}(s) = optimal action from state s



The Bellman Equations



Values of States (Bellman Equations)

• Fundamental operation: compute the (expectimax) value of a state

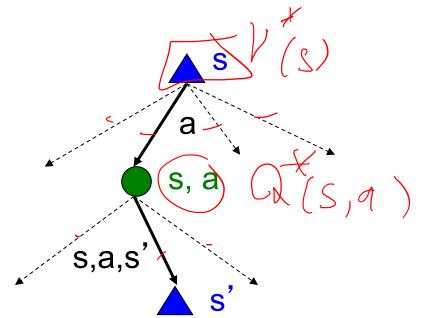
o Expected utility under optimal action
o Average sum of (discounted) rewards
o This is just what expectimax computed!

• Recursive definition of value:

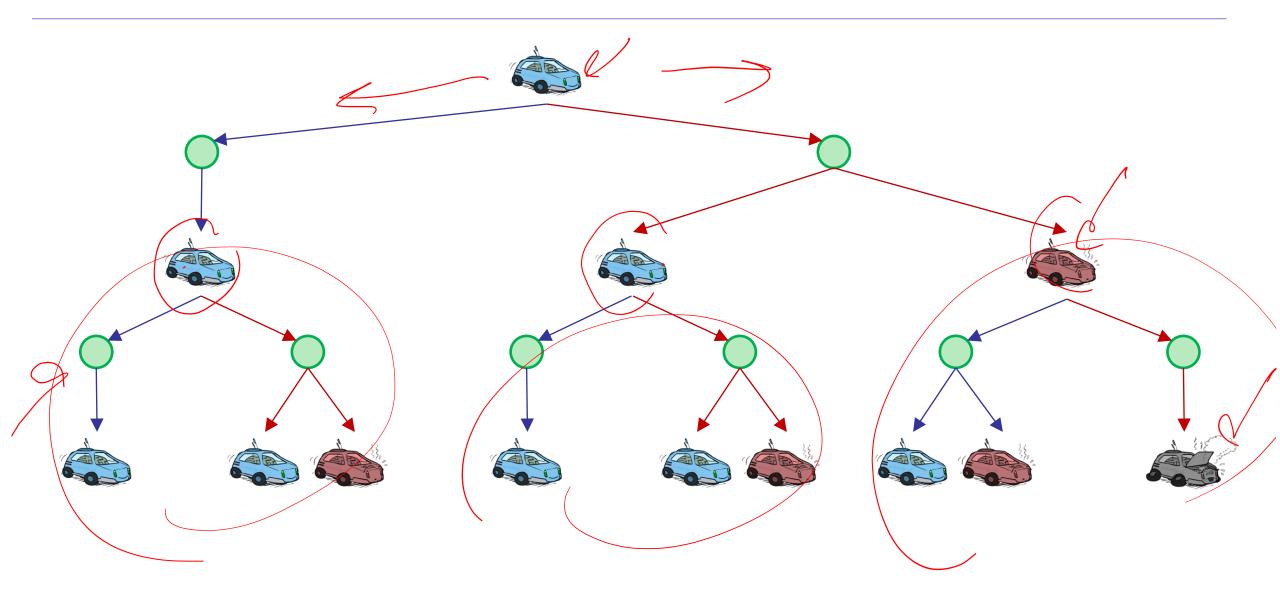
$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

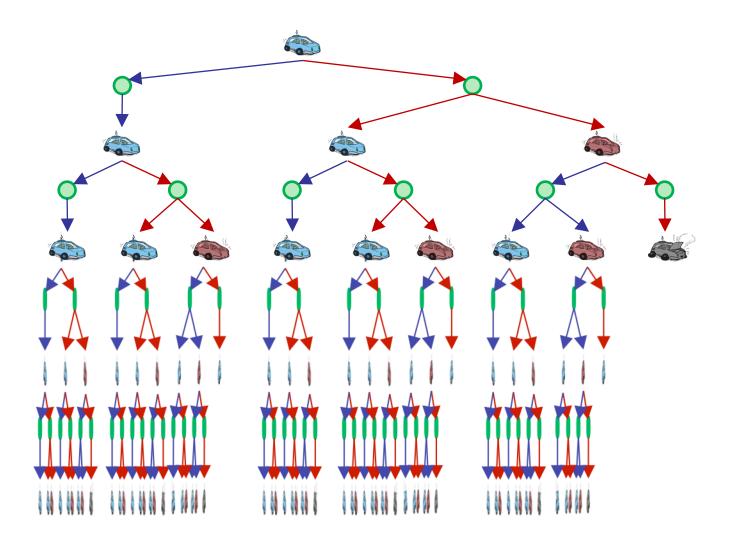
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$



Racing Search Tree

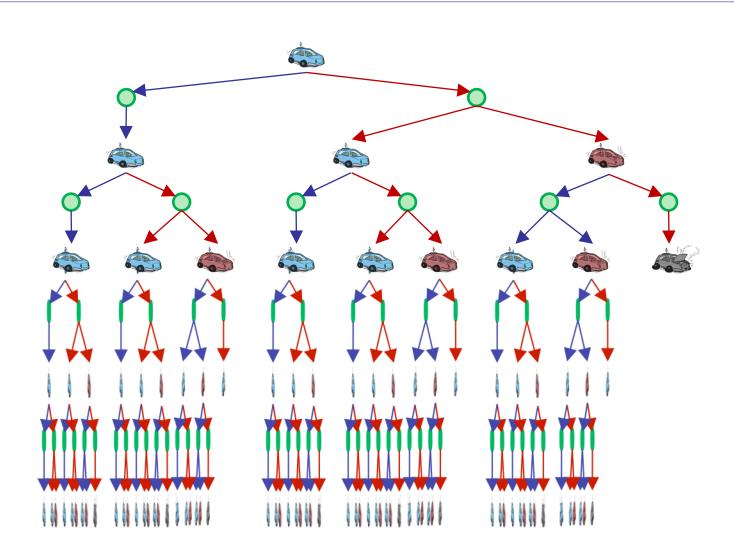


Racing Search Tree



Racing Search Tree

- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if $\gamma < 1$



Values of States

• Recursive definition of value:

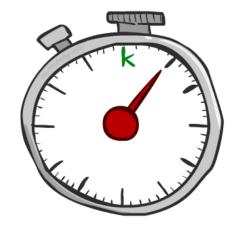
$$V^{*}(s) = \max_{a} Q^{*}(s,a)$$

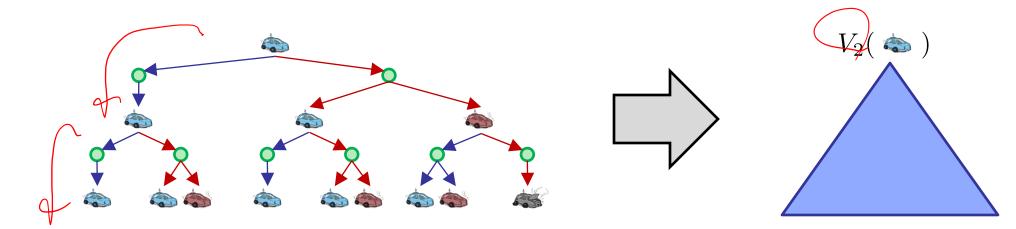
$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^{*}(s')]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^{*}(s')]$$

Time-Limited Values

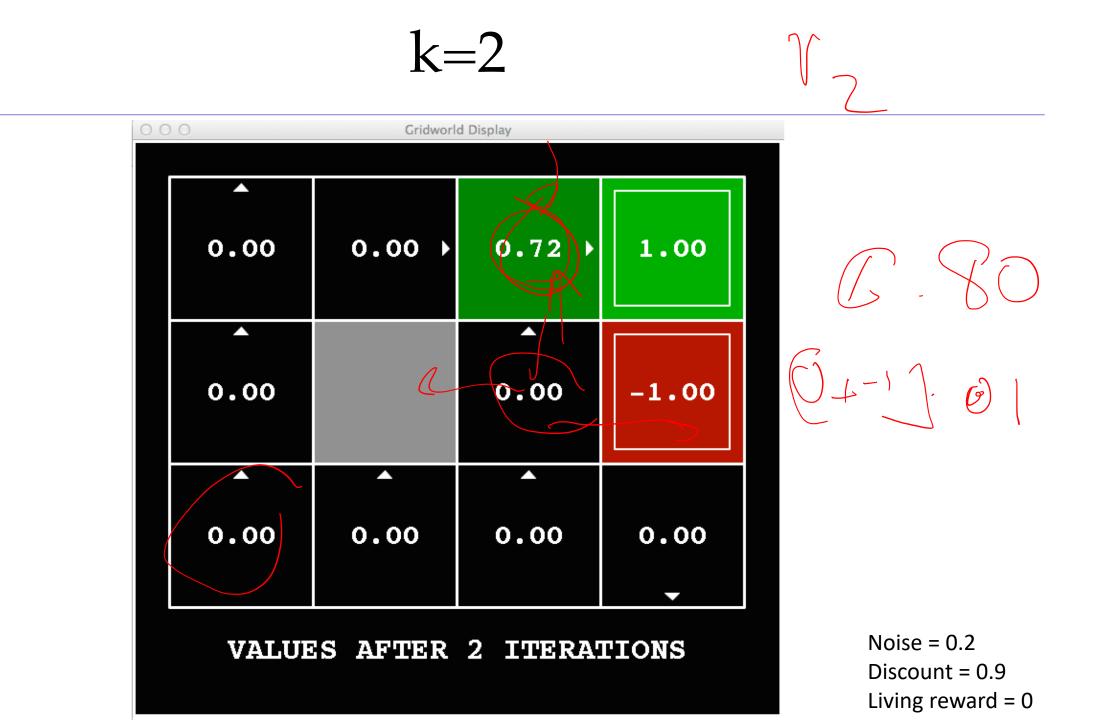
- Key idea: time-limited values
- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s





000	2.1.2.1.0.1	d Display		
•	•	•	0.00	
• 0.00		•	0.00	
•	•	•	• 0.00	
VALUE	S AFTER	0 ITERA	TIONS	Noise = 0.2 Discount = 0.9 Living reward =

0



Gridworld Display				
0.00	0.52 →	0.78)	1.00	
•		• 0.43	-1.00	
•	• 0.00	• 0.00	0.00	
VALU	ES AFTER	3 ITERA	FIONS	

k=4

00	0	Gridworl	d Display	-
	0.37 →	0.66)	0.83)	1.00
	•		• 0.51	-1.00
	0.00	0.00 →	• 0.31	∢ 0.00
	VALUE	S AFTER	4 ITERA	FIONS

000	Gridworl	d Display	
0.51)	0.72 →	0.84)	1.00
▲ 0.27		• 0.55	-1.00
• 0.00	0.22 →	• 0.37	∢ 0.13
VALUES AFTER 5 ITERATIONS			

k=6

0 0	0	Gridwor	ld Display	_	
	0.59)	0.73)	0.85	1.00	
	• 0.41		• 0.57	-1.00	
	• 0.21	0.31)	▲ 0.43	∢ 0.19	
	VALUES AFTER 6 ITERATIONS				

Gridworld Display				
0.62)	0.74 →	0.85)	1.00	
• 0.50		• 0.57	-1.00	
• 0.34	0.36 →	• 0.45	∢ 0.24	
VALUES AFTER 7 ITERATIONS				

k=8

000		Gridworl	d Display	
	0.63)	0.74)	0.85)	1.00
	• 0.53		• 0.57	-1.00
	• 0.42	0.39)	• 0.46	∢ 0.26
	VALUE	S AFTER	8 ITERA	FIONS

000	Gridworl	d Display	-
0.64)	0.74 ▸	0.85 →	1.00
• 0.55		• 0.57	-1.00
• 0.46	0.40 →	• 0.47	∢ 0. 27
VALUES AFTER 9 ITERATIONS			

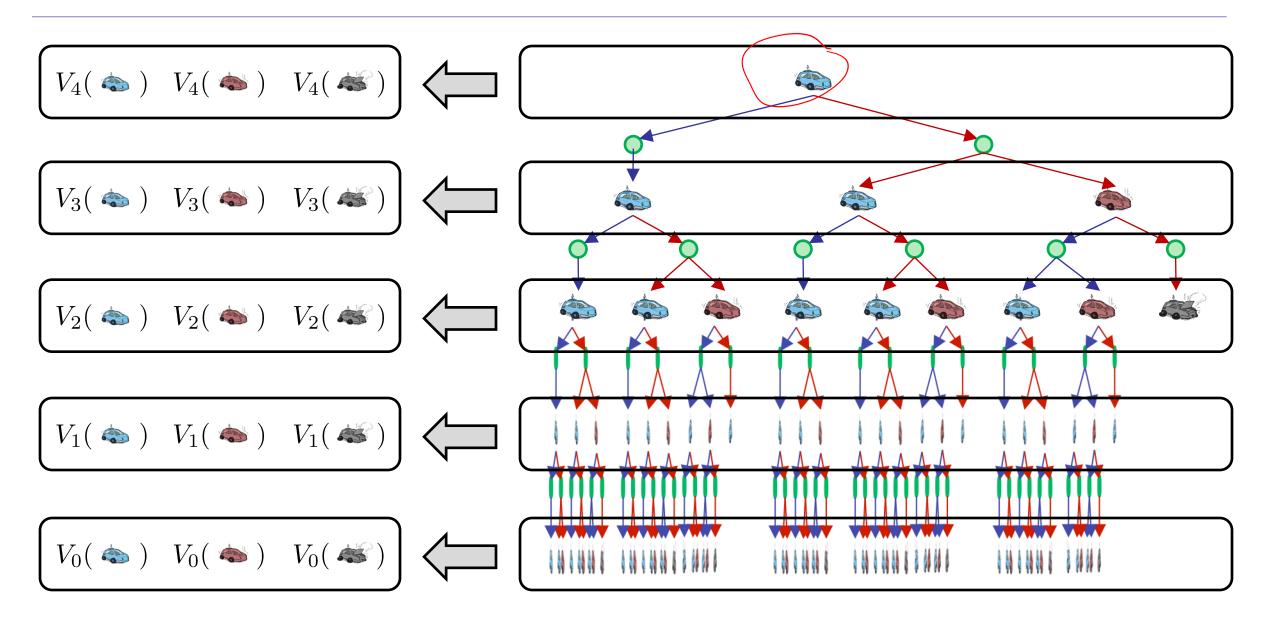
000	Gridworl	d Display	-
0.64)	0.74 ▸	0.85)	1.00
▲ 0.56		• 0.57	-1.00
▲ 0.48	∢ 0.41	• 0.47	◀ 0.27
VALUE	S AFTER	10 ITERA	TIONS

000	0	Gridworl	d Display	
	0.64 →	0.74 →	0.85 →	1.00
	• 0.56		• 0.57	-1.00
	▲ 0.48	∢ 0.42	• 0.47	∢ 0.27
	VALUE	S AFTER	11 ITERA	TIONS

0 0	Gridwork	d Display		
0.64)	0.74 →	0.85)	1.00	
• 0.57		• 0.57	-1.00	
• 0.49	∢ 0.42	• 0.47	∢ 0.28	
VALUE	S AFTER	12 ITERA	TIONS	

0 0	0	Gridworl	d Display		
	0.64)	0.74 →	0.85)	1.00	
	• 0.57		• 0.57	-1.00	
	• 0.49	∢ 0.43	▲ 0.48	∢ 0.28	
	VALUES AFTER 100 ITERATIONS				

Computing Time-Limited Values



Announcements

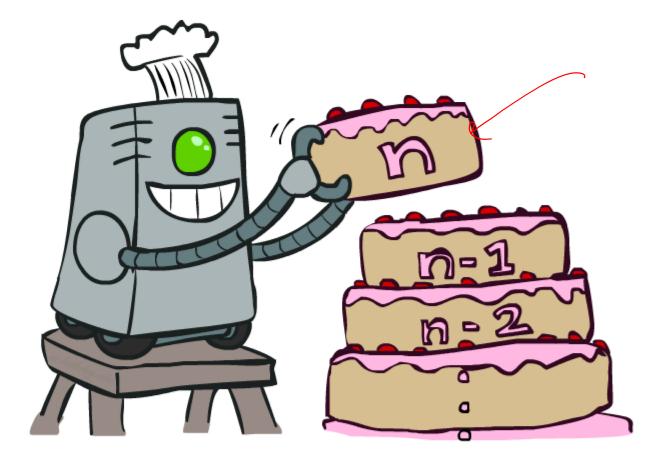
• PS2 is due Oct. 30th

o Midterm: Take home

Due: Nov. 6th, will be released: Nov 4th Midterm Review Session:
 Tue, 3:30-5pm at Allen 403
 Solving SP 19 midterm + Open Questions

o Hanna: Holding extra office hour on Fri 12-1pm

MDP Value Iteration



Value Iteration

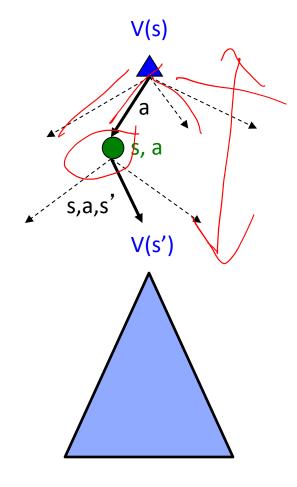
• Bellman equations characterize the optimal values:

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

• Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Value iteration is just a fixed point solution method
 ... though the V_k vectors are also interpretable as time-limited values



Value Iteration

• Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero

 $V_{k+1}(s)$

s, a

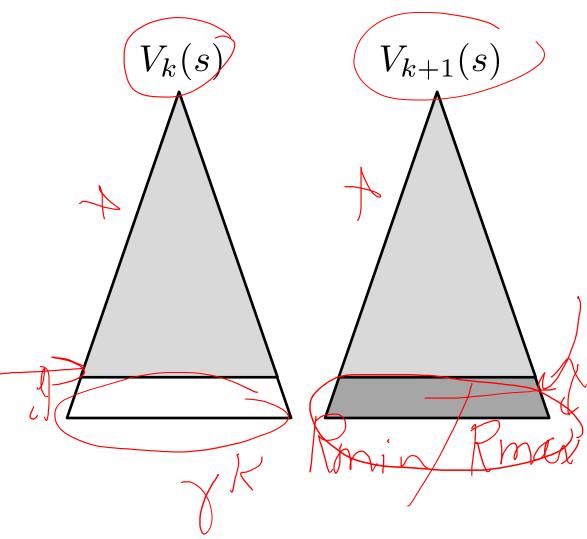
V₁(s'

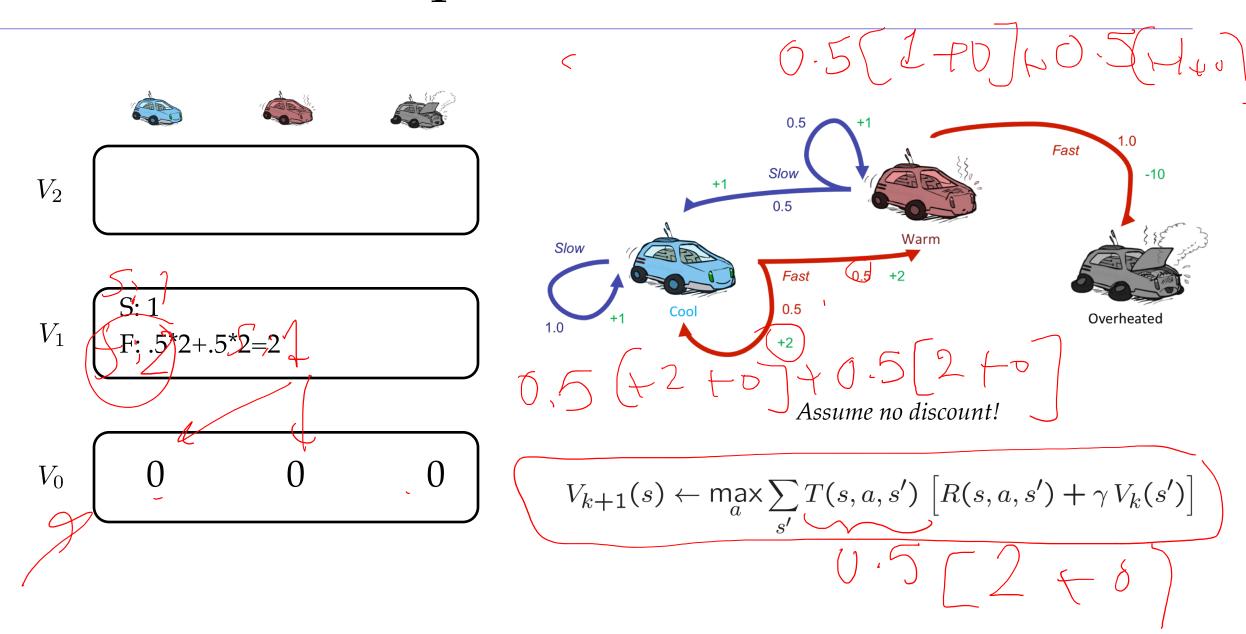
s.a.s

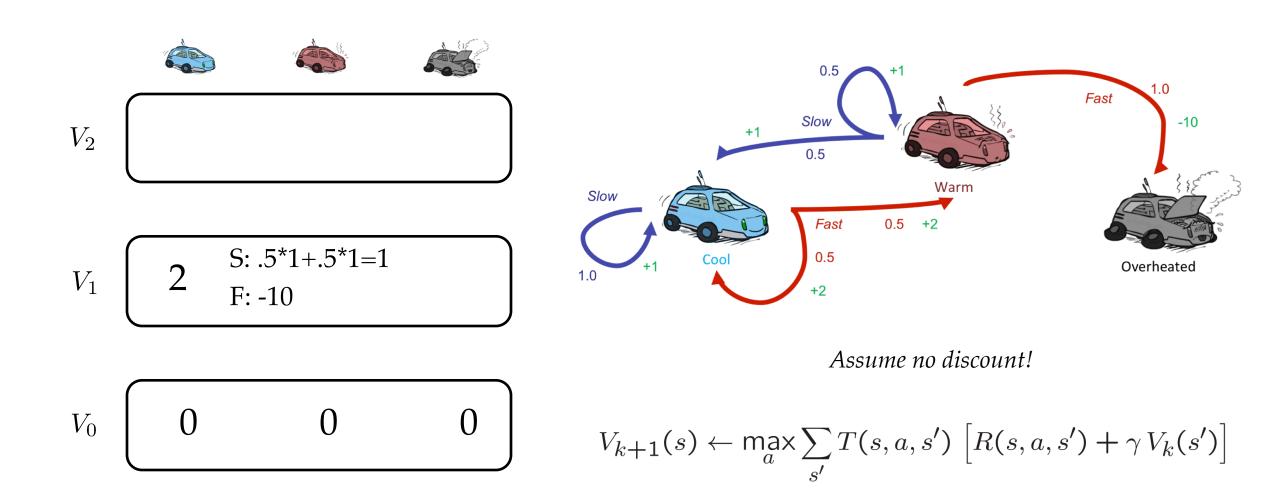
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:
- $V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$ • Repeat until convergence • Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 Basic idea: approximations get refined towards optimal values
 Policy may converge long before values do

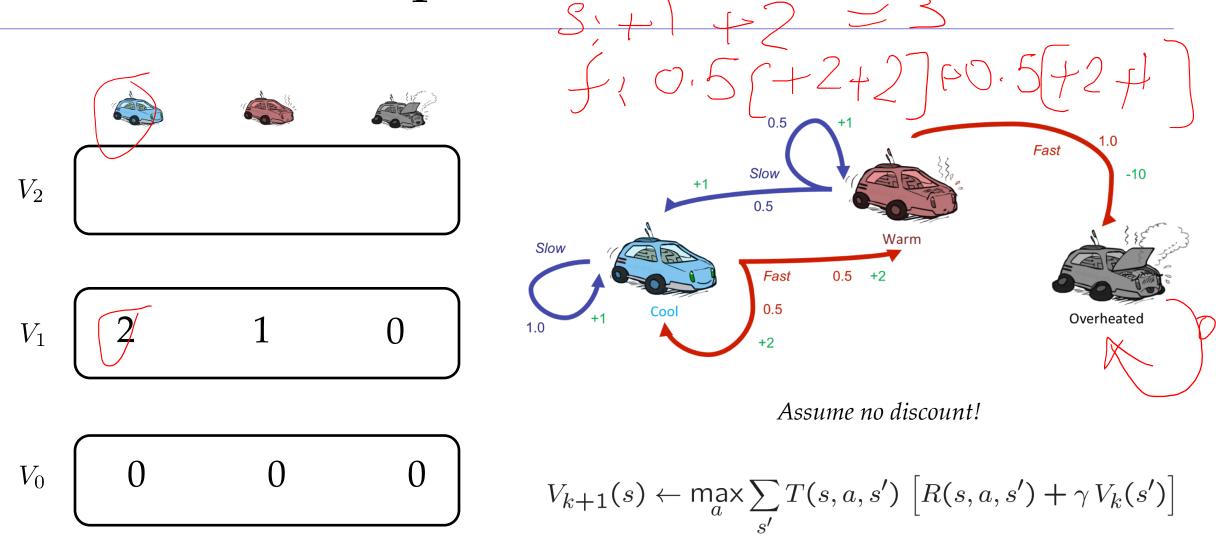
Convergence*

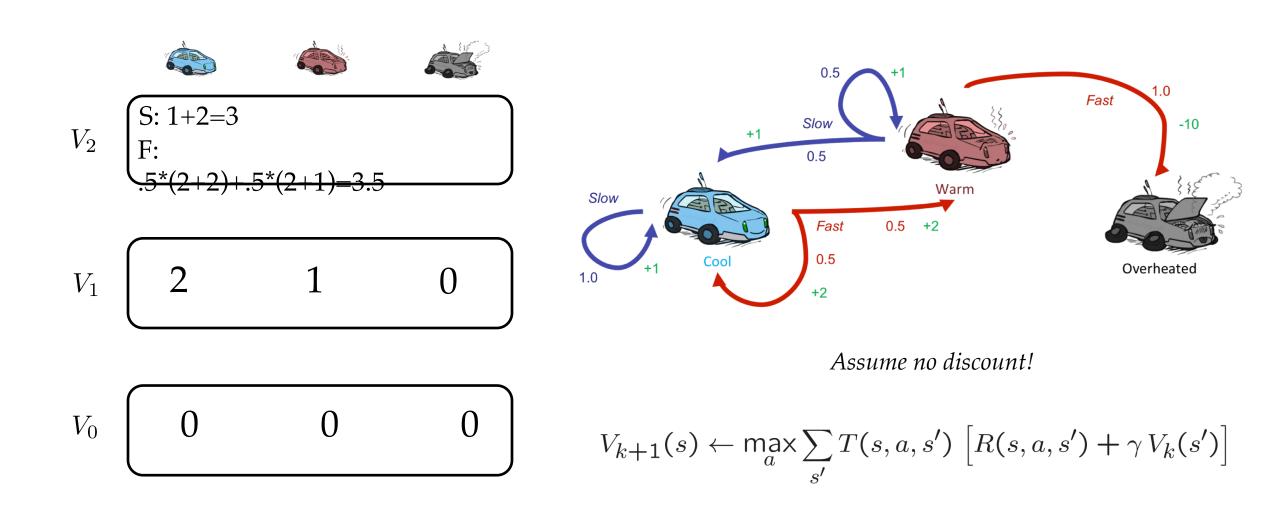
- How do we know the V_k vectors are going to converge?
- If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - $\circ~$ The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - $\circ~$ That last layer is at best all R_{MAX}
 - $\circ~$ It is at worst $R_{\rm MIN}$
 - $\circ~$ But everything is discounted by γ^k that far out
 - $\circ~So~V_k$ and V_{k+1} are at most γ^k max[R] different
 - o So as k increases, the values converge

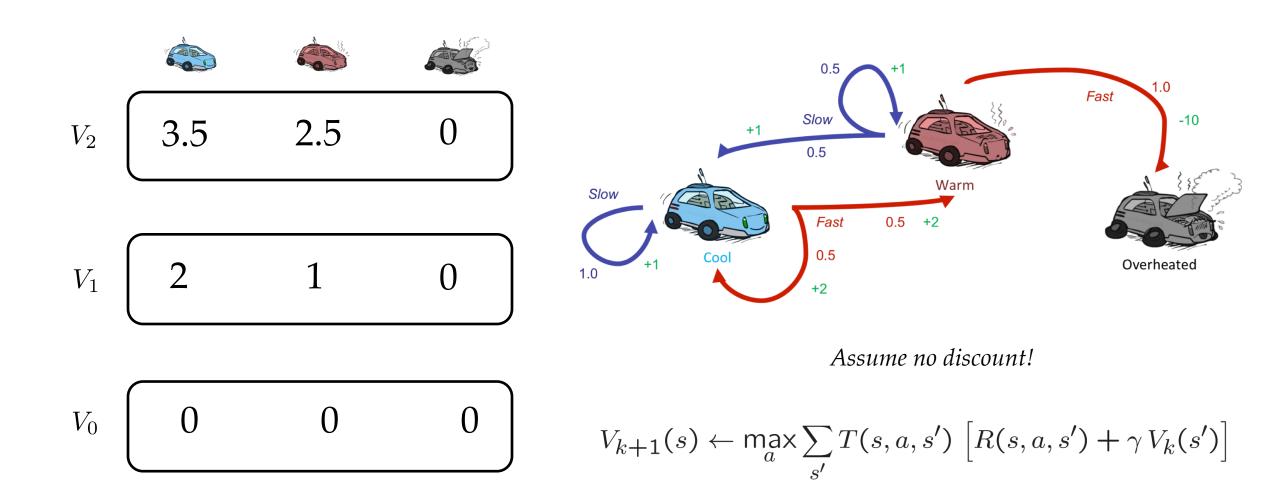




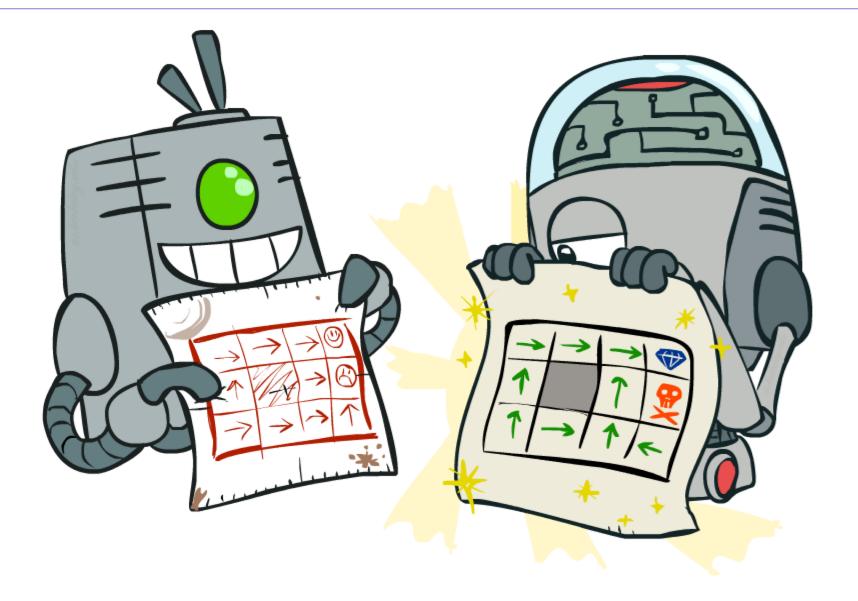




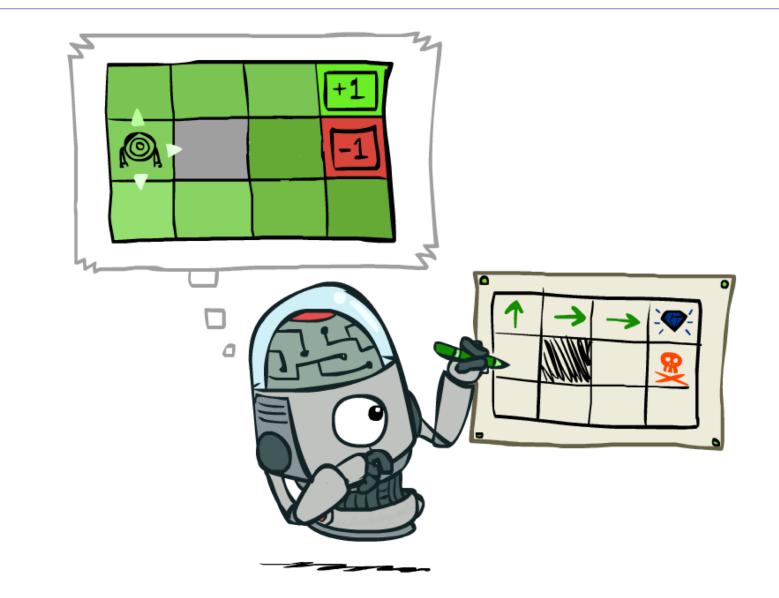




Policy Methods



Policy Extraction



Computing Actions from Values

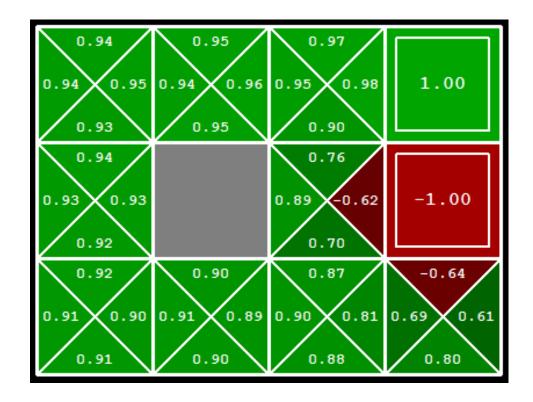
- Let's imagine we have the optimal values V*(s)
- How should we act?
 It's not obvious!
- We need to do a mini-expectimax (one step)

$$\pi^{*}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

• This is called **policy extraction**, since it gets the policy implied by the values

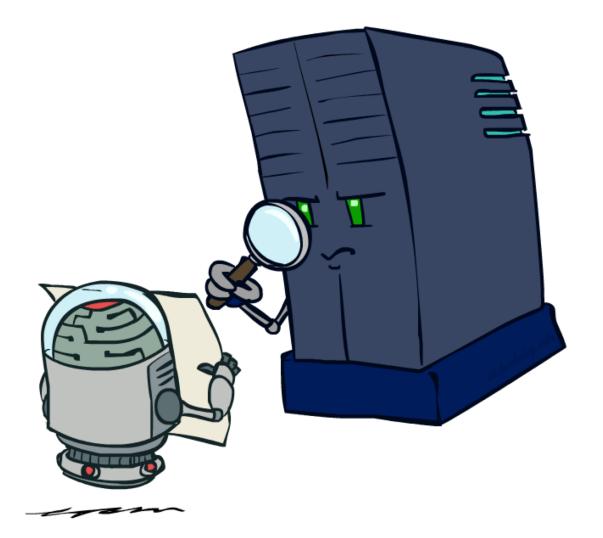
Computing Actions from Q-Values

Let's imagine we have the optimal q-values:
Q_J_J_L (S_J_A)
How should we act?
Completely trivial to decide!
π*(s) = arg max Q*(s, a)

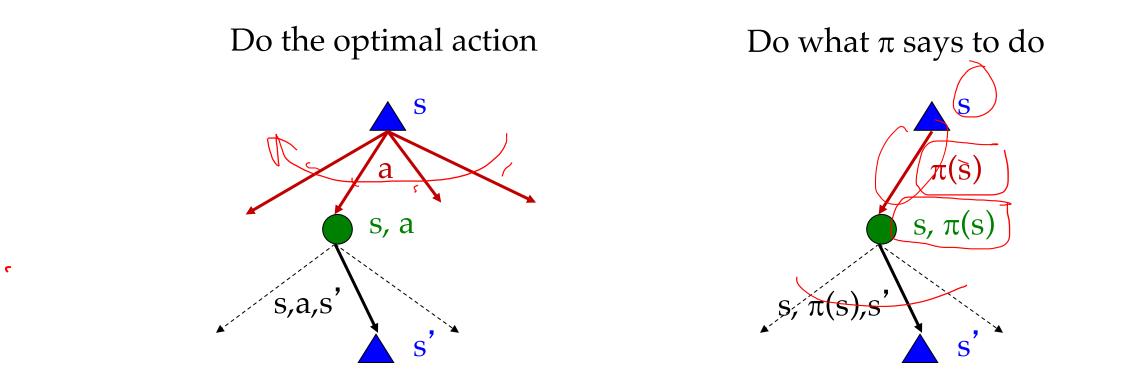


 Important lesson: actions are easier to select from q-values than values!

Policy Evaluation



Fixed Policies

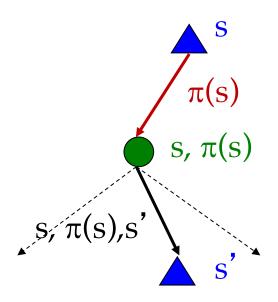


- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state
 - o ... though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π:
 V^π(s) = expected total discounted rewards starting in s and following π
- Recursive relation (one-step look-ahead / Bellman equation):

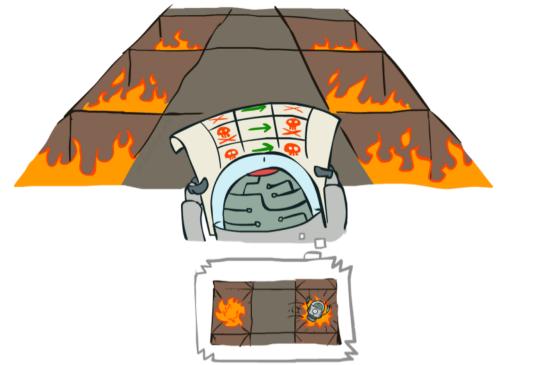
$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

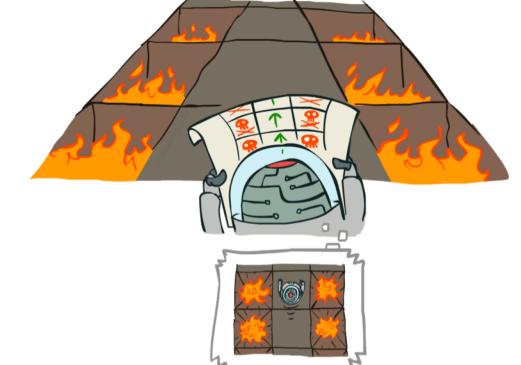


Example: Policy Evaluation

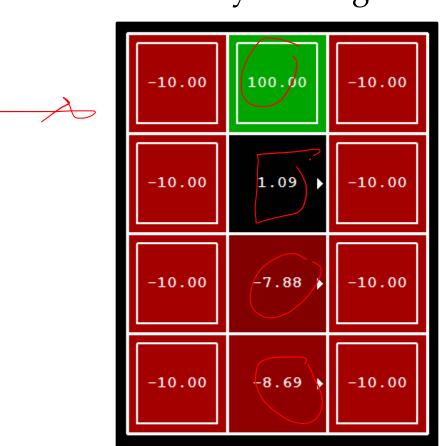
Always Go Right

Always Go Forward



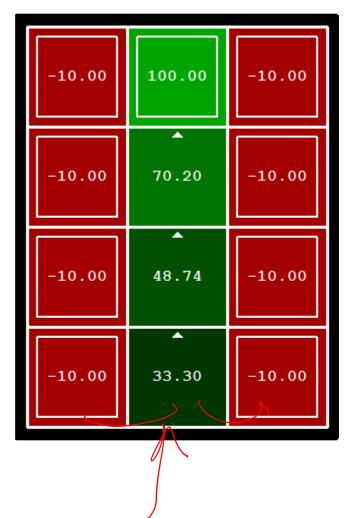


Example: Policy Evaluation



Always Go Right

Always Go Forward



Policy Evaluation

 $\pi(s)$

s, $\pi(s)$

s, π(s),s'

• How do we calculate the V's for a fixed policy π ?

 Idea 1: Turn recursive Bellman equations into updates (like value iteration)

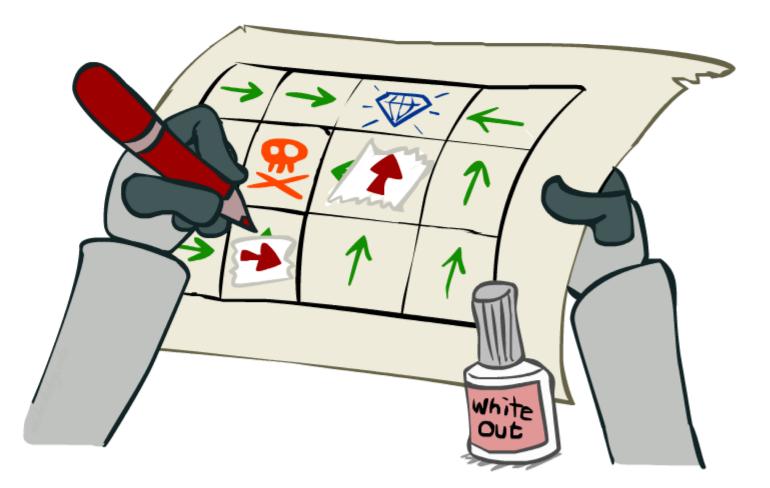
$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

$$\circ \text{ Efficiency: O(S^2) per iteration}$$

Idea 2: Without the maxes, the Bellman equations are just a linear system
 Solve with Matlab (or your favorite linear system solver)

Policy Iteration

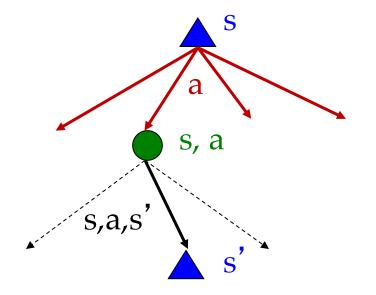


Problems with Value Iteration

• Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

• Problem 1: It's slow – $O(S^2A)$ per iteration



• Problem 2: The "max" at each state rarely changes

• Problem 3: The policy often converges long before the values

0 0	0	Gridworl	d Display	-	
	• 0.00	• 0.00	0.00 >	1.00	
	• 0.00		∢ 0.00	-1.00	
	• 0.00	•	• 0.00	0.00	
	VALUES AFTER 1 ITERATIONS				

00	Gridworld Display				
	• 0.00	0.00 →	0.72 →	1.00	
	^		^		
	0.00		0.00	-1.00	
	^	^	^		
	0.00	0.00	0.00	0.00	
	VALUES AFTER 2 ITERATIONS				

O O Gridworld Display					
0.00)	0.52 →	0.78)	1.00		
•		• 0.43	-1.00		
•	• 0.00	• 0.00	0.00		
VALUES AFTER 3 ITERATIONS					

k=4

00	0	Gridworl	d Display	-
	0.37 →	0.66)	0.83)	1.00
	•		• 0.51	-1.00
	0.00	0.00 →	• 0.31	∢ 0.00
	VALUES AFTER 4 ITERATIONS			

○ ○ ○ Gridworld Display				
0.51)	0.72 →	0.84)	1.00	
• 0.27		•	-1.00	
• 0.00	0.22 →	• 0.37	∢ 0.13	
VALUES AFTER 5 ITERATIONS				

k=6

0 0	Gridworld Display				
	0.59)	0.73)	0.85	1.00	
	• 0.41		• 0.57	-1.00	
	• 0.21	0.31)	▲ 0.43	∢ 0.19	
	VALUES AFTER 6 ITERATIONS				

○ ○ ○ Gridworld Display					
0.62)	0.74 →	0.85 →	1.00		
• 0.50		•	-1.00		
▲ 0.34	0.36 →	• 0.45	∢ 0.24		
VALUES AFTER 7 ITERATIONS					

k=8

000		Gridworl	d Display	
	0.63)	0.74)	0.85)	1.00
	• 0.53		• 0.57	-1.00
	• 0.42	0.39)	• 0.46	∢ 0.26
	VALUE	S AFTER	8 ITERA	FIONS

○ ○ ○ Gridworld Display				
0.64)	0.74 ▸	0.85 →	1.00	
• 0.55		• 0.57	-1.00	
• 0.46	0.40 →	• 0.47	∢ 0.27	
VALUES AFTER 9 ITERATIONS				

000	Gridworld Display			
0.64)	0.74 ▸	0.85)	1.00	
▲ 0.56		• 0.57	-1.00	
▲ 0.48	∢ 0.41	• 0.47	◀ 0.27	
VALUES AFTER 10 ITERATIONS				

000	O O Gridworld Display				
	0.64 →	0.74 →	0.85 →	1.00	
	• 0.56		• 0.57	-1.00	
	▲ 0.48	∢ 0.42	• 0.47	∢ 0.27	
	VALUES AFTER 11 ITERATIONS				

0 0	Gridwork	d Display		
0.64)	0.74 →	0.85)	1.00	
• 0.57		• 0.57	-1.00	
• 0.49	∢ 0.42	• 0.47	∢ 0.28	
VALUE	S AFTER	12 ITERA	TIONS	

0 0	Gridworld Display						
	0.64)	0.74 →	0.85)	1.00			
	• 0.57		• 0.57	-1.00			
	• 0.49	∢ 0.43	▲ 0.48	∢ 0.28			
	VALUES AFTER 100 ITERATIONS						

MDPs: Policy Iteration

• Alternative approach for optimal values:

- Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
- Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 Repeat steps until policy converges

• This is policy iteration

- o It's still optimal!
- o Can converge (much) faster under some conditions

Policy Iteration

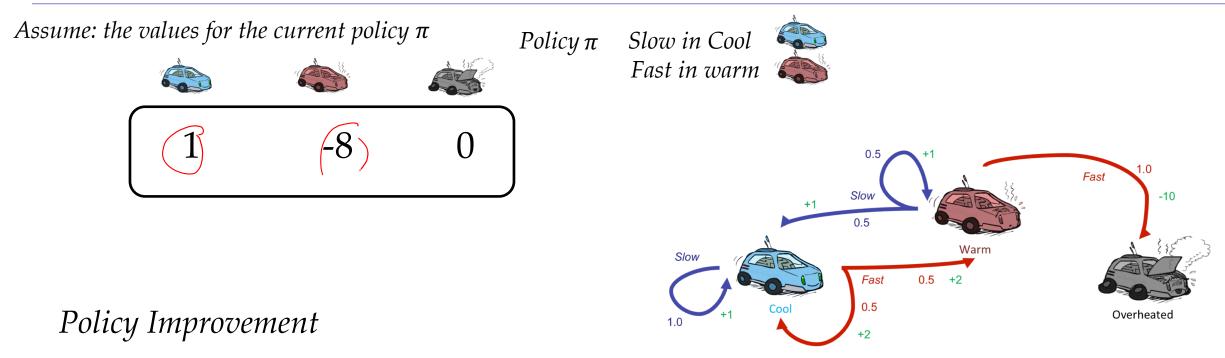
Evaluation: For fixed current policy π, find values with policy evaluation:
 Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

Improvement: For fixed values, get a better policy using policy extraction
 One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Example: Policy Improvement



S:
$$.5^*(1+\gamma * 1)+.5^*(1-\gamma * 8)$$

F: -10

Improve policy for warm to: slow

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Comparison

• Both value iteration and policy iteration compute the same thing (all optimal values)

- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it

• In policy iteration:

- We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
- o After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)o The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

• So you want to....

- o Compute optimal values: use value iteration or policy iteration
- o Compute values for a particular policy: use policy evaluation
- o Turn your values into a policy: use policy extraction (one-step lookahead)

• These all look the same!

They basically are – they are all variations of Bellman updates
They all use one-step lookahead expectimax fragments
They differ only in whether we plug in a fixed policy or max over actions

The Bellman Equations

