CSE 473: Introduction to
Artificial Intelligence

Hanna Hajishirzi
Adversarial Search

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettelmoyer

Announcements

o Written HW1 is released: (due: 10/23)
o Start ASAP.

o Project 2 is released: (due 10/30)
o About games: Start ASAP.

Adversarial Search

Value of a State

-

Value of a state:
The best achievable
outcome (utility)
from that state

J

57

Non-Terminal S

Vi(s)

= max (s")

QTFS)Q

-

Terminal States:
V(s) = known

Minimax Values

States Under Agent’sControl: States Under @pponent’s Control:
V(S) B s’rs(s V(S/) \ V(S,) B suclcg:slglrs(s) V(S)

@

Terminal States:
V(s) = known

Minimax Implementation (Dispatch)

for each su or of state:
v = max(v,~alue(successor))
return v -

J

[clef min-value(
initialize v =+

for each successor of state:

Vv %ﬂc@value(successor))
return

~

J

\\/é/

Minimax Example

v v &
X N

Minimax Properties

10 10

Optimal against a perfect player. Otherwise?

Video of Demo Min vs. Exp (Min)

Video of Demo Min vs. Exp (Exp)

Minimax Efficiency

o How efficient is minimax? @\h
o Just limustive) DFS ‘

o Space: O(bm)

A\‘L

o Example: For chess, b = 35,/m ~ 100

o Exact solution is completely infeasible

o But, do we need to explore the whole
tree?

Resource Limits

Game Tree Pruning

12

Minimax Example

X
\

Alpha-Beta Pruning

o General configuration (MIN version)

o We're computing the MIN-VALUE at some node n MAX A‘i

o We're looping over n’s children p ‘.'

o n’s estimate of the childrens” min is dropping MIN i‘ D<
o Who cares about n’s value? MAX :

o Let a be the best value that MAX can get at any

choice point along the current path from the root

o If n becomes worse than a, MAX will avoid it, so we MAX
can stop considering n’s other children (it's already
bad enough that it won’t be played) MIN

o MAX version is symmetric

Alpha-Beta Implementation

‘4 MAX’s best option on path to root
' B1MIN’s best option on path to root
=

/def max-value(state, a, B): \

initialize v = -0

for each successor of state:
v = max(v, value(successor, a, B))
ifv>pBreturnv
a = max(a, v)

k return v

/def min-value(state M‘ \
initiali = +o0
fo@mf state:
= m@value(successor a, B))

'- eturnv —~

p /)Z return v Y

Alpha-Beta Pruning Properties

o This pruning has no effect on minimax value computed for the root!

o Values of intermediate nodes might be wrong
o Important: children of the root may have the wrong value
o So the most naive version won't let you do action selection

o Good child ordering improves effectiveness of pruning
o With “perfect ordering/”

o Time complexity drops|to O(b™/2)

o Doubles solvable depth

o Full search of, e.g. chess, is still hopeless...

o This is a simple example of metareasoning (computing about what to compute)

Alpha-Beta Quiz

¢
%//\\

10 8 4

Alpha-Beta Quiz 2

Recap:

20

Recap: Minimax

E

I o

Resource Limits — Game Prunning

Alpha-Beta Pruning

o General configuration (MIN version)

o We're computing the MIN-VALUE at some node n MAX ‘,;‘
o We're looping over n’s children a

o n’s estimate of the childrens” min is dropping MIN V‘

o Who cares about n’s value? MAX : /\

o Let a be the best value that MAX can get at any :

choice point along the current path from the root

o If n becomes worse than a, MAX will avoid it, so we MAX
can stop considering n’s other children (it's already
bad enough that it won’t be played) MIN

o MAX version is symmetric

Alpha-Beta Pruning Properties

o This pruning has no effect on minimax value computed for the root!

o Values of intermediate nodes might be wrong
o Important: children of the root may have the wrong value
o So the most naive version won't let you do action selection

o Good child ordering improves effectiveness of pruning

W

10

Y%ﬁ it ()

g

w R7A ~ﬂ7

Alpha—Beta Quiz

Resource Limits

O

O

O

O

O

O

Resource Limits

Problem: In realistic games, cannot search to leaves!

Solution: Depth-limited search
o Instead, search only to a limited depth in the tree

o Replace terminal utilities with an evaluation function for no
terminal positions

Example:
o Suppose we have 100 seconds, can explore 10K nodes / sec

o So can check 1M nodes per move
o o-f reaches about depth 8 — decent chess program

Guarantee of optimal play is gone
More plies makes a BIG ditference

Use iterative deepening for an anytime algorithm

4:

F

maxX

min

Depth Matters

o Evaluation functions are
always imperfect

o The deeper in the tree the
evaluation function is buried,
the less the quality of the
evaluation function matters

o An important example of the
tradeott between complexity of
features and complexity of
computation

[Demo: depth limited (L6D4, L6D5)]

Video of Demo Limited Depth (2)

SCORE: 0

29

Video of Demo Limited Depth (10)

00

SCORE: 0

Evaluation Functions

Evaluation Functions

o Evaluation functions score non-terminals in depth-limited search

A

White to move

White slightly better Black winning

o Ideal function: returns the actual minimax value of the position
o In practice: typically weighted linear sum of features:

&\y’al(@ = w1 f1(s) +wafa(s) + ... + wnfn(s)

o e.g. f1(s) = (num white queens — num black queens), etc.

Evaluation for Pacman

Video of Demo Thrashing (d=2)

Why Pacman Starves

o A danger o

o He knows his score will go up by eating the dot now (west, east)
o He knows his score will go up just as much by eating the dot later (east, west)

o There are no point-scoring opportunities after eating the dot (within the horizon,
two here)

o Therefore, waiting seems just as good as eating: he may go east, then back west in
the next round of replanning]!

Video of Demo Thrashing -- Fixed (d=2)

Video of Smart Ghosts (Coordination)

Video of Demo Smart Ghosts
(Coordination) — Zoomed In

Synergies between
Alpha-Beta and Evaluation Function

o Alpha-Beta: amount of pruning depends on expansion ordering

o Evaluation function can provide guidance to expand most promising nodes
first

o Alpha-beta:

o Value at a min-node will only keep going down
o Once value of min-node lower than better option for max along path to root,

can prune
o Hence, IF evaluati ilon provides upper-boundon value at min-node,

and upper-bound already lower than better option for max along path to root
THEN can prune

