
CSE 473: Introduction to
Artificial Intelligence

Hanna Hajishirzi
Adversarial Search

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettelmoyer

Announcements

o Written HW1 is released: (due: 10/23)
o Start ASAP.

o Project 2 is released: (due 10/30)
oAbout games: Start ASAP.

2

Adversarial Search

Value of a State

Non-Terminal States:

8

2 0 2 6 4 6… … Terminal States:

Value of a state:
The best achievable

outcome (utility)
from that state

Minimax Values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

Minimax Implementation (Dispatch)

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Minimax Example

12 8 5 23 2 144 6

3 2 2

3

Minimax Properties

Optimal against a perfect player. Otherwise?

10 10 9 100

max

min

Video of Demo Min vs. Exp (Min)

Video of Demo Min vs. Exp (Exp)

Minimax Efficiency

o How efficient is minimax?
o Just like (exhaustive) DFS
o Time: O(bm)
o Space: O(bm)

o Example: For chess, b » 35, m » 100
o Exact solution is completely infeasible
o But, do we need to explore the whole

tree?

Resource Limits

Game Tree Pruning

Minimax Example

12 8 5 23 2 14

3 <=2 2

3

Alpha-Beta Pruning

o General configuration (MIN version)
o We’re computing the MIN-VALUE at some node n
o We’re looping over n’s children

o n’s estimate of the childrens’ min is dropping

o Who cares about n’s value? MAX

o Let a be the best value that MAX can get at any
choice point along the current path from the root

o If n becomes worse than a, MAX will avoid it, so we
can stop considering n’s other children (it’s already
bad enough that it won’t be played)

o MAX version is symmetric

MAX

MIN

MAX

MIN

a

n

Alpha-Beta Implementation

α: MAX’s best option on path to root
β: MIN’s best option on path to root

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v

Alpha-Beta Pruning Properties

o This pruning has no effect on minimax value computed for the root!

o Values of intermediate nodes might be wrong
o Important: children of the root may have the wrong value
o So the most naïve version won’t let you do action selection

o Good child ordering improves effectiveness of pruning

o With “perfect ordering”:
o Time complexity drops to O(bm/2)
o Doubles solvable depth!
o Full search of, e.g. chess, is still hopeless…

o This is a simple example of metareasoning (computing about what to compute)

10 10 0

max

min

Alpha-Beta Quiz

Alpha-Beta Quiz 2

10

10

>=100 2

<=2

Recap:

20

Recap: Minimax

12 8 5 23 2 144 6

3 2 2

3

Resource Limits – Game Prunning

Alpha-Beta Pruning

o General configuration (MIN version)
o We’re computing the MIN-VALUE at some node n
o We’re looping over n’s children

o n’s estimate of the childrens’ min is dropping

o Who cares about n’s value? MAX

o Let a be the best value that MAX can get at any
choice point along the current path from the root

o If n becomes worse than a, MAX will avoid it, so we
can stop considering n’s other children (it’s already
bad enough that it won’t be played)

o MAX version is symmetric

MAX

MIN

MAX

MIN

a

n

Alpha-Beta Pruning Properties

o This pruning has no effect on minimax value computed for the root!

o Values of intermediate nodes might be wrong
o Important: children of the root may have the wrong value
o So the most naïve version won’t let you do action selection

o Good child ordering improves effectiveness of pruning

10 10 0

max

min

Alpha-Beta Quiz

2

Resource Limits

Resource Limits

o Problem: In realistic games, cannot search to leaves!

o Solution: Depth-limited search
o Instead, search only to a limited depth in the tree
o Replace terminal utilities with an evaluation function for non-

terminal positions

o Example:
o Suppose we have 100 seconds, can explore 10K nodes / sec
o So can check 1M nodes per move
o a-b reaches about depth 8 – decent chess program

o Guarantee of optimal play is gone

o More plies makes a BIG difference

o Use iterative deepening for an anytime algorithm
? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Depth Matters

o Evaluation functions are
always imperfect

o The deeper in the tree the
evaluation function is buried,
the less the quality of the
evaluation function matters

o An important example of the
tradeoff between complexity of
features and complexity of
computation

[Demo: depth limited (L6D4, L6D5)]

Video of Demo Limited Depth (2)

29

Video of Demo Limited Depth (10)

Evaluation Functions

Evaluation Functions
o Evaluation functions score non-terminals in depth-limited search

o Ideal function: returns the actual minimax value of the position
o In practice: typically weighted linear sum of features:

o e.g. f1(s) = (num white queens – num black queens), etc.

Evaluation for Pacman

Video of Demo Thrashing (d=2)

Why Pacman Starves

o A danger of replanning agents!
o He knows his score will go up by eating the dot now (west, east)
o He knows his score will go up just as much by eating the dot later (east, west)
o There are no point-scoring opportunities after eating the dot (within the horizon,

two here)
o Therefore, waiting seems just as good as eating: he may go east, then back west in

the next round of replanning!

Video of Demo Thrashing -- Fixed (d=2)

Video of Smart Ghosts (Coordination)

Video of Demo Smart Ghosts
(Coordination) – Zoomed In

Synergies between
Alpha-Beta and Evaluation Function

o Alpha-Beta: amount of pruning depends on expansion ordering
o Evaluation function can provide guidance to expand most promising nodes

first
o Alpha-beta:

o Value at a min-node will only keep going down
o Once value of min-node lower than better option for max along path to root,

can prune
o Hence, IF evaluation function provides upper-bound on value at min-node,

and upper-bound already lower than better option for max along path to root
THEN can prune

