CSE 473: Introduction to
Artificial Intelligence

Hanna Hajishirzi

Search
(Un-informed, Informed Search)

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettelmoyer

To Do:

o Python practice (PS0)
o Won’t be graded

0 Check out PS1 in the webpage
O Start ASAP

o Submission: Canvas

o Website:

© Do readings for search algorithms

o Try this search visualization tool
o http:/ / qiao.github.io / PathFinding.js / visual /

Recap: Search

Search

o Search problem:
o States (abstraction of the world)

\ [
o Actions (and costs)

o Succ%ysg r function (world dynamics): [N u u /
o Start state and goal test ! - \ ' /
b H 1 \
/‘

|

Depth-First Search

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

o Complete: Guaranteed to find a solution if one exists?

o Return in finite time if not?
0 Optimal: Guaranteed to find the least cost path?

o Time complexity?

. 1 node
o Space complexity? b nodes
b2 nodes
o Cartoon of search tree: _
o b is the branching factor m tiers <
O m is the maximum depth
o solutions at various depths
nodes

o Number of nodes in entire tree?
O 1+b+b2+....bm=0(bm)

o

Depth-First Search (DFS) Properties

o What nodes DFS expand?

o Some left prefix of the tree. 1 node
o Could process the whole tree! b nodes
o If m is finite, takes time O(bm)
b2 nodes
o How much space does the fringe take? m tiers <
o Only has siblings on path to root, so O(bm)
o Is it complete?
bm nodes

o m could be infinite, so only if we prevent cycles (more

later)

o Is it optimal?

o No, it finds the “leftmost” solution, regardless of depth
or cost

Breadth-First Search

Strategy: expand a
shallowest node first

Implementation:
Fringe is a FIFO
queue

Breadth-First Search

Search
Tiers <

Breadth-First Search (BFS) Properties

o What nodes does BFS expand?

o Processes all nodes above shallowest solution

o Let depth of shallowest solution be s
o Search takes time O(bs)

© How much space does the fringe take?

o Has roughly the last tier, so O(bs)

o Is it complete?

o s must be finite if a solution exists, so yes! (if no

solution, still need depth !=)

O Is it optimal?

O Only if costs are all 1 (more on costs later)

S tiers

<

1 node
b nodes

b2 nodes

bs nodes

bm nodes

Video of Demo Maze Water DFS/BFS (part 1)

® 00O Search Strategies Demo

Video of Demo Maze Water DFS/BFS (part 2)

® 00O Search Strategies Demo

Iterative Deepening

o Idea: get DFS’s space advantage with
BFS’s time / shallow-solution advantages
© Run a DFS with depth limit 1. If no solution...
o Run a DFS with depth limit 2. If no solution...
© Run a DFS with depth limit 3.

/>

o Isn’t that wastefully redundant?

o Generally most work happens in the lowest
level searched, so not so bad! .

Cost-Sensitive Search

oy
5 4‘
== oAV

Cost-Sensitive Search
&
() (F—s]
(5

START =
1 4 2
P 15 4 ‘
q

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

How?

Uniform Cost Search

Uniform Cost Search

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Cost
contours

O

O

Uniform Cost Search (UCS) Properties

What nodes does UCS expand?

o Processes all nodes with cost less than cheapest solution!

o If that solution costs C* and arcs cost at least ¢ , then the “effective
depth” is roughly C*%

o Takes time O(bC*%) (exponential in effective depth)

How much space does the fringe take?
o Has roughly the last tier, so O(bC*)

Is it complete?

o Assuming best solution has a finite cost and minimum arc cost is
positive, yes! (if no solution, still need depth !=)

Is it optimal?
o Yes! (Proof via A*)

Uniform Cost Issues

o Remember: UCS explores increasing cost
contours

o The good: UCS is complete and optimal!

o The bad:

o Explores options in every “direction”
o No information about goal location

o We'll fix that soon!

Video of Demo Empty UCS

® OO Search Strategies Demo

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
1)

® 00 Search Strategies Demo

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
2)

‘® 00 Search Strategies Demo

A

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
3)

‘® 00 Search Strategies Demo x

The One Queue

o All these search algorithms are the .
same except for fringe strategies LQ D\Pl \QO\QL.‘,_\E’\‘M’\. \ﬂ

o Conceptually, all fringes are priority
queues (i.e. collections of nodes with
attached priorities)

o Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

o Can even code one implementation
that takes a variable queuing object

Up next: Informed Search

O Uninformed Search » Informed Search
o DFS » Heuristics
o BFS = Greedy Search
o UCS = A* Search

= Graph Search

noPe. () GoAL!

Search Heuristics

= A heuristic is:

= A function that estimates how close a state is to a goal A:;\\G"}\

= Designed for a particular search problem
= Pathing?

= Examples: Manhattan distance, Euclidean distance for

>
Heuriski —Tron J

< -—-f '
l >

Heuristi — Tron J

Arad

Example: Heuristic Function

92
99 Fagaras

] Vaslui

Rimnicu Vilcea

Pitesti

98
] Hirsova

86

] Mehadia Urziceni

75
Bucharest

Dobreta []

L Eforie
(] Giurgiu

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
lasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

ﬁtraight—line distance \

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

J

h(X)

Greedy Search

Greedy Search

Sibiu 99 Fagaras

Rimnicu Vilcea

Timisoara

o Expand the node that seems closest...

[] Mehadia

75
Arad

Dobreta []

Eforie

253 0

o Is it optimal?
o No. Resulting path to Bucharest is not the shortest!

Greedy Search

O Strategy: expand a node that you think is
closest to a goal state

O Heuristic: estimate of distance to nearest goal
for each state

O A common case:
O Best-first takes you straight to the (wrong) goal

O Worst-case: like a badly-guided DFS

Video of Demo Contours Greedy (Empty)

B S 0O C h Strategies Demo

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

A* Search

Combining UCS and Greedy

o Uniform-cost orders by path cost, or backward cost g(n)
o Greedy orders by goal proximity, or forward cost h(n)

0 A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

When should A* terminate?

o Should we stop when we enqueue a goal?

L e
@/@\@

hen wellddqueue a goal

=213
2 (B) 3 —
S->B->G 50
© No: only st =

5->A->G 404,

Is A* Optimal?

o What went wrong?
o Actual bad goal cost < estimated good goal cost
o We need estimates to be less than actual costs!

Idea: Admissibility

Heuristi - Tron @

Admissible (optimisgic) heuristics
break optimality by trapping slow down bad plans but
good plans on the fringe never outweigh true costs

Admissible Heuristics

where (n)s the true cost to a nearestgoal

- - O.O

o Coming up with admissible heuristics is most of what’s involved in
using A* in practice.

o Examples:

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:
o Ais an optimal goal node
o B is a suboptimal goal node

O h is admissible

Claim:

o A will exit the fringe before B

Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe

O Some ancestor n of A is on the fringe,
too (maybe Al!)

o Claim: n will be expanded before B

1. f(n)is less or equal to f(Ak

\
f(n) = -I-@ Definition of f-cost
f(n) < Admissibility of h
g(A) = f(A) h =0 at a goal
\ J

Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe

O Some ancestor n of A is on the
fringe, too (maybe A!)

o Claim: n will be expanded before B

1. f(n)is less or equal to f(A)

g

-——

2. f(A)is less than f(B)

g(A) < g(B)
f(A) < f(B)

B is suboptimal
h =0 at a goal

\

J

Optimality of A* Tree Search: Blocking

Proot:
o Imagine B is on the fringe

0 Some ancestor 1 of A is on the fringe, too
(maybe Al)

o Claim: n will be expanded before B
1. f(n)is less or equal to f(A)
2. f@rg less than f(B) }
3. nexpands before B —,

o All ancestors of A expand b

o A expands before B

O A* search is optimal

f(n) < f(A) < f(B) }

Properties of A*

Uniform-Cost

UCS vs A* Contours

o Uniform-cost expands equally in

all “directions” 0
- 4 ;0al

0 A* expands mainly toward the

oal, but does hedge its bets to
5 5 Staroal

ensure optimality

Comparison

SCORE: 0

SCORE: 0

Greedy Uniform Cost A*

Video of Demo Contours (Empty) -- UCS

® O O Search Strategies Demo

Video of Demo Contours (Empty) -- Greedy

® O O Search Strategies Demo

Video of Demo Contours (Empty) — A*

® O O Search Strategies Demo

Video of Demo Contours (Pacman Small Maze) — A*

Which algorithm?

SCORE:

Which algorithm?

A*: Summary

A*: Summary

o A* uses both backward costs and (estimates of) forward
costs

o A*is optimal with admissible (optimistic) heuristics

O Heuristic design is key: often use relaxed problems

=
& 2 @% o
— = Sk -— e ——— s — ———

Video of Demo Empty Water Shallow /Deep
— Guess Algorithm

e T T |

File Edit Nawgaste Search Project Run Window |elp

[~ -0 -Q- - - - - P Y= T/ [Pyder | &0 Team

1 search -- plan Liny astar

2 search - plan tryy ucs

on

3 search demo empty

4 search - Ccontours greedy v ucs (greedy)
S search - cantours greedy vs ucs (ucs)

6 search -- contours greedy vs ucs (astar)

I search - greedy bad

8 search -« greedy good

9 search demo maze

search :{:?vu costs

Run Ay »

L5512 ELSLLN 0N

Run Canrfigurations

Organize Favorites

J) Console ® % n—‘r‘—” il = I v Ll
<terminated> 1 5

I9Tal cosr: 27 -

Nurber of nodea expanded: 182

Nunber of unigue nodes expanded: 182
Facman energes victorious! Scere: 573
{'numKilla’: [0], 'resulta': ['Win’'), 'numMoven': [27], ‘'scorea’': [S573

11:54 AM

.II" ‘.\ '

Creating Heuristics

YOu GOT

HEURISTILC
UFGRADE!

Creating Admissible Heuristics

o Most of the work in solving hard search problems optimally is in coming up with
admissible heuristics

o Often, admissible heuristics are solutions to relaxed problems, where new actions are
available

Example: 8 Puzzle

371
2 %5
o ka2

TN

-7

Start State Actions

o What are the states?
© How many states?

© What are the actions? Admissibleh
o How many successors from the start state?

ST
o What should the costs be? euristics:

8 Puzzle 1

O Heuristic: Number of tiles misplace
© Why is it admissible?
o h(start) 8

O This is a relaxed-problem heuristic

Start State Goal State

Average nodes expanded

w/heg@;ppﬁmél ath has...
\\8 stepsTa 12 steps

.4 steps\

ucs | SED—16,300>)] 3.6 x 10¢
TILES | 13 | 39 1272

/
Statistics from Andrew Moore

8 Puzzle Il

What if we had an easier 8-puzzle

where any tile could slide any direction

at any time, ignoring other tiles?
Total Manhattan distance

g

h(start)

o8
83 1]

3
6

Goal State

Average nodes expanded
when the optimal path has...

...4 steps|...8 steps|...12 steps
TILES 13 39 | (227>
MANHATTAN 12 25

8 Puzzle III

© How about using the actual cost as a heuristic?
© Would it be admissible?

o Would we save on nodes expanded? '] m
© What's wrong with it? - Y e

o With A*: a trade-off between quality of estimate and work per node

O As heuristics get closer to the true cost, you will expand fewer nodes but
usually do more work per node to compute the heuristic itself

Example: Pancake Problem

o Cost: Number of pancakes

o Action: Flip over top n pancakes %

Fun Fact: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES
Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*Y
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978
Revised 28 August 1978

For a permutation o of the integers from 1 to n, let f(o) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(o)
for all ¢ in (the symmetric group) S,. We show that f(n)=(5n +5)/3, and that f(n)= 17n/16 for
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2—-1=g(n)=2n+3.

Pancake Problem

O State graph with costs as weights

— . T,
Foo N
* = ~3_
AN T
2 — S
—_ /,:3———’/

Example: Heuristic Function

Heuristic?
E.g. the number of the largest pancake that is still out of place
3 ==
4 — — I h(X)
4 —— 3 — \ o
P — i D=
T = / \
4 — . 3 —
! 4 ~_,
A

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

O Heuristics form a semi-lattice:

o Max of admissible heuristics is admissible

h(n) = max(ha(n), hp(n))

O Trivial heuristics

o Bottom of lattice is the zero heuristic (what
does this give us?)

o Top of lattice is the exact heuristic

Graph Search

Tree Search: Extra Work!

O Failure to detect repeated states can cause exponentially more work.

/A

State G

r”y- h

Graph Search

o In BFS, for example, we shouldn’t bother expanding the circled nodes
(why?)

O

O

Graph Search

Idea: never expand a state twice

How to implement:

o Tree search + set of expanded states (“closed set”)
o Expand the search tree node-by-node, but...

o Before expanding a node, check to make sure its state has never been
expanded before

o If not new, skip it, if new add to closed set

Important: store the closed set as a set, not a list
Can graph search wreck completeness? Why/why not?

How about optimality?

A* Graph Search Gone Wrong?

State space graph Search tree
5(0+2)
A
Afl+4) B(1+1)
= |
\) €3+

Consistency of Heuristics

O Main idea: estimated heuristic costs < actual costs
o Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from A to G
o Consistency: heuristic “arc” cost < actual cost for each arc
h(A) - h(C) < cost(A to C)
o Consequences of consistency:
o The f value along a path never decreases
h(A) < cost(A to C) + h(C)

o A* graph search is optimal
/

—

Optimality of A* Search

© With an admissible heuristic, Tree A* is optimal.

o With a consistent heuristic, Graph A* is optimal.

o With h=0, the same proof shows that UCS is optimal.

Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure
fringe - INSERT(MAKE-NODE(INITIAL-STATE[problem]|), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node|) then return node

for child-node in EXPAND(STATE|node|, problem) do
fringe <— INSERT(child-node, fringe)
end
end

function GRAPH-SETRS
an empty set
E-NODE(INITIAL-STATE([problem]), fringe)

roblem, fringe) return a solution, or failure

loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node|) then return node

if STATE[node| is not in closed then
add STATE[node| to closed
for child-node in EXPAND(STATE|node|, problem) do
fringe <— INSERT(child-node, fringe)
end
end

A* Applications

o Video games

o Pathing / routing problems
o Resource planning problems
© Robot motion planning

o Language analysis

0 Machine translation

o Speech recognition

O ...

A* in Recent Literature

o Joint A* CCG Parsing and 5 JaAWAY L/P SN
Semantic Role Labeling (EMLN"15) T P\ M

o Diagram
Understanding (ECCV’17)

: Cuetiory. FFOM e abovaTood web diagram, what willTead To an Incrassa T th population
Vh.mpleanice mdm?qmm in bon b decrease in plants ¢ decrease in om o incredse n pla

Search and Models

O Search operates over
models of the world

© The agent doesn’t
actually try all the plans
out in the real world!

o Planning is all “in
simulation”

© Your search is only as
good as your models...

Search Gone Wrong?

ICELAND

k) e’
Biaw's'ta%:'BELARUS,'V
POLAND :;‘,..--K-w

km 500 1000
mi 200 400 600

Start: Haugesund, Rogaland, Norway

End: Trondheim, Ser-Trendelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

nrk. no.f'allridmo'ro

