
CSE 473: Introduction to
Artificial Intelligence 

Hanna Hajishirzi
Search  

(Un-informed, Informed Search)

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettelmoyer

To Do:

o Python practice (PS0)
oWon’t be graded

o Check out PS1 in the webpage
o Start ASAP
o Submission: Canvas

o Website:
oDo readings for search algorithms
o Try this search visualization tool

ohttp://qiao.github.io/PathFinding.js/visual/

Recap: Search

Search

o Search problem:
o States (abstraction of the world)
o Actions (and costs)
o Successor function (world dynamics):

o {s’|s,a->s’}
o Start state and goal test

Depth-First Search

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp
h

fd

b
a

c

e

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties
o Complete: Guaranteed to find a solution if one exists?

o Return in finite time if not?
o Optimal: Guaranteed to find the least cost path?
o Time complexity?
o Space complexity?

o Cartoon of search tree:
o b is the branching factor
o m is the maximum depth
o solutions at various depths

o Number of nodes in entire tree?
o 1 + b + b2 + …. bm = O(bm)

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

Depth-First Search (DFS) Properties
o What nodes DFS expand?

o Some left prefix of the tree.
o Could process the whole tree!
o If m is finite, takes time O(bm)

o How much space does the fringe take?
o Only has siblings on path to root, so O(bm)

o Is it complete?
o m could be infinite, so only if we prevent cycles (more

later)

o Is it optimal?
o No, it finds the “leftmost” solution, regardless of depth

or cost

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

Breadth-First Search

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation:
Fringe is a FIFO
queue

Breadth-First Search (BFS) Properties
o What nodes does BFS expand?

o Processes all nodes above shallowest solution
o Let depth of shallowest solution be s
o Search takes time O(bs)

o How much space does the fringe take?
o Has roughly the last tier, so O(bs)

o Is it complete?
o s must be finite if a solution exists, so yes! (if no

solution, still need depth != ∞)

o Is it optimal?
o Only if costs are all 1 (more on costs later)

…
b

1 node
b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Video of Demo Maze Water DFS/BFS (part 1)

Video of Demo Maze Water DFS/BFS (part 2)

Iterative Deepening

o Idea: get DFS’s space advantage with
BFS’s time / shallow-solution advantages
o Run a DFS with depth limit 1. If no solution…
o Run a DFS with depth limit 2. If no solution…
o Run a DFS with depth limit 3. …..

o Isn’t that wastefully redundant?
o Generally most work happens in the lowest

level searched, so not so bad!

…
b

Cost-Sensitive Search

START

GOAL

d

b

p
q

c

e

h

a

f

r

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

How?

Uniform Cost Search

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost
contours

2

…

Uniform Cost Search (UCS) Properties
o What nodes does UCS expand?

o Processes all nodes with cost less than cheapest solution!
o If that solution costs C* and arcs cost at least ε , then the “effective

depth” is roughly C*/ε
o Takes time O(bC*/ε) (exponential in effective depth)

o How much space does the fringe take?
o Has roughly the last tier, so O(bC*/ε)

o Is it complete?
o Assuming best solution has a finite cost and minimum arc cost is

positive, yes! (if no solution, still need depth != ∞)

o Is it optimal?
o Yes! (Proof via A*)

b

C*/ε “tiers”
c ≤ 3

c ≤ 2

c ≤ 1

Uniform Cost Issues

o Remember: UCS explores increasing cost
contours

o The good: UCS is complete and optimal!

o The bad:
o Explores options in every “direction”
o No information about goal location

o We’ll fix that soon!

Start Goal

…

c ≤ 3
c ≤ 2

c ≤ 1

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
3)

The One Queue

o All these search algorithms are the
same except for fringe strategies
o Conceptually, all fringes are priority

queues (i.e. collections of nodes with
attached priorities)

o Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

o Can even code one implementation
that takes a variable queuing object

Up next: Informed Search

o Uninformed Search
o DFS
o BFS
o UCS

▪ Informed Search
▪ Heuristics
▪ Greedy Search
▪ A* Search
▪ Graph Search

Search Heuristics
▪ A heuristic is:

▪ A function that estimates how close a state is to a goal
▪ Designed for a particular search problem
▪ Pathing?
▪ Examples: Manhattan distance, Euclidean distance for

pathing

10

5

11.2

Example: Heuristic Function

h(x)

Greedy Search

Greedy Search

o Expand the node that seems closest…

o Is it optimal?
o No. Resulting path to Bucharest is not the shortest!

Greedy Search

o Strategy: expand a node that you think is
closest to a goal state
o Heuristic: estimate of distance to nearest goal

for each state

o A common case:
o Best-first takes you straight to the (wrong) goal

o Worst-case: like a badly-guided DFS

…
b

…
b

Video of Demo Contours Greedy (Empty)

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

A* Search

UCS Greedy

A*

Combining UCS and Greedy
o Uniform-cost orders by path cost, or backward cost g(n)
o Greedy orders by goal proximity, or forward cost h(n)

o A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0
c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

ed

dG

G

g = 0
h=6

g = 1
h=5

g = 2
h=6

g = 3
h=7

g = 4
h=2

g = 6
h=0

g = 9
h=1

g = 10
h=2

g = 12
h=0

When should A* terminate?

o Should we stop when we enqueue a goal?

oNo: only stop when we dequeue a goal

S

B

A

G

2

3

2

2
h = 1

h = 2

h = 0h = 3

S 0 3 3

 g h +

S->A 2 2 4

S->B 2 1 3

S->B->G 5 0 5

S->A->G 4 0 4

Is A* Optimal?

o What went wrong?
o Actual bad goal cost < estimated good goal cost
o We need estimates to be less than actual costs!

A

GS

1 3
h = 6

h = 0

5

h = 7

 g h +

S 0 7 7
S->A 1 6 7
S->G 5 0 5

Idea: Admissibility

Inadmissible (pessimistic) heuristics
 break optimality by trapping

good plans on the fringe

Admissible (optimistic) heuristics
slow down bad plans but
 never outweigh true costs

Admissible Heuristics
o A heuristic h is admissible (optimistic) if:

where is the true cost to a nearest goal

o Examples:

o Coming up with admissible heuristics is most of what’s involved in
using A* in practice.

15 11.5
0.0

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:
o A is an optimal goal node
o B is a suboptimal goal node
o h is admissible

Claim:

o A will exit the fringe before B

…

Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe
o Some ancestor n of A is on the fringe,

too (maybe A!)
o Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

Definition of f-cost
Admissibility of h

…

h = 0 at a goal

Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe
o Some ancestor n of A is on the

fringe, too (maybe A!)
o Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)

B is suboptimal
h = 0 at a goal

…

Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe
o Some ancestor n of A is on the fringe, too

(maybe A!)
o Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3. n expands before B

o All ancestors of A expand before B
o A expands before B
o A* search is optimal

…

Properties of A*

…
b

…
b

Uniform-Cost A*

UCS vs A* Contours

o Uniform-cost expands equally in
all “directions”

o A* expands mainly toward the
goal, but does hedge its bets to
ensure optimality

Start Goal

Start Goal

Comparison

Greedy Uniform Cost A*

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) – A*

Video of Demo Contours (Pacman Small Maze) – A*

Which algorithm?

Which algorithm?

A*: Summary

A*: Summary

o A* uses both backward costs and (estimates of) forward
costs

o A* is optimal with admissible (optimistic) heuristics

o Heuristic design is key: often use relaxed problems

Video of Demo Empty Water Shallow/Deep  
 – Guess Algorithm

Creating Heuristics

Creating Admissible Heuristics
o Most of the work in solving hard search problems optimally is in coming up with

admissible heuristics

o Often, admissible heuristics are solutions to relaxed problems, where new actions are
available

o Inadmissible heuristics are often useful too

15
366

Example: 8 Puzzle

o What are the states?
o How many states?
o What are the actions?
o How many successors from the start state?
o What should the costs be?

Start State Goal StateActions

Admissibleh
euristics?

8 Puzzle I
o Heuristic: Number of tiles misplaced
o Why is it admissible?
o h(start) =
o This is a relaxed-problem heuristic

8

Average nodes expanded
when the optimal path has…
…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore

8 Puzzle II

o What if we had an easier 8-puzzle
where any tile could slide any direction
at any time, ignoring other tiles?

o Total Manhattan distance

o Why is it admissible?

o h(start) =
3 + 1 + 2 + … = 18

Average nodes expanded
when the optimal path has…
…4 steps …8 steps …12 steps

TILES 13 39 227
MANHATTAN 12 25 73

Start State Goal State

8 Puzzle III

o How about using the actual cost as a heuristic?
o Would it be admissible?
o Would we save on nodes expanded?
o What’s wrong with it?

o With A*: a trade-off between quality of estimate and work per node
o As heuristics get closer to the true cost, you will expand fewer nodes but

usually do more work per node to compute the heuristic itself

Example: Pancake Problem
o Action: Flip over top n pancakes

o Cost: Number of pancakes

Fun Fact: Pancake Problem

Pancake Problem

o State graph with costs as weights

Example: Heuristic Function
Heuristic?

E.g. the number of the largest pancake that is still out of place

4
3

0

2

3

3

3

4

4

3

4

4

4

h(x)

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

o Dominance: ha ≥ hc if

o Heuristics form a semi-lattice:
o Max of admissible heuristics is admissible

o Trivial heuristics
o Bottom of lattice is the zero heuristic (what

does this give us?)
o Top of lattice is the exact heuristic

Graph Search

Tree Search: Extra Work!
o Failure to detect repeated states can cause exponentially more work.

Search TreeState Graph

Graph Search

o In BFS, for example, we shouldn’t bother expanding the circled nodes
(why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Graph Search
o Idea: never expand a state twice

o How to implement:

o Tree search + set of expanded states (“closed set”)
o Expand the search tree node-by-node, but…
o Before expanding a node, check to make sure its state has never been

expanded before
o If not new, skip it, if new add to closed set

o Important: store the closed set as a set, not a list

o Can graph search wreck completeness? Why/why not?

o How about optimality?

A* Graph Search Gone Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4
h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

State space graph Search tree

Closed Set:S B C A

Consistency of Heuristics
o Main idea: estimated heuristic costs ≤ actual costs

o Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

o Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

o Consequences of consistency:

o The f value along a path never decreases

 h(A) ≤ cost(A to C) + h(C)

o A* graph search is optimal3

A

C

G

h=4 h=1
1

h=2

Optimality of A* Search

o With an admissible heuristic, Tree A* is optimal.
o With a consistent heuristic, Graph A* is optimal.
o With h=0, the same proof shows that UCS is optimal.

Pseudo-Code

A* Applications

o Video games
o Pathing / routing problems
o Resource planning problems
o Robot motion planning
o Language analysis
o Machine translation
o Speech recognition
o …

A* in Recent Literature

o Joint A* CCG Parsing and  
Semantic Role Labeling (EMLN’15)

o Diagram  
Understanding (ECCV’17)

Search and Models

o Search operates over
models of the world
o The agent doesn’t

actually try all the plans
out in the real world!

o Planning is all “in
simulation”

oYour search is only as
good as your models…

Search Gone Wrong?

