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To Do: 

o Python practice (PS0)
oWon’t be graded

o Check out PS1 in the webpage
o Start ASAP
o Submission: Canvas

o Website: 
oDo readings for search algorithms
o Try this search visualization tool

ohttp://qiao.github.io/PathFinding.js/visual/



Recap: Search



Search

o Search problem:
o States (abstraction of the world)
o Actions (and costs)
o Successor function (world dynamics):

o {s’|s,a->s’}
o Start state and goal test



Depth-First Search



Depth-First Search
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Strategy: expand a 
deepest node first 

Implementation: 
Fringe is a LIFO stack



Search Algorithm Properties



Search Algorithm Properties
o Complete: Guaranteed to find a solution if one exists? 

o Return in finite time if not?
o Optimal: Guaranteed to find the least cost path?
o Time complexity?
o Space complexity?

o Cartoon of search tree:
o b is the branching factor
o m is the maximum depth
o solutions at various depths

o Number of nodes in entire tree?
o 1 + b + b2 + …. bm = O(bm)

…
b

1 node
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b2 nodes

bm nodes

m tiers



Depth-First Search (DFS) Properties
o What nodes DFS expand?

o Some left prefix of the tree.
o Could process the whole tree!
o If m is finite, takes time O(bm)

o How much space does the fringe take?
o Only has siblings on path to root, so O(bm)

o Is it complete?
o m could be infinite, so only if we prevent cycles (more 

later)

o Is it optimal?
o No, it finds the “leftmost” solution, regardless of depth 

or cost

…
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Breadth-First Search



Breadth-First Search
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Search 

Tiers

Strategy: expand a 
shallowest node first 

Implementation: 
Fringe is a FIFO 
queue



Breadth-First Search (BFS) Properties
o What nodes does BFS expand?

o Processes all nodes above shallowest solution
o Let depth of shallowest solution be s
o Search takes time O(bs)

o How much space does the fringe take?
o Has roughly the last tier, so O(bs)

o Is it complete?
o s must be finite if a solution exists, so yes! (if no 

solution, still need depth != ∞)

o Is it optimal?
o Only if costs are all 1 (more on costs later)

…
b

1 node
b nodes

b2 nodes

bm nodes

s tiers

bs nodes



Video of Demo Maze Water DFS/BFS (part 1)



Video of Demo Maze Water DFS/BFS (part 2)



Iterative Deepening

o Idea: get DFS’s space advantage with 
BFS’s time / shallow-solution advantages
o Run a DFS with depth limit 1.  If no solution…
o Run a DFS with depth limit 2.  If no solution…
o Run a DFS with depth limit 3.  …..

o Isn’t that wastefully redundant?
o Generally most work happens in the lowest 

level searched, so not so bad!

…
b



Cost-Sensitive Search
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Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path.  We will now cover
a similar algorithm which does find the least-cost path.  
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Uniform Cost Search



Uniform Cost Search
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…

Uniform Cost Search (UCS) Properties
o What nodes does UCS expand?

o Processes all nodes with cost less than cheapest solution!
o If that solution costs C* and arcs cost at least ε , then the “effective 

depth” is roughly C*/ε
o Takes time O(bC*/ε) (exponential in effective depth)

o How much space does the fringe take?
o Has roughly the last tier, so O(bC*/ε)

o Is it complete?
o Assuming best solution has a finite cost and minimum arc cost is 

positive, yes! (if no solution, still need depth != ∞)

o Is it optimal?
o Yes!  (Proof via A*)

b

C*/ε  “tiers”
c ≤ 3

c ≤ 2

c ≤ 1



Uniform Cost Issues

o Remember: UCS explores increasing cost 
contours

o The good: UCS is complete and optimal!

o The bad:
o Explores options in every “direction”
o No information about goal location

o We’ll fix that soon!

Start Goal

…

c ≤ 3
c ≤ 2

c ≤ 1



Video of Demo Empty UCS



Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 
1)



Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 
2)



Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 
3)



The One Queue

o All these search algorithms are the 
same except for fringe strategies
o Conceptually, all fringes are priority 

queues (i.e. collections of nodes with 
attached priorities)

o Practically, for DFS and BFS, you can 
avoid the log(n) overhead from an 
actual priority queue, by using stacks 
and queues

o Can even code one implementation 
that takes a variable queuing object



Up next: Informed Search

o Uninformed Search
o DFS
o BFS
o UCS

▪ Informed Search 
▪ Heuristics 
▪ Greedy Search 
▪ A* Search 
▪ Graph Search



Search Heuristics
▪ A heuristic is:

▪ A function that estimates how close a state is to a goal
▪ Designed for a particular search problem
▪ Pathing? 
▪ Examples: Manhattan distance, Euclidean distance for 

pathing

10
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11.2



Example: Heuristic Function

h(x)



Greedy Search



Greedy Search

o Expand the node that seems closest…

o Is it optimal?
o No. Resulting path to Bucharest is not the shortest!



Greedy Search

o Strategy: expand a node that you think is 
closest to a goal state
o Heuristic: estimate of distance to nearest goal 

for each state

o A common case:
o Best-first takes you straight to the (wrong) goal

o Worst-case: like a badly-guided DFS

…
b

…
b



Video of Demo Contours Greedy (Empty)



Video of Demo Contours Greedy (Pacman Small Maze)



A* Search



A* Search

UCS Greedy

A*



Combining UCS and Greedy
o Uniform-cost orders by path cost, or backward cost  g(n)
o Greedy orders by goal proximity, or forward cost  h(n)

o A* Search orders by the sum: f(n) = g(n) + h(n)
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When should A* terminate?

o Should we stop when we enqueue a goal?

oNo: only stop when we dequeue a goal
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Is A* Optimal?

o What went wrong?
o Actual bad goal cost < estimated good goal cost
o We need estimates to be less than actual costs!
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Idea: Admissibility

Inadmissible (pessimistic) heuristics
 break optimality by trapping 

good plans on the fringe

Admissible (optimistic) heuristics 
slow down bad plans but
 never outweigh true costs



Admissible Heuristics
o A heuristic h is admissible (optimistic) if:

where               is the true cost to a nearest goal

o Examples:

o Coming up with admissible heuristics is most of what’s involved in 
using A* in practice.

15 11.5
0.0



Optimality of A* Tree Search



Optimality of A* Tree Search

Assume:
o A is an optimal goal node
o B is a suboptimal goal node
o h is admissible

Claim:

o A will exit the fringe before B

…



Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe
o Some ancestor n of A is on the fringe, 

too (maybe A!)
o Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

Definition of f-cost
Admissibility of h

…

h = 0 at a goal



Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe
o Some ancestor n of A is on the 

fringe, too (maybe A!)
o Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)

B is suboptimal
h = 0 at a goal

…



Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe
o Some ancestor n of A is on the fringe, too 

(maybe A!)
o Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3.  n expands before B

o All ancestors of A expand before B
o A expands before B
o A* search is optimal

…



Properties of A*

…
b

…
b

Uniform-Cost A*



UCS vs A* Contours

o Uniform-cost expands equally in 
all “directions”

o A* expands mainly toward the 
goal, but does hedge its bets to 
ensure optimality

Start Goal

Start Goal



Comparison

Greedy Uniform Cost A*



Video of Demo Contours (Empty) -- UCS



Video of Demo Contours (Empty) -- Greedy



Video of Demo Contours (Empty) – A*



Video of Demo Contours (Pacman Small Maze) – A*



Which algorithm?



Which algorithm?



A*: Summary



A*: Summary

o A* uses both backward costs and (estimates of) forward 
costs

o A* is optimal with admissible (optimistic) heuristics

o Heuristic design is key: often use relaxed problems



Video of Demo Empty Water Shallow/Deep  
 – Guess Algorithm



Creating Heuristics



Creating Admissible Heuristics
o Most of the work in solving hard search problems optimally is in coming up with 

admissible heuristics

o Often, admissible heuristics are solutions to relaxed problems, where new actions are 
available

o Inadmissible heuristics are often useful too

15
366



Example: 8 Puzzle

o What are the states?
o How many states?
o What are the actions?
o How many successors from the start state?
o What should the costs be?

Start State Goal StateActions

Admissibleh
euristics?



8 Puzzle I
o Heuristic: Number of tiles misplaced
o Why is it admissible?
o h(start) =
o This is a relaxed-problem heuristic

8

Average nodes expanded 
when the optimal path has…
…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore



8 Puzzle II

o What if we had an easier 8-puzzle 
where any tile could slide any direction 
at any time, ignoring other tiles?

o Total Manhattan distance

o Why is it admissible?

o h(start) =
3 + 1 + 2 + … = 18

Average nodes expanded 
when the optimal path has…
…4 steps …8 steps …12 steps

TILES 13 39 227
MANHATTAN 12 25 73

Start State Goal State



8 Puzzle III

o How about using the actual cost as a heuristic?
o Would it be admissible?
o Would we save on nodes expanded?
o What’s wrong with it?

o With A*: a trade-off between quality of estimate and work per node
o As heuristics get closer to the true cost, you will expand fewer nodes but 

usually do more work per node to compute the heuristic itself



Example: Pancake Problem
o Action: Flip over top n pancakes

o Cost: Number of pancakes



Fun Fact: Pancake Problem



Pancake Problem

o State graph with costs as weights 



Example: Heuristic Function
Heuristic? 

E.g. the number of the largest pancake that is still out of place
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Semi-Lattice of Heuristics



Trivial Heuristics, Dominance

o Dominance: ha ≥ hc if

o Heuristics form a semi-lattice:
o Max of admissible heuristics is admissible

o Trivial heuristics
o Bottom of lattice is the zero heuristic (what 

does this give us?)
o Top of lattice is the exact heuristic



Graph Search



Tree Search: Extra Work!
o Failure to detect repeated states can cause exponentially more work.  

Search TreeState Graph



Graph Search

o In BFS, for example, we shouldn’t bother expanding the circled nodes 
(why?)
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Graph Search
o Idea: never expand a state twice

o How to implement: 

o Tree search + set of expanded states (“closed set”)
o Expand the search tree node-by-node, but…
o Before expanding a node, check to make sure its state has never been 

expanded before
o If not new, skip it, if new add to closed set

o Important: store the closed set as a set, not a list

o Can graph search wreck completeness?  Why/why not?

o How about optimality?



A* Graph Search Gone Wrong?
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Consistency of Heuristics
o Main idea: estimated heuristic costs ≤ actual costs

o Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

o Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

o Consequences of consistency:

o The f value along a path never decreases

 h(A) ≤ cost(A to C) + h(C)

o A* graph search is optimal3
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Optimality of A* Search

o With an admissible heuristic, Tree A* is optimal.
o With a consistent heuristic, Graph A* is optimal.
o With h=0, the same proof shows that UCS is optimal.



Pseudo-Code



A* Applications

o Video games
o Pathing / routing problems
o Resource planning problems
o Robot motion planning
o Language analysis
o Machine translation
o Speech recognition
o …



A* in Recent Literature

o Joint A* CCG Parsing and  
Semantic Role Labeling (EMLN’15)

o Diagram  
Understanding (ECCV’17)



Search and Models

o Search operates over 
models of the world
o The agent doesn’t 

actually try all the plans 
out in the real world!

o Planning is all “in 
simulation”

oYour search is only as 
good as your models…



Search Gone Wrong?


