CSE 473: Introduction to Artificial Intelligence

Hanna Hajishirzi
Bayes Nets

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettelmoyer
Probabilistic Models

- Models describe how (a portion of) the world works.

- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - “All models are wrong; but some are useful.”
 – George E. P. Box

- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
Independence
Two variables are independent if:

\[P(x, y) = P(x)P(y) \]

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

\[P(x|y) = P(x) \]

- We write: \(X \perp\!\!\!\!\!\!\!\!\!\!\perp Y \)

Independence is a simplifying modeling assumption

- Empirical joint distributions: at best “close” to independent
- What could we assume for \{Weather, Traffic, Cavity, Toothache\}?
Example: Independence?

P(T, W) = P(T) * P(W)

$P(T)$:

<table>
<thead>
<tr>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>0.5</td>
</tr>
<tr>
<td>cold</td>
<td>0.5</td>
</tr>
</tbody>
</table>

$P(W)$:

<table>
<thead>
<tr>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.6</td>
</tr>
<tr>
<td>rain</td>
<td>0.4</td>
</tr>
</tbody>
</table>

$P_1(T, W)$:

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

$P_2(T, W)$:

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.3</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.3</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Example: Independence

- N fair, independent coin flips:

\[
P(X_1) = \begin{array}{c|c}
H & 0.5 \\
T & 0.5 \\
\end{array}
\quad P(X_2) = \begin{array}{c|c}
H & 0.5 \\
T & 0.5 \\
\end{array}
\quad \ldots
\quad P(X_n) = \begin{array}{c|c}
H & 0.5 \\
T & 0.5 \\
\end{array}
\]

\[
P(X_1, X_2, \ldots, X_n)
\]

\[2^n\]
Conditional Independence
Conditional Independence

- $P(\text{Toothache, Cavity, Catch})$

- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - $P(+\text{catch} \mid +\text{toothache}, +\text{cavity}) = P(+\text{catch} \mid +\text{cavity})$

- The same independence holds if I don’t have a cavity:
 - $P(+\text{catch} \mid +\text{toothache}, -\text{cavity}) = P(+\text{catch} \mid -\text{cavity})$

- Catch is conditionally independent of Toothache given Cavity:
 - $P(\text{Catch} \mid \text{Toothache, Cavity}) = P(\text{Catch} \mid \text{Cavity})$

- Equivalent statements:
 - $P(\text{Toothache} \mid \text{Catch, Cavity}) = P(\text{Toothache} \mid \text{Cavity})$
 - $P(\text{Toothache, Catch} \mid \text{Cavity}) = P(\text{Toothache} \mid \text{Cavity}) P(\text{Catch} \mid \text{Cavity})$
 - One can be derived from the other easily
Conditional Independence

- Unconditional (absolute) independence very rare (why?)

- Conditional independence is our most basic and robust form of knowledge about uncertain environments.

- X is conditionally independent of Y given Z if and only if:

\[\forall x, y, z : P(x, y | z) = P(x | z) P(y | z) \]

or, equivalently, if and only if

\[\forall x, y, z : P(x | z, y) = P(x | z) \]
Conditional Independence

- What about this domain:
 - Traffic
 - Umbrella
 - Raining
Conditional Independence

- What about this domain:
 - Fire
 - Smoke
 - Alarm

Fire \perp Alarm
Conditional Independence and the Chain Rule

- Chain rule:
 \[P(X_1, X_2, \ldots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\ldots \]

- Trivial decomposition:
 \[P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain}, \text{Traffic}) \]

- With assumption of conditional independence:
 \[P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain}) \]

- We can represent joint distributions by multiplying these simpler local distributions.
- Bayes’ nets / graphical models help us express conditional independence assumptions.
Bayes’Nets: Big Picture
Bayes’ Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time

- Bayes’ nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we’ll be vague about how these interactions are specified
Example Bayes’ Net: Insurance
Graphical Model Notation

- **Nodes:** variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- **Arcs:** interactions
 - Indicate “direct influence” between variables
 - Formally: encode conditional independence (more later)

- For now: imagine that arrows mean direct causation (in general, they don’t!)
Example: Coin Flips

- \(N \) independent coin flips

- No interactions between variables: \textit{absolute independence}
Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic

- Model 1: independence

- Model 2: rain causes traffic

- Why is an agent using model 2 better?
Example: Traffic II

- **Variables**
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity
Example: Alarm Network

- **Variables**
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!
Example: Alarm Network

- **Variables**
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!
Bayes’ Net Semantics
Bayes’ Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents’ values
 \[P(X|a_1 \ldots a_n) \]
 - CPT: conditional probability table
 - Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities
Probabilities in BNs

- Bayes’ nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

\[
P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(X_i))
\]

- Example:

\[
P(+\text{cavity}, +\text{catch}, -\text{toothache})
\]

\[
= P(-\text{toothache}|+\text{cavity})P(+\text{catch}|+\text{cavity})P(+\text{cavity})
\]
Bayes’ Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents’ values
 \[P(X|a_1 \ldots a_n) \]
- Bayes’ nets explicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:
 \[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]
Probabilities in BNs

- Why are we guaranteed that setting
 \[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]
 results in a proper joint distribution?

- Chain rule (valid for all distributions):
 \[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|x_1 \ldots x_{i-1}) \]

- **Assume** conditional independences:
 \[P(x_i|x_1, \ldots x_{i-1}) = P(x_i|\text{parents}(X_i)) \]

 → Consequence:
 \[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]

- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies
Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Example: Coin Flips

\[
P(h, h, t, h) = P(h)P(h)P(t)P(h)
\]
Example: Traffic

\[P(R) = \begin{array}{c|c}
+r & 1/4 \\
r & 3/4 \\
\end{array} \]

\[P(T|R) = \begin{array}{c|c|c}
+r & +t & 3/4 \\
-t & 1/4 \\
-r & +t & 1/2 \\
-t & 1/2 \\
\end{array} \]

\[P(+r, -t) = P(+t)P(-t|+r) = \frac{1}{4} \times \frac{1}{4} \]
Example: Alarm Network

<table>
<thead>
<tr>
<th>B</th>
<th>P(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+b</td>
<td>0.001</td>
</tr>
<tr>
<td>-b</td>
<td>0.999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>P(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+e</td>
<td>0.002</td>
</tr>
<tr>
<td>-e</td>
<td>0.998</td>
</tr>
</tbody>
</table>

| B | E | A | P(A|B,E) |
|---|---|-----|---------|
| +b | +e | +a | 0.95 |
| +b | +e | -a | 0.05 |
| +b | -e | +a | 0.94 |
| +b | -e | -a | 0.06 |
| -b | +e | +a | 0.29 |
| -b | +e | -a | 0.71 |
| -b | -e | +a | 0.001 |
| -b | -e | -a | 0.999 |

P(M|A)P(J|A)P(A|B,E)

P(B)P(E)
Example: Traffic

- Causal direction

\[P(R) \]

<table>
<thead>
<tr>
<th>+r</th>
<th>-r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>3/4</td>
</tr>
</tbody>
</table>

\[P(T | R) \]

<table>
<thead>
<tr>
<th>+r</th>
<th>+t</th>
<th>-t</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[P(T, R) \]

<table>
<thead>
<tr>
<th>+r</th>
<th>+t</th>
<th>-t</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>-r</th>
<th>+t</th>
<th>-t</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: Reverse Traffic

- Reverse causality?

\[
P(T) \\
\begin{array}{c|c}
 +t & 9/16 \\
 -t & 7/16 \\
\end{array}
\]

\[
P(R|T) \\
\begin{array}{c|cc}
 +t & +r & 1/3 \\
 -t & +r & 1/7 \\
 -r & +r & 2/3 \\
 -r & -r & 6/7 \\
\end{array}
\]

\[
P(T, R) \\
\begin{array}{c|cc}
 +r & +t & 3/16 \\
 +r & -t & 1/16 \\
 -r & +t & 6/16 \\
 -r & -t & 6/16 \\
\end{array}
\]
Causality?

- When Bayes’ nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts

- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation

- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - **Topo{}gy really encodes conditional independence**
 \[P(x_i|x_1, \ldots x_{i-1}) = P(x_i|\text{parents}(X_i)) \]
Bayes’ Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents’ values
 \[P(X|a_1 \ldots a_n) \]
- Bayes’ nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:
 \[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]