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Probabilistic Models

= Models describe how (a portion of) the world works

= Models are always simplifications
= May not account for every variable
= May not account for all interactions between variables

= “All models are wrong; but some are useful.”
— George E. P. Box

= What do we do with probabilistic models?

= We (or our agents) need to reason about unknown
variables, given evidence

= Example: explanation (diagnostic reasoning)
= Example: prediction (causal reasoning)



Independence




Independence

= Two variables are independent if:
Ve Pley) = P@PW ] [0 C%ﬁﬂj
= This says that their joint distribution factors into a product two 0
simpler distributions Q
= Another form: &
va,y : Pzly) = P(x) Y
= Wewrite: X || YV
e - e e

= |ndependence is a simplifying modeling assumption

= Empirical joint distributions: at best “close” to independent

= What could we assume for {Weather, Tﬁiqcavity, Toothache}?
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Example: Independence?
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Example: Independence

= N fair, independent coin flips:

P(X1) P(X2) P(Xn)
H 0.5 H 0.5 . H 0.5
T 0.5 T 0.5 T 0.5
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Conditional Independence




Conditional Independence

= P(Toothache, Cavity, Catch)

= |f | have a cavity, the probability that the probe esin it
doesn't depend on whether | have a toothachg:
= P(+catch | +toothache, +cavity) = P(+catch | +cavity)
zg 9]

= The same independence holds if | don’t have a cavity:
=  P(+catch | +toothache, -cavity) = P(+catch| -cavity)

=

= Catch is conditionally independent of Toothache given Cavity:
=  P(Catch | Toothache, Cavity) = P(Catch | Cavity)

7

= Equivalent statements:
= P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

ﬁ P(Toothache, Catch [ Cavity) = P(Toothache | @ P(Catch |‘Cavit

= One can be derived from the other easily




Conditional Independence

* Unconditional (absolute) independence very rare (why?)

" Conditional independence is our most basic and robust form
of knowledge about uncertain environments.

= X is conditionally independent of Y given Z C){( Y’Z \

if and only if:

Va,y, 2 : P(jt@'/,ylé) = P(z|z)P(y|z)

or, equivalently, if and only if

Va,y,z 1 P(x|z,y) = P(z|2)




Conditional Independence

= What about this domain:

= Raining

= Traffic
= Umbrella —



Conditional Independence

= What about this domain: T —

TR IR
= Fire @/
= Smoke \ — @Mj
& = Alarm /é?@ @&z $LY




Conditional Independence and the Chain Rule

= Chain rule: P(X1,Xo,...Xn) = P(X1)P(X2|X1)P(X3]X1,X2) ...

= Trivial decomposition: ?@fq f"‘/R (%&%c ] RN (Aj Mj

P(Traffic, Rain, Umbrella) = MR l\\ R \ \\ ;;
P(Rain)P(Traffic|Rain)P(UmbreII,Tra FiC) - ,:’f SRR ,
= With assumption of conditional'independence: = _g SE
P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic|Rain) P(Umbrella|Rain)
N

= We can represent joint distributions by multiplying these simpler local distributions.
= Bayes’nets / graphical models help us express conditional independence assumptions




Bayes’Nets: Big Picture




Bayes’ Nets: Big Picture

= Two problems with using full joint distribution tables
as our probabilistic models:

= Unless there are only a few variables, the joint is WAY too
big to represent explicitly

= Hard to learn (estimate) anything empirically about more
than a few variables at a time

= Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local
distributions (conditional probabilities)
= More properly called graphical models
= We describe how variables locally interact

= Local interactions chain together to give global, indirect
interactions

= For about 10 min, we’ll be vague about how these
interactions are specified




Example Bayes’ Net: Insurance




Example Bayes’ Net: Car
)" /

dead

fuel line starter
blocked hroke



Graphical Model Notation

= Nodes: variables (with domains)

= Can be assigned (observed) or unassigned
(unobserved)

" Arcs: interactions
®» |ndicate “direct influence” between variables

= Formally: encode conditional independence
(more later)

" For now: imagine that arrows mean
direct causation (in general, they don’t!)




Example: Coin Flips

" N independent coin flips

G @ @ o |
oo o

" No interactions between variables: absolute independence
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Example: Traffic

= Variables:
= R:ltrains
» T: There is traffic

= Model 1: independence » Model 2: rain causes traffic

® O
@ O

= Why is an agent using model 2 better?



Example: Traffic Il

= \ariables

= T: Traffic
= R:[trains

= L:Low pressure
= D: Roof drips

= B: Ballgame

= C: Cavity




Example: Alarm Network

= Variables
= B: Burglary
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= A: Alarm goes off

= M: Mary calls

= J: John calls
= E: Earthquake!
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Example: Alarm Network

= Variables
= B: Burglary
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= A: Alarm goes off

73%

= M: Mary calls

J: John calls
E: Earthquake!




Bayes’ Net Semantics




Bayes’ Net Semantics

= Aset of nodes, one per variable X

= Adirected, acyclic graph /

= A conditional distribution for each node

= A collection of distributions over X, one for each
combination of parents’ values

P(Xl|aqy...an)

= CPT: conditional probability table

= Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities



Probabilities in BNs

= Bayes’ nets implicitly encode joint distributions
s a product of local conditional distributions

o see what probability a BN gives to a full assignment, multiply all the
relevant conditionals together:

n
P(z1,x2,...xzn) = || P(=z;|parents(X;))
i=1

= Example:

P(+cavity, +catch, ) g

=P(-toothache|+cavyity)P(+catc Jfg;yity) (+cavity)
AT

)
+C (W}



Bayes Net Representation

" Adirected, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A coIIectiop of distributions over X, one for each combination
of parents’ values

P(X|ay...an)
= Bayes netsimplicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

n
P(z1,22,...2n) = || P(z;|parents(X;))
- —1 =~
Z P(X[A7...A)




Probabilities in BNs

= Why are we guaranteed that setting

n
P(z1,x2,...xzn) = || P(=z;|parents(X;))
i=1

results in a proper joint distribution? F(/WQ%A’KCX , >
|

= Chain rule (valid for all distributions): P(x1,20,...2n) = H P(mz|:1;1 L Ti_1)

= Assume conditional independences: mxl,, T 1)_W

— Consequence:  P(zq,zo,...2n) = H P(x;|parents(X;))
i=1

= Not every BN can represent every joint distribution

= The topology enforces certain conditional independencies



Example: Coin Flips

()

P (PO) PO
h |05

h 0.5 . h 0.5
t 0.5 t 0.5

t 0.5

P(h, h,t, h) = P(h)P(h)P(t)P(h)
- = N

Only distributions whose variables are absolutely independent can be
represented by a Bayes ’ net with no arcs.



Example: Traffic

P(R)
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P(B)

0.0014
o

0.999

Example: Alarm Network

Burglary

P(E)
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0.998
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Example: Traffic

= Causal direction

P(R)
+r 1/4 f

-r 3/4 P(T’ R)
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Example: Reverse Traffic

: -
= Reverse causality? P \
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Causality?

= When Bayes’ nets reflect the true causal patterns:

= Often simpler (nodes have fewer parents) 7
= Often easier to think about
= Often easier to elicit from experts

= BNs need not actually be causal

= Sometimes no causal net exists over the domain
(especially if variables are missing)

= E.g. consider the variables Traffic and Drips
= End up with arrows that reflect correlation, not causation

= What do the arrows really mean?

= Topology may happen to encode causal structure
= Topolo ally encodes conditional independence

P(z;|zy, ... 1) = P(=z;|parents(X;))




Bayes Net Representation

= A directed, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A coIIectiop of distributions over X, one for each combination
of parents’ values

P(X|ay...an)
= Bayes’ netsimplicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

mn
P(z1,22,...2n) = || P(z;|parents(X;))
i=1




