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Today	

§  Probability	
§  Random	Variables	
§  Joint	and	Marginal	Distribu+ons	
§  Condi+onal	Distribu+on	
§  Product	Rule,	Chain	Rule,	Bayes’	Rule	
§  Inference	
§  Independence	

§  You’ll	need	all	this	stuff	A	LOT	for	the	
next	few	weeks,	so	make	sure	you	go	
over	it	now!	



Inference	in	Ghostbusters	

§  A	ghost	is	in	the	grid	
somewhere	

§  Sensor	readings	tell	how	
close	a	square	is	to	the	
ghost	
§  On	the	ghost:	red	
§  1	or	2	away:	orange	
§  3	or	4	away:	yellow	
§  5+	away:	green	

P(red	|	3)	 P(orange	|	3)	 P(yellow	|	3)	 P(green	|	3)	
0.05	 0.15	 0.5	 0.3	

§ 		Sensors	are	noisy,	but	we	know	P(Color	|	Distance)	

[Demo:	Ghostbuster	–	no	probability	(L12D1)	]	



Uncertainty	

§  General	situa+on:	

§  Observed	variables	(evidence):	Agent	knows	certain	
things	about	the	state	of	the	world	(e.g.,	sensor	
readings	or	symptoms)	

§  Unobserved	variables:	Agent	needs	to	reason	about	
other	aspects	(e.g.	where	an	object	is	or	what	disease	is	
present)	

§  Model:	Agent	knows	something	about	how	the	known	
variables	relate	to	the	unknown	variables	

§  Probabilis+c	reasoning	gives	us	a	framework	for	
managing	our	beliefs	and	knowledge	



Random	Variables	

§  A	random	variable	is	some	aspect	of	the	world	about	
which	we	(may)	have	uncertainty	

§  R	=	Is	it	raining?	
§  T	=	Is	it	hot	or	cold?	
§  D	=	How	long	will	it	take	to	drive	to	work?	
§  L	=	Where	is	the	ghost?	

§  We	denote	random	variables	with	capital	le?ers	

§  Random	variables	have	domains	
§  R	in	{true,	false}			(ooen	write	as	{+r,	-r})	
§  T	in	{hot,	cold}	
§  D	in	[0,	∞)	
§  L	in	possible	loca+ons,	maybe	{(0,0),	(0,1),	…}	



Probability	Distribu+ons	

§  Associate	a	probability	with	each	value	

§  Temperature:	

T	 P	

hot	 0.5	

cold	 0.5	

W	 P	

sun	 0.6	

rain	 0.1	

fog	 0.3	

meteor	 0.0	

§  Weather:		



	Shorthand	nota+on:	

OK	if	all	domain	entries	are	unique	

Probability	Distribu+ons	

§  Unobserved	random	variables	have	distribu+ons	

§  A	distribu+on	is	a	TABLE	of	probabili+es	of	values	

§  A	probability	(lower	case	value)	is	a	single	number	

§  Must	have:																																																	and	

T	 P	

hot	 0.5	

cold	 0.5	

W	 P	

sun	 0.6	

rain	 0.1	

fog	 0.3	

meteor	 0.0	



Joint	Distribu+ons	
§  A	joint	distribu-on	over	a	set	of	random	variables:	
	specifies	a	real	number	for	each	assignment	(or	outcome):		

§  Must	obey:	

§  Size	of	distribu+on	if	n	variables	with	domain	sizes	d?	

§  For	all	but	the	smallest	distribu+ons,	imprac+cal	to	write	out!	

T	 W	 P	
hot	 sun	 0.4	
hot	 rain	 0.1	
cold	 sun	 0.2	
cold	 rain	 0.3	



Probabilis+c	Models	

§  A	probabilis+c	model	is	a	joint	
distribu+on	over	a	set	of	random	
variables	

§  Probabilis+c	models:	
§  (Random)	variables	with	domains		
§  Assignments	are	called	outcomes	
§  Joint	distribu+ons:	say	whether	
assignments	(outcomes)	are	likely	

§  Normalized:	sum	to	1.0	
§  Ideally:	only	certain	variables	directly	
interact	

	
	

T	 W	 P	
hot	 sun	 0.4	
hot	 rain	 0.1	
cold	 sun	 0.2	
cold	 rain	 0.3	

Distribu+on	over	T,W	



Events	
§  An	event	is	a	set	E	of	outcomes	

 
 

§  From	a	joint	distribu+on,	we	can	
calculate	the	probability	of	any	event	

§  Probability	that	it’s	hot	AND	sunny?	

§  Probability	that	it’s	hot?	

§  Probability	that	it’s	hot	OR	sunny?	
	

§  Typically,	the	events	we	care	about	
are	par-al	assignments,	like	P(T=hot)	

		

T	 W	 P	
hot	 sun	 0.4	
hot	 rain	 0.1	
cold	 sun	 0.2	
cold	 rain	 0.3	



Quiz:	Events	

§  P(+x,	+y)	?	

§  P(+x)	?	

§  P(-y	OR	+x)	?	
	

		

X	 Y	 P	
+x	 +y	 0.2	
+x	 -y	 0.3	
-x	 +y	 0.4	
-x	 -y	 0.1	

=0.2 

0.2+0.3 = 0.5 

0.2+0.3+0.1 = 0.6 



Marginal	Distribu+ons	

§  Marginal	distribu+ons	are	sub-tables	which	eliminate	variables		
§  Marginaliza+on	(summing	out):	Combine	collapsed	rows	by	adding	

T	 W	 P	
hot	 sun	 0.4	
hot	 rain	 0.1	
cold	 sun	 0.2	
cold	 rain	 0.3	

T	 P	
hot	 0.5	
cold	 0.5	

W	 P	
sun	 0.6	
rain	 0.4	



Quiz:	Marginal	Distribu+ons	

X	 Y	 P	
+x	 +y	 0.2	
+x	 -y	 0.3	
-x	 +y	 0.4	
-x	 -y	 0.1	

X	 P	
+x	
-x	

Y	 P	
+y	
-y	

0.5 

0.5 

0.6 

0.4 



Condi+onal	Probabili+es	
§  A	simple	rela+on	between	joint	and	condi+onal	probabili+es	

§  In	fact,	this	is	taken	as	the	defini-on	of	a	condi+onal	probability	

T	 W	 P	
hot	 sun	 0.4	
hot	 rain	 0.1	
cold	 sun	 0.2	
cold	 rain	 0.3	

P(b)	P(a)	

P(a,b)	



Quiz:	Condi+onal	Probabili+es	

X	 Y	 P	
+x	 +y	 0.2	
+x	 -y	 0.3	
-x	 +y	 0.4	
-x	 -y	 0.1	

§  P(+x	|	+y)	?	

§  P(-x	|	+y)	?	

§  P(-y	|	+x)	?	
	

		

0.2 / (0.2+0.4) = 1/3 

0.4 / (0.2+0.4) = 2/3 

0.3 / (0.2+0.3) = 3/5 



Condi+onal	Distribu+ons	

§  Condi+onal	distribu+ons	are	probability	distribu+ons	over	
some	variables	given	fixed	values	of	others	

T	 W	 P	
hot	 sun	 0.4	
hot	 rain	 0.1	
cold	 sun	 0.2	
cold	 rain	 0.3	

W	 P	
sun	 0.8	
rain	 0.2	

W	 P	
sun	 0.4	
rain	 0.6	

Condi+onal	Distribu+ons	 Joint	Distribu+on	



Probabilis+c	Inference	

§  Probabilis+c	inference:	compute	a	desired	
probability	from	other	known	probabili+es	(e.g.	
condi+onal	from	joint)	

§  We	generally	compute	condi+onal	probabili+es		
§  P(on	+me	|	no	reported	accidents)	=	0.90	
§  These	represent	the	agent’s	beliefs	given	the	evidence	

§  Probabili+es	change	with	new	evidence:	
§  P(on	+me	|	no	accidents,	5	a.m.)	=	0.95	
§  P(on	+me	|	no	accidents,	5	a.m.,	raining)	=	0.80	
§  Observing	new	evidence	causes	beliefs	to	be	updated	



Inference	by	Enumera+on	
§  General	case:	

§  Evidence	variables:		
§  Query*	variable:	
§  Hidden	variables:	 All	variables	

*	Works	fine	with	
mul-ple	query	
variables,	too	

§  We	want:	

§  Step	1:	Select	the	
entries	consistent	
with	the	evidence	

§  Step	2:	Sum	out	H	to	get	joint	
of	Query	and	evidence	

§  Step	3:	Normalize	

⇥ 1

Z



Inference	by	Enumera+on	

§  P(W)?	

§  P(W	|	winter)?	

§  P(W	|	winter,	hot)?	

S	 T	 W	 P	
summer	 hot	 sun	 0.30	
summer	 hot	 rain	 0.05	
summer	 cold	 sun	 0.10	
summer	 cold	 rain	 0.05	
winter	 hot	 sun	 0.10	
winter	 hot	 rain	 0.05	
winter	 cold	 sun	 0.15	
winter	 cold	 rain	 0.20	

W	 P	
sun	 0.65	
rain	 0.35	

W	 P	
sun	 0.25	
rain	 0.25	 Z = 0.5 

Normalize W	 P	
sun	 0.5	
rain	 0.5	

W	 P	
sun	 0.1	
rain	 0.05	 Z = 0.15 

Normalize W	 P	
sun	 0.66	
rain	 0.33	



§  Obvious	problems:	

§  Worst-case	+me	complexity	O(dn)		

§  Space	complexity	O(dn)	to	store	the	joint	distribu+on	

Inference	by	Enumera+on	



The	Product	Rule	

§  Some+mes	have	condi+onal	distribu+ons	but	want	the	joint	



The	Product	Rule	

§  Example:	

R	 P	

sun	 0.8	

rain	 0.2	

D	 W	 P	

wet	 sun	 0.1	

dry	 sun	 0.9	

wet	 rain	 0.7	

dry	 rain	 0.3	

D	 W	 P	

wet	 sun	 0.08	

dry	 sun	 0.72	

wet	 rain	 0.14	

dry	 rain	 0.06	



The	Chain	Rule	

§  More	generally,	can	always	write	any	joint	distribu+on	as	an	
incremental	product	of	condi+onal	distribu+ons	

§  Why	is	this	always	true?	



Bayes	Rule	



Bayes’	Rule	

§  Two	ways	to	factor	a	joint	distribu+on	over	two	variables:	

§  Dividing,	we	get:	

§  Why	is	this	at	all	helpful?	

§  Lets	us	build	one	condi+onal	from	its	reverse	
§  Ooen	one	condi+onal	is	tricky	but	the	other	one	is	simple	
§  Founda+on	of	many	systems	we’ll	see	later	(e.g.	ASR,	MT)	

§  In	the	running	for	most	important	AI	equa+on!	

That’s	my	rule!	



Inference	with	Bayes’	Rule	

§  Example:	Diagnos+c	probability	from	causal	probability:	

§  Example:	
§  M:	meningi+s,	S:	s+ff	neck	

§  Note:	posterior	probability	of	meningi+s	s+ll	very	small	
§  Note:	you	should	s+ll	get	s+ff	necks	checked	out!		Why?	

Example	
givens	

P (+s|�m) = 0.01

P (+m|+ s) =
P (+s|+m)P (+m)

P (+s)
=

P (+s|+m)P (+m)

P (+s|+m)P (+m) + P (+s|�m)P (�m)
=

0.8⇥ 0.0001

0.8⇥ 0.0001 + 0.01⇥ 0.9999
= 0.007937

P (+m) = 0.0001
P (+s|+m) = 0.8

P (cause|e↵ect) = P (e↵ect|cause)P (cause)

P (e↵ect)



Quiz:	Bayes’	Rule	

§  Given:	

§ What	is	P(W	|	dry)	?		

R	 P	

sun	 0.8	

rain	 0.2	

D	 W	 P	

wet	 sun	 0.1	

dry	 sun	 0.9	

wet	 rain	 0.7	

dry	 rain	 0.3	



Ghostbusters,	Revisited	

§  Let’s	say	we	have	two	distribu+ons:	
§  Prior	distribu+on	over	ghost	loca+on:	P(G)	

§  Let’s	say	this	is	uniform	
§  Sensor	reading	model:	P(R	|	G)	

§  Given:	we	know	what	our	sensors	do	
§  R	=	reading	color	measured	at	(1,1)	
§  E.g.	P(R	=	yellow	|	G=(1,1))	=	0.1	

§  We	can	calculate	the	posterior	
distribu+on	P(G|r)	over	ghost	loca+ons	
given	a	reading	using	Bayes’	rule:	

[Demo:	Ghostbuster	–	with	probability	(L12D2)	]	



Independence	

§  Two	variables	are	independent	in	a	joint	distribu+on	if:	

§  Says	the	joint	distribu+on	factors	into	a	product	of	two	simple	ones	
§  Usually	variables	aren’t	independent!	

§  Can	use	independence	as	a	modeling	assump-on	
§  Independence	can	be	a	simplifying	assump+on	
§  Empirical		joint	distribu+ons:	at	best	“close”	to	independent	
§  What	could	we	assume	for	{Weather,	Traffic,	Cavity}?	



Example:	Independence?	

T	 W	 P	

hot	 sun	 0.4	

hot	 rain	 0.1	

cold	 sun	 0.2	

cold	 rain	 0.3	

T	 W	 P	

hot	 sun	 0.3	

hot	 rain	 0.2	

cold	 sun	 0.3	

cold	 rain	 0.2	

T	 P	

hot	 0.5	

cold	 0.5	

W	 P	

sun	 0.6	

rain	 0.4	

P2(T,W ) = P (T )P (W )



Example:	Independence	

§  N	fair,	independent	coin	flips:	

H	 0.5	

T	 0.5	

H	 0.5	

T	 0.5	

H	 0.5	

T	 0.5	



Condi+onal	Independence	



Condi+onal	Independence	
§  P(Toothache,	Cavity,	Catch)	

§  If	I	have	a	cavity,	the	probability	that	the	probe	catches	in	it	
doesn't	depend	on	whether	I	have	a	toothache:	
§  P(+catch	|	+toothache,	+cavity)	=	P(+catch	|	+cavity)	

§  The	same	independence	holds	if	I	don�t	have	a	cavity:	
§  P(+catch	|	+toothache,	-cavity)	=	P(+catch|	-cavity)	

§  Catch	is	condi-onally	independent	of	Toothache	given	Cavity:	
§  P(Catch	|	Toothache,	Cavity)	=	P(Catch	|	Cavity)	

§  Equivalent	statements:	
§  P(Toothache	|	Catch	,	Cavity)	=	P(Toothache	|	Cavity)	
§  P(Toothache,	Catch	|	Cavity)	=	P(Toothache	|	Cavity)	P(Catch	|	Cavity)	
§  One	can	be	derived	from	the	other	easily	



Condi+onal	Independence	

§  Uncondi+onal	(absolute)	independence	very	rare	(why?)	

§  Condi-onal	independence	is	our	most	basic	and	robust	form	
of	knowledge	about	uncertain	environments.	

§  X	is	condi+onally	independent	of	Y	given	Z	

						if	and	only	if:	
	
	
						or,	equivalently,	if	and	only	if	



Condi+onal	Independence	

§  What	about	this	domain:	

§  Traffic	
§  Umbrella	
§  Raining	



Condi+onal	Independence	

§  What	about	this	domain:	

§  Fire	
§  Smoke	
§  Alarm	



Probability	Recap	

§  Condi+onal	probability	

§  Product	rule	

§  Chain	rule		
	
	
	

§  X,	Y	independent	if	and	only	if:	

§  X	and	Y	are	condi+onally	independent	given	Z	if	and	only	if:	



Next	Time:	Markov	Models	


