CSE 473: Artificial Intelligence

Probability

Instructors: Luke Zettlemoyer --- University of Washington

Today

- Probability
- Random Variables
- Joint and Marginal Distributions
- Conditional Distribution
- Product Rule, Chain Rule, Bayes' Rule
- Inference
- Independence
- You'll need all this stuff A LOT for the next few weeks, so make sure you go
 over it now!

Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
- On the ghost: red
- 1 or 2 away: orange
- 3 or 4 away: yellow
- 5+ away: green

- Sensors are noisy, but we know P(Color | Distance)

$P($ red \| 3)	P (orange \| 3)	$P($ yellow \| 3)	$P($ green \| 3)
0.05	0.15	0.5	0.3

Uncertainty

- General situation:
- Observed variables (evidence): Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
- Unobserved variables: Agent needs to reason about other aspects (e.g. where an object is or what disease is present)
- Model: Agent knows something about how the known variables relate to the unknown variables

- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
- $\mathrm{R}=\mathrm{Is}$ it raining?
- $\mathrm{T}=$ Is it hot or cold?
- $D=$ How long will it take to drive to work?
- L = Where is the ghost?
- We denote random variables with capital letters
- Random variables have domains
- R in $\{$ true, false $\}$ (often write as $\{+r,-r\}$)

- T in \{hot, cold\}
- D in $[0, \infty)$
- L in possible locations, maybe $\{(0,0),(0,1), \ldots\}$

Probability Distributions

- Associate a probability with each value
- Temperature:
- Weather:

Probability Distributions

- Unobserved random variables have distributions

$P(T)$	
T	P
hot	0.5
cold	0.5

Shorthand notation:

$$
\begin{aligned}
P(\text { hot }) & =P(T=\text { hot }) \\
P(\text { cold }) & =P(T=\text { cold }) \\
P(\text { rain }) & =P(W=\text { rain }),
\end{aligned}
$$

...

OK if all domain entries are unique

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

$$
P(W=\text { rain })=0.1
$$

- Must have: $\forall x P(X=x) \geq 0 \quad$ and $\quad \sum_{x} P(X=x)=1$

Joint Distributions

- A joint distribution over a set of random variables: $X_{1}, X_{2}, \ldots X_{n}$ specifies a real number for each assignment (or outcome):

$$
\begin{aligned}
& P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots X_{n}=x_{n}\right) \\
& P\left(x_{1}, x_{2}, \ldots x_{n}\right)
\end{aligned}
$$

- Must obey:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right) \geq 0
$$

$$
\sum_{\left(x_{1}, x_{2}, \ldots x_{n}\right)} P\left(x_{1}, x_{2}, \ldots x_{n}\right)=1
$$

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Size of distribution if n variables with domain sizes d ?
- For all but the smallest distributions, impractical to write out!

Probabilistic Models

- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
- (Random) variables with domains

Distribution over T,W

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Assignments are called outcomes
- Joint distributions: say whether assignments (outcomes) are likely
- Normalized: sum to 1.0
- Ideally: only certain variables directly interact

Events

- An event is a set E of outcomes

$$
P(E)=\sum_{\left(x_{1} \ldots x_{n}\right) \in E} P\left(x_{1} \ldots x_{n}\right)
$$

- From a joint distribution, we can calculate the probability of any event
- Probability that it's hot AND sunny?
- Probability that it's hot?
- Probability that it's hot OR sunny?

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Typically, the events we care about are partial assignments, like $\mathrm{P}(\mathrm{T}=$ hot $)$

Quiz: Events

- $P(+x,+y)$?

$$
=0.2
$$

- $P(+x)$?

$$
0.2+0.3=0.5
$$

- $P(-y O R+x)$?

$$
0.2+0.3+0.1=0.6
$$

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

$$
P\left(X_{1}=x_{1}\right)=\sum_{x_{2}} P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)
$$

Quiz: Marginal Distributions

Conditional Probabilities

- A simple relation between joint and conditional probabilities
- In fact, this is taken as the definition of a conditional probability

$$
P(a \mid b)=\frac{P(a, b)}{P(b)}
$$

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$
\begin{aligned}
& P(W=s \mid T=c)=\frac{P(W=s, T=c)}{P(T=c)}=\frac{0.2}{0.5}=0.4 \\
& \\
& =P(W=s, T=c)+P(W=r, T=c) \\
&
\end{aligned}
$$

Quiz: Conditional Probabilities

- $P(+x \mid+y)$?
$P(X, Y)$

X	Y	P
$+x$	$+y$	0.2
$+x$	$-y$	0.3
$-x$	$+y$	0.4
$-x$	$-y$	0.1

$$
0.2 /(0.2+0.4)=1 / 3
$$

- $P(-x \mid+y)$?

$$
0.4 /(0.2+0.4)=2 / 3
$$

- $P(-y \mid+x)$?

$$
0.3 /(0.2+0.3)=3 / 5
$$

Conditional Distributions

- Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions
Joint Distribution

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
- P(on time \| no reported accidents) $=0.90$
- These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
- P (on time | no accidents, 5 a.m. $)=0.95$
- P(on time \| no accidents, 5 a.m., raining) $=0.80$
- Observing new evidence causes beliefs to be updated

Inference by Enumeration

- General case:
- Evidence variables:
- Query* variable:
- Hidden variables:
- Step 1: Select the entries consistent with the evidence

- Step 2: Sum out H to get joint of Query and evidence

$$
P\left(Q, e_{1} \ldots e_{k}\right)=\sum_{h_{1} \ldots h_{r}} P(\underbrace{Q, h_{1} \ldots h_{r}, e_{1} \ldots e_{k}}_{X_{1}, X_{2}, \ldots X_{n}})
$$

- We want:

$$
P\left(Q \mid e_{1} \ldots e_{k}\right)
$$

* Works fine with multiple query
variables, too

Step 3: Normalize

$$
P\left(Q \mid e_{1} \cdots e_{k}\right)=\frac{1}{Z} P\left(Q, e_{1} \cdots e_{k}\right)
$$

Inference by Enumeration

- P(W)?

W	P
sun	0.65
rain	0.35

- P(W | winter)?

W	P
sun	0.25
rain	0.25

Normalize	W
sun	0.5
$Z=0.5$	rain
	0.5

- P(W | winter, hot)?

W	P
sun	0.1
rain	0.05

Normalize	W
	P
sun	0.66
	rain
	0.33

S	T	W	P
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Inference by Enumeration

- Obvious problems:
- Worst-case time complexity O(dn)
- Space complexity $O\left(d^{n}\right)$ to store the joint distribution

The Product Rule

- Sometimes have conditional distributions but want the joint

$$
P(y) P(x \mid y)=P(x, y) \quad \Longleftrightarrow P(x \mid y)=\frac{P(x, y)}{P(y)}
$$

The Product Rule

$$
P(y) P(x \mid y)=P(x, y)
$$

- Example:

$P(W)$		$P(D \mid W)$				$P(D, W)$		
		D	W	P		D	W	P
R	P	wet	sun	0.1		wet	sun	
sun	0.8	dry	sun	0.9		dry	sun	
rain	0.2	wet	rain	0.7		wet	rain	
		dry	rain	0.3		dry	rain	

The Chain Rule

- More generally, can always write any joint distribution as an incremental product of conditional distributions

$$
\begin{aligned}
& P\left(x_{1}, x_{2}, x_{3}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) \\
& P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i} P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right)
\end{aligned}
$$

- Why is this always true?

Bayes' Rule

- Two ways to factor a joint distribution over two variables:

$$
P(x, y)=P(x \mid y) P(y)=P(y \mid x) P(x)
$$

- Dividing, we get:

$$
P(x \mid y)=\frac{P(y \mid x)}{P(y)} P(x)
$$

- Why is this at all helpful?
- Lets us build one conditional from its reverse
- Often one conditional is tricky but the other one is simple
- Foundation of many systems we'll see later (e.g. ASR, MT)

- In the running for most important Al equation!

Inference with Bayes' Rule

- Example: Diagnostic probability from causal probability:

$$
P(\text { cause } \mid \text { effect })=\frac{P(\text { effect } \mid \text { cause }) P(\text { cause })}{P(\text { effect })}
$$

- Example:
- M: meningitis, S: stiff neck

$$
\left.\begin{array}{l}
P(+m)=0.0001 \\
P(+s \mid+m)=0.8 \\
P(+s \mid-m)=0.01
\end{array}\right\} \quad \begin{aligned}
& \text { Example } \\
& \text { givens }
\end{aligned}
$$

$P(+m \mid+s)=\frac{P(+s \mid+m) P(+m)}{P(+s)}=\frac{P(+s \mid+m) P(+m)}{P(+s \mid+m) P(+m)+P(+s \mid-m) P(-m)}=\frac{0.8 \times 0.0001}{0.8 \times 0.0001+0.01 \times 0.999}$

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?

Quiz: Bayes' Rule

- Given:
$P(D \mid W)$
$P(W)$

R	P
sun	0.8
rain	0.2

D	W	P
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

- What is P(W | dry) ?

Ghostbusters, Revisited

- Let's say we have two distributions:
- Prior distribution over ghost location: P(G)
- Let's say this is uniform
- Sensor reading model: $P(R \mid G)$
- Given: we know what our sensors do
- $R=$ reading color measured at $(1,1)$
- E.g. $P(R=$ yellow $\mid G=(1,1))=0.1$
- We can calculate the posterior distribution $\mathrm{P}(\mathrm{G} \mid \mathrm{r})$ over ghost locations given a reading using Bayes' rule:

$$
P(g \mid r) \propto P(r \mid g) P(g)
$$

0.11	0.11	0.11
0.11	0.11	0.11
0.11	0.11	0.11

0.17	0.10	0.10
0.09	0.17	0.10
<0.01	0.09	0.17

Independence

- Two variables are independent in a joint distribution if:

$$
\begin{array}{cc}
P(X, Y)=P(X) P(Y) & X \Perp Y \\
\forall x, y P(x, y)=P(x) P(y) &
\end{array}
$$

- Says the joint distribution factors into a product of two simple ones
- Usually variables aren’t independent!
- Can use independence as a modeling assumption
- Independence can be a simplifying assumption
- Empirical joint distributions: at best "close" to independent

- What could we assume for \{Weather, Traffic, Cavity\}?

Example: Independence?

$P_{1}(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$P(T)$

T	P
hot	0.5
cold	0.5

$$
P_{2}(T, W)=P(T) P(W)
$$

$P(W)$

W	P
sun	0.6
rain	0.4

T	W	P
hot	sun	0.3
hot	rain	0.2
cold	sun	0.3
cold	rain	0.2

Example: Independence

- N fair, independent coin flips:

$P\left(X_{1}\right)$		$P\left(X_{2}\right)$		$P\left(X_{n}\right)$	
H	0.5	H	0.5	н	0.5
T	0.5	T	0.5	T	0.5

Conditional Independence

Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
- $\mathrm{P}(+$ catch | +toothache, +cavity) $=\mathrm{P}(+$ catch | +cavity)
- The same independence holds if I don' t have a cavity:
- $\mathrm{P}(+$ catch | +toothache, -cavity $)=\mathrm{P}(+$ catch | -cavity $)$
- Catch is conditionally independent of Toothache given Cavity:
- P(Catch | Toothache, Cavity) = P(Catch | Cavity)

- Equivalent statements:
- P (Toothache | Catch , Cavity) $=\mathrm{P}($ Toothache | Cavity $)$
- $P($ Toothache, Catch | Cavity) $=P($ Toothache | Cavity) P(Catch | Cavity)
- One can be derived from the other easily

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

```
X\PerpY|Z
```

if and only if:

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

or, equivalently, if and only if

$$
\forall x, y, z: P(x \mid z, y)=P(x \mid z)
$$

Conditional Independence

- What about this domain:
- Traffic
- Umbrella
- Raining

Conditional Independence

- What about this domain:
- Fire
- Smoke
- Alarm

Probability Recap

- Conditional probability $\quad P(x \mid y)=\frac{P(x, y)}{P(y)}$
- Product rule

$$
P(x, y)=P(x \mid y) P(y)
$$

- Chain rule

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots X_{n}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots \\
& =\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

- X, Y independent if and only if: $\quad \forall x, y: P(x, y)=P(x) P(y)$
- X and Y are conditionally independent given Z if and only if:

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

Next Time: Markov Models

