CSE 473: Artificial Intelligence

Search

Instructor: Luke Zettlemoyer

University of Washington

[These slides were adapted from Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]



Today

= Agents that Plan Ahead

= Search Problems

= Uninformed Search Methods
" Depth-First Search
= Breadth-First Search

= Uniform-Cost Search




Agents that Plan




Reflex Agents

= Reflex agents:

= Choose action based on current
percept (and maybe memory)

= May have memory or a model of
the world’s current state

" Do not consider the future
consequences of their actions

= Consider how the world IS

" Can a reflex agent be rational?
[Demo: reflex optimal (L2D1)]
[Demo: reflex optimal (L2D2)]



Video of Demo Reflex Optimal

SCORE: 0




Video of Demo Reflex Odd




Planning Agents

" Planning agents:

= Ask “what if”

" Decisions based on (hypothesized)
consequences of actions

» Must have a model of how the
world evolves in response to
actions

"= Must formulate a goal (test)

= Consider how the world WOULD
BE

[Demo: replanning (L2D3)]
[Demo: mastermind (L2D4)]



Video of Demo Mastermind

SCORE: 0




Video of Demo Replanning

SCORE:




Search Problems




Search Problems

= A search problem consists of:

- astate space [ | RN I I I

-
= A successor function
(with actions, costs) — !
lIEII .O

= A start state and a goal test

= A solution is a sequence of actions (a plan) which
transforms the start state to a goal state



Search Problems Are Models




Example: Traveling in Romania

= State space:
= Cities
= Successor function:

= Roads: Go to adjacent
city with cost = distance

m Start state:
= Arad

" = Goal test:
= |5 state == Bucharest?

= Solution?

Eforie

M Giurgiu



What's in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

u Problem: Path|ng u PrOblem: Eat'A”'DOtS
= States: (x,y) location = States: {(x,y), dot booleans}
= Actions: NSEW = Actions: NSEW
= Successor: update location only " Successor: update location

= Goal test: is (x,y)=END and possibly a dot boolean

= Goal test: dots all false



State Space Sizes?

= World state:
= Agent positions: 120
" Food count: 30
" Ghost positions: 12
" Agent facing: NSEW
= How many
= World states? 120x(23°)x(12%)x4
= States for pathing? 120
= States for eat-all-dots? 120x(23°)




Quiz: Safe Passage

" Problem: eat all dots while keeping the ghosts perma-scared

" What does the state space have to specify?

" (agent position, dot booleans, power pellet booleans, remaining
scared time)



State Space Graphs and Search Trees



State Space Graphs

= State space graph: A mathematical

representation of a search problem
= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)
" The goal test is a set of goal nodes (maybe e
.
7

only one) !

" |n a state space graph, each state
occurs only once!

= We can rarely build this full graph in
memory (it’s too big), but it’s a
useful idea




State Space Graphs

= State space graph: A mathematical

representation of a search problem
= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)

" The goal test is a set of goal nodes (maybe
only one)

" |n a search graph, each state occurs
only once!

Tiny search graph for a tiny
= We can rarely build this full graph in search problem

memory (it’s too big), but it’s a
useful idea



Search Trees

! _ This is now / start
L
u ! _ Possible futures

= Asearch tree:
= A “what if” tree of plans and their outcomes
" The start state is the root node
= Children correspond to successors

= Nodes show states, but correspond to PLANS that achieve those states
=" For most problems, we can never actually build the whole tree



State Space Graphs vs. Search Trees

/State Space Graph\

Each NODE in in the
search tree is an
entire PATH in the
state space graph.

We construct
both on demand —
and we construct

as little as
possible.

-~

Search Tree

~

S
e
e
—_— T
c e h r
1 P S |
a h r p q f
AN | I
p q f q ¢ G
l/\ .
g ¢ G a
a

/




Quiz: State Space Graphs vs. Search Trees

Consider this 4-state How big is its search tree
graph: (from S)?

X0

Important: Lots of repeated structure in the search tree!



Tree Search



Search Example: Romania

Eforie




Searching with a Search Tree

" Search:
" Expand out potential plans (tree nodes)
" Maintain a fringe of partial plans under consideration
" Try to expand as few tree nodes as possible



General Tree Search

function TREE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

" Important ideas:
" Fringe
= Expansion
" Exploration strategy
" Main question: which fringe nodes to explore?



Example: Tree Search




Depth-First Search




Depth-First Search

Strategy: expand a deepest node first

Implementation: Fringe is a LIFO stack




Search Algorithm Properties




Search Algorithm Properties

" Complete: Guaranteed to find a solution if one exists?
" Optimal: Guaranteed to find the least cost path?

" Time complexity? s ode
= Space complexity? b nodes
= Cartoon of search tree: mtiers < ¥ nodes

" b is the branching factor

" m is the maximum depth

= solutions at various depths \ b nodes

= Number of nodes in entire tree?
"1+b+b?+...b"=0(b™M)



Depth-First Search (DFS) Properties

What nodes DFS expand? 4
= Some left prefix of the tree.
" Could process the whole tree!
. n1ﬁers-<
= [f mis finite, takes time O(b™)

How much space does the fringe take?

= Only has siblings on path to root, so O(bm) \

Is it complete?

= m could be infinite, so only if we prevent cycles (more later)

Is it optimal?

" No, it finds the “leftmost” solution, regardless of depth or cost

1 node
b nodes

b2 nodes

b™ nodes



Breadth-First Search




Breadth-First Search

Strategy: expand a shallowest node first

Implementation: Fringe is a FIFO queue

4 ®
@ e ®
Search o |
) ® @ ®© ® © @
Tiers | R AN
@ a h r p q f
N | | RN
\ p q f q ¢ G
| PN elz



Breadth-First Search (BFS) Properties

* What nodes does BFS expand? -
" Processes all nodes above shallowest b 1 node
: b nodes
solution s tiers <
: b2 nodes
" |Let depth of shallowest solution be s /
= Search takes time O(b%) N / o \ bs nodes
" How much space does the fringe take? ®
* Has roughly the last tier, so O(b®) = b™ nodes
O/

" |sit complete?

" s must be finite if a solution exists, so yes!
" |sit optimal?

= Only if costs are all 1 (more on costs later)



Quiz: DFS vs BFS




Quiz: DFS vs BFS

" When will BFS outperform DFS?

" When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]



Video of Demo Maze Water DFS/BFS (part 1)




Video of Demo Maze Water DFS/BFS (part 2)




Iterative Deepening

" |dea: get DFS’s space advantage with
BFS’s time / shallow-solution advantages

" Run a DFS with depth limit 2. If no solution...
= Run a DFS with depth Iimit 3. .....
" |sn’t that wastefully redundant?

= Generally most work happens in the lowest
level searched, so not so bad!

" Run a DFS with depth limit 1. If no solution...




Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.



Uniform Cost Search




Uniform Cost Search

Strategy: expand a cheapest node first:

Fringe is a priority queue (priority:
cumulative cost)

0
g ®
@ 3 @ 9 @ 1
S |
B4 ., @5 W17 (H) 1 (@ 16
| | 1 AN
Cost @6 a WIBO7 p q f
contours PN | | PN
p g (O8 9 ¢ G
| N |
q 11 ©) 10 a
I




Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?
= Processes all nodes with cost less than cheapest solution!

= |f that solution costs C* and arcs cost at least &, then the
“effective depth” is roughly C*/e

C*/e “tiers”
= Takes time O(b¢™¢) (exponential in effective depth) e ers” <

" How much space does the fringe take?
* Has roughly the last tier, so O(b¢™?)

" |sit complete?

O

= Assuming best solution has a finite cost and minimum arc
cost is positive, yes!

" |sit optimal?

= Yes! (Proof next lecture via A*)



Uniform Cost Issues

= Remember: UCS explores
increasing cost contours

" The good: UCS is complete and
optimal!

= The bad:
" Explores options in every “direction”
" No information about goal location Goal
= We'll fix that soon!
[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow

water DFS/BFS/UCS (L2D7)]



Video of Demo Empty UCS




Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)




Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)




Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)




The One Queue

= All these search algorithms are the
same except for fringe strategies L@_DL_UO‘LEG\O@”\L@M\- - F_\

= Conceptually, all fringes are priority
gueues (i.e. collections of nodes with
attached priorities)

= Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

= Can even code one implementation
that takes a variable queuing object




Search and Models

= Search operates over
s onl
models of the world f‘ma';\’,,,

" The agent doesn’t

actually try all the plans
out in the real world!

" Planningis all “in
simulation”

O

Q>

" Your search is only as
good as your models...




Search Gone Wrong?

—— e ; v

P Microsoft*
ARCTIC OCEAN 5 MapPo|nt

WT
=
2202}
|
|azwns]

MOIN
LT
S
e

ICELAND

",

: RUSSIA

- He ki Tver
esmg s

>

Smé)lonsk@
Vi mus I "‘.w..-"

Blal?’stoké" BEU\RUS A
POLAND ~Kiev: ®

b
-~
L}
.';.
‘ 1Sv3 —'"_

~ -
"@79 km 500 1000 e
Sy ' mi 2000 400 600

/ Start: Haugesund, Rogaland, Norway
.com, Inc. End: Trondheim, Ser-Trandelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

» 2005 MapQ

nrk. no/allridmdro



Some Hints for P1

= Graph search is almost always better than tree search (when not?)

" I[mplement your closed list as a dict or set!

= Nodes are conceptually paths, but better to represent with a state,
cost, last action, and reference to the parent node



