
CSE	473:	Ar+ficial	Intelligence	
	

Search	

Instructor:	Luke	Ze=lemoyer	

University	of	Washington	
[These	slides	were	adapted	from	Dan	Klein	and	Pieter	Abbeel	for	CS188	Intro	to	AI	at	UC	Berkeley.		All	CS188	materials	are	available	at	h=p://ai.berkeley.edu.]	

Today	

§  Agents	that	Plan	Ahead	

§  Search	Problems	

§  Uninformed	Search	Methods	
§  Depth-First	Search	
§  Breadth-First	Search	
§  Uniform-Cost	Search	

Agents	that	Plan	

Reflex	Agents	

§  Reflex	agents:	
§  Choose	ac+on	based	on	current	
percept	(and	maybe	memory)	

§ May	have	memory	or	a	model	of	
the	world’s	current	state	

§  Do	not	consider	the	future	
consequences	of	their	ac+ons	

§  Consider	how	the	world	IS	

§  Can	a	reflex	agent	be	ra+onal?	
[Demo:	reflex	op+mal	(L2D1)]	
[Demo:	reflex	op+mal	(L2D2)]	

Video	of	Demo	Reflex	Op+mal	

Video	of	Demo	Reflex	Odd		

Planning	Agents	

§  Planning	agents:	
§  Ask	“what	if”	
§  Decisions	based	on	(hypothesized)	
consequences	of	ac+ons	

§ Must	have	a	model	of	how	the	
world	evolves	in	response	to	
ac+ons	

§ Must	formulate	a	goal	(test)	
§  Consider	how	the	world	WOULD	
BE	

[Demo:	replanning	(L2D3)]	
[Demo:	mastermind	(L2D4)]	

Video	of	Demo	Mastermind	

Video	of	Demo	Replanning	

Search	Problems	

Search	Problems	

§  A	search	problem	consists	of:	

§  A	state	space	

§  A	successor	func+on	
	(with	ac+ons,	costs)	

§  A	start	state	and	a	goal	test	

§  A	solu+on	is	a	sequence	of	ac+ons	(a	plan)	which	
transforms	the	start	state	to	a	goal	state	

“N”,	1.0	

“E”,	1.0	

Search	Problems	Are	Models	

Example:	Traveling	in	Romania	
§  State	space:	

§ Ci+es	
§  Successor	func+on:	

§ Roads:	Go	to	adjacent	
city	with	cost	=	distance	

§  Start	state:	
§ Arad	

§ Goal	test:	
§  Is	state	==	Bucharest?	

§  Solu+on?	

What’s	in	a	State	Space?	

§  Problem:	Pathing	
§  States:	(x,y)	loca+on	
§  Ac+ons:	NSEW	
§  Successor:	update	loca+on	only	
§  Goal	test:	is	(x,y)=END	

§  Problem:	Eat-All-Dots	
§  States:	{(x,y),	dot	booleans}	
§  Ac+ons:	NSEW	
§  Successor:	update	loca+on	
and	possibly	a	dot	boolean	

§  Goal	test:	dots	all	false	

The	world	state	includes	every	last	detail	of	the	environment	

A	search	state	keeps	only	the	details	needed	for	planning	(abstrac+on)	

State	Space	Sizes?	
§ World	state:	

§  Agent	posi+ons:	120	
§  Food	count:	30	
§  Ghost	posi+ons:	12	
§  Agent	facing:	NSEW	

§  How	many	
§ World	states?	120x(230)x(122)x4	
§  States	for	pathing?	120	
§  States	for	eat-all-dots?	120x(230)	
	

Quiz:	Safe	Passage	

§ Problem:	eat	all	dots	while	keeping	the	ghosts	perma-scared	
§ What	does	the	state	space	have	to	specify?	

§  (agent	posi+on,	dot	booleans,	power	pellet	booleans,	remaining	
scared	+me)	

State	Space	Graphs	and	Search	Trees	

State	Space	Graphs	

§  State	space	graph:	A	mathema+cal	
representa+on	of	a	search	problem	
§  Nodes	are	(abstracted)	world	configura+ons	
§  Arcs	represent	successors	(ac+on	results)	
§  The	goal	test	is	a	set	of	goal	nodes	(maybe	
only	one)	

§  In	a	state	space	graph,	each	state	
occurs	only	once!	

§ We	can	rarely	build	this	full	graph	in	
memory	(it’s	too	big),	but	it’s	a	
useful	idea	

	

State	Space	Graphs	

§  State	space	graph:	A	mathema+cal	
representa+on	of	a	search	problem	
§  Nodes	are	(abstracted)	world	configura+ons	
§  Arcs	represent	successors	(ac+on	results)	
§  The	goal	test	is	a	set	of	goal	nodes	(maybe	
only	one)	

§  In	a	search	graph,	each	state	occurs	
only	once!	

§ We	can	rarely	build	this	full	graph	in	
memory	(it’s	too	big),	but	it’s	a	
useful	idea	

	

S

G

d

b

p q

c

e

h

a

f

r

Tiny	search	graph	for	a	0ny	
search	problem	

Search	Trees	

§  A	search	tree:	
§  A	“what	if”	tree	of	plans	and	their	outcomes	
§  The	start	state	is	the	root	node	
§  Children	correspond	to	successors	
§  Nodes	show	states,	but	correspond	to	PLANS	that	achieve	those	states	
§  For	most	problems,	we	can	never	actually	build	the	whole	tree	

“E”,	1.0	“N”,	1.0	

This	is	now	/	start	

Possible	futures	

State	Space	Graphs	vs.	Search	Trees	

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G
a

S

G

d

b

p q

c

e

h

a

f

r

We	construct	
both	on	demand	–	
and	we	construct	

as	li:le	as	
possible.	

Each	NODE	in	in	the	
search	tree	is	an	
en0re	PATH	in	the	
state	space	graph.	

Search	Tree	State	Space	Graph	

Quiz:	State	Space	Graphs	vs.	Search	Trees	

S G

b

a

Consider	this	4-state	
graph:		

Important:	Lots	of	repeated	structure	in	the	search	tree!	

How	big	is	its	search	tree	
(from	S)?	

Tree	Search	

Search	Example:	Romania	

Searching	with	a	Search	Tree	

§  Search:	
§ Expand	out	poten+al	plans	(tree	nodes)	
§ Maintain	a	fringe	of	par+al	plans	under	considera+on	
§ Try	to	expand	as	few	tree	nodes	as	possible	

General	Tree	Search	

§  Important	ideas:	
§ Fringe	
§ Expansion	
§ Explora+on	strategy	

§ Main	ques+on:	which	fringe	nodes	to	explore?	

Example:	Tree	Search	

S

G

d

b

p q

c

e

h

a

f

r

Depth-First	Search	

Depth-First	Search	

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r q p
h

f d

b
a

c

e

r

Strategy:	expand	a	deepest	node	first	

Implementa0on:	Fringe	is	a	LIFO	stack	

Search	Algorithm	Proper+es	

Search	Algorithm	Proper+es	
§  Complete:	Guaranteed	to	find	a	solu+on	if	one	exists?	
§  Op+mal:	Guaranteed	to	find	the	least	cost	path?	
§  Time	complexity?	
§  Space	complexity?	
§  Cartoon	of	search	tree:	

§  b	is	the	branching	factor	
§ m	is	the	maximum	depth	
§  solu+ons	at	various	depths	

§  Number	of	nodes	in	en+re	tree?	
§  1	+	b	+	b2	+	….	bm	=	O(bm)	

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

Depth-First	Search	(DFS)	Proper+es	

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

§ What	nodes	DFS	expand?	
§  Some	leq	prefix	of	the	tree.	
§  Could	process	the	whole	tree!	
§  If	m	is	finite,	takes	+me	O(bm)	

§  How	much	space	does	the	fringe	take?	
§  Only	has	siblings	on	path	to	root,	so	O(bm)	

§  Is	it	complete?	
§ m	could	be	infinite,	so	only	if	we	prevent	cycles	(more	later)	

§  Is	it	op+mal?	
§  No,	it	finds	the	“leqmost”	solu+on,	regardless	of	depth	or	cost	

Breadth-First	Search	

Breadth-First	Search	

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Search

Tiers

Strategy:	expand	a	shallowest	node	first	

Implementa0on:	Fringe	is	a	FIFO	queue	

Breadth-First	Search	(BFS)	Proper+es	

§  What	nodes	does	BFS	expand?	
§  Processes	all	nodes	above	shallowest	
solu+on	

§  Let	depth	of	shallowest	solu+on	be	s	
§  Search	takes	+me	O(bs)	

§  How	much	space	does	the	fringe	take?	
§  Has	roughly	the	last	+er,	so	O(bs)	

§  Is	it	complete?	
§  s	must	be	finite	if	a	solu+on	exists,	so	yes!	

§  Is	it	op+mal?	
§  Only	if	costs	are	all	1	(more	on	costs	later)	

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Quiz:	DFS	vs	BFS	

Quiz:	DFS	vs	BFS	

§ When	will	BFS	outperform	DFS?	

§ When	will	DFS	outperform	BFS?	

[Demo: dfs/bfs maze water (L2D6)]

Video	of	Demo	Maze	Water	DFS/BFS	(part	1)	

Video	of	Demo	Maze	Water	DFS/BFS	(part	2)	

Itera+ve	Deepening	

…
b

§  Idea:	get	DFS’s	space	advantage	with	
BFS’s	+me	/	shallow-solu+on	advantages	
§ Run	a	DFS	with	depth	limit	1.		If	no	solu+on…	
§ Run	a	DFS	with	depth	limit	2.		If	no	solu+on…	
§ Run	a	DFS	with	depth	limit	3.		…..	

§  Isn’t	that	wastefully	redundant?	
§ Generally	most	work	happens	in	the	lowest	
level	searched,	so	not	so	bad!	

Cost-Sensi+ve	Search	

BFS	finds	the	shortest	path	in	terms	of	number	of	ac+ons.	
It	does	not	find	the	least-cost	path.		We	will	now	cover	
a	similar	algorithm	which	does	find	the	least-cost	path.			

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

8 1

8

2

3

2

4

4

15

1

3
2

2

Uniform	Cost	Search	

Uniform	Cost	Search	

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G

a

Strategy: expand a cheapest node first:

Fringe is a priority queue (priority:
cumulative cost)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

16 4
11

5

7 13

8

10 11

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost
contours

2

…

Uniform	Cost	Search	(UCS)	Proper+es	
§  What	nodes	does	UCS	expand?	

§  Processes	all	nodes	with	cost	less	than	cheapest	solu+on!	
§  If	that	solu+on	costs	C* and	arcs	cost	at	least	ε , then	the	
“effec+ve	depth”	is	roughly	C*/ε	

§  Takes	+me	O(bC*/ε)	(exponen+al	in	effec+ve	depth)	

§  How	much	space	does	the	fringe	take?	
§  Has	roughly	the	last	+er,	so	O(bC*/ε)	

§  Is	it	complete?	
§  Assuming	best	solu+on	has	a	finite	cost	and	minimum	arc	
cost	is	posi+ve,	yes!	

§  Is	it	op+mal?	
§  Yes!		(Proof	next	lecture	via	A*)	

b

C*/ε “tiers”
c ≤ 3

c ≤ 2
c ≤ 1

Uniform	Cost	Issues	

§  Remember:	UCS	explores	
increasing	cost	contours	

§  The	good:	UCS	is	complete	and	
op+mal!	

§  The	bad:	
§  Explores	op+ons	in	every	“direc+on”	
§  No	informa+on	about	goal	loca+on	

§ We’ll	fix	that	soon!	
Start Goal

…

c ≤ 3
c ≤ 2

c ≤ 1

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow
water DFS/BFS/UCS (L2D7)]

Video	of	Demo	Empty	UCS	

Video	of	Demo	Maze	with	Deep/Shallow	Water	---	DFS,	BFS,	or	UCS?	(part	1)	

Video	of	Demo	Maze	with	Deep/Shallow	Water	---	DFS,	BFS,	or	UCS?	(part	2)	

Video	of	Demo	Maze	with	Deep/Shallow	Water	---	DFS,	BFS,	or	UCS?	(part	3)	

The	One	Queue	

§  All	these	search	algorithms	are	the	
same	except	for	fringe	strategies	
§  Conceptually,	all	fringes	are	priority	
queues	(i.e.	collec+ons	of	nodes	with	
a=ached	priori+es)	

§  Prac+cally,	for	DFS	and	BFS,	you	can	
avoid	the	log(n)	overhead	from	an	
actual	priority	queue,	by	using	stacks	
and	queues	

§  Can	even	code	one	implementa+on	
that	takes	a	variable	queuing	object	

Search	and	Models	

§  Search	operates	over	
models	of	the	world	
§  The	agent	doesn’t	
actually	try	all	the	plans	
out	in	the	real	world!	

§  Planning	is	all	“in	
simula+on”	

§  Your	search	is	only	as	
good	as	your	models…	

Search	Gone	Wrong?	

Some	Hints	for	P1	

§  Graph	search	is	almost	always	be=er	than	tree	search	(when	not?)	

§  Implement	your	closed	list	as	a	dict	or	set!	

§  Nodes	are	conceptually	paths,	but	be=er	to	represent	with	a	state,	
cost,	last	ac+on,	and	reference	to	the	parent	node	

