
CSE	473:	Ar+ficial	Intelligence	
	Reinforcement	Learning	

Instructor:	Luke	Ze?lemoyer	

University	of	Washington	
[These	slides	were	adapted	from	Dan	Klein	and	Pieter	Abbeel	for	CS188	Intro	to	AI	at	UC	Berkeley.		All	CS188	materials	are	available	at	h?p://ai.berkeley.edu.]	



Reinforcement	Learning	



Reinforcement	Learning	

§  Basic	idea:	
§  Receive	feedback	in	the	form	of	rewards	
§  Agent’s	u+lity	is	defined	by	the	reward	func+on	
§  Must	(learn	to)	act	so	as	to	maximize	expected	rewards	
§  All	learning	is	based	on	observed	samples	of	outcomes!	

Environment	

	

Agent	

Ac+ons:	a	
State:	s	
Reward:	r	



Example:	Learning	to	Walk	

Ini+al	 A	Learning	Trial	 A[er	Learning	[1K	Trials]	

[Kohl	and	Stone,	ICRA	2004]	



Example:	Learning	to	Walk	

Ini+al	
[Video:	AIBO	WALK	–	ini+al]	[Kohl	and	Stone,	ICRA	2004]	



Example:	Learning	to	Walk	

Training	
[Video:	AIBO	WALK	–	training]	[Kohl	and	Stone,	ICRA	2004]	



Example:	Learning	to	Walk	

Finished	
[Video:	AIBO	WALK	–	finished]	[Kohl	and	Stone,	ICRA	2004]	



Example:	Sidewinding	

[Andrew	Ng]	 [Video:	SNAKE	–	climbStep+sidewinding]	



Example:	Toddler	Robot	

[Tedrake,	Zhang	and	Seung,	2005]	 [Video:	TODDLER	–	40s]	



The	Crawler!	

[Demo:	Crawler	Bot	(L10D1)]	[You,	in	Project	3]	



Video	of	Demo	Crawler	Bot	



Reinforcement	Learning	

§  S+ll	assume	a	Markov	decision	process	(MDP):	
§  A	set	of	states	s	∈	S	
§  A	set	of	ac+ons	(per	state)	A	
§  A	model	T(s,a,s’)	
§  A	reward	func+on	R(s,a,s’)	

§  S+ll	looking	for	a	policy	π(s)	

§  New	twist:	don’t	know	T	or	R	
§  I.e.	we	don’t	know	which	states	are	good	or	what	the	ac+ons	do	
§  Must	actually	try	ac+ons	and	states	out	to	learn	



Offline	(MDPs)	vs.	Online	(RL)	

Offline	Solu+on	 Online	Learning	



Model-Based	Learning	



Model-Based	Learning	

§  Model-Based	Idea:	
§  Learn	an	approximate	model	based	on	experiences	
§  Solve	for	values	as	if	the	learned	model	were	correct	

§  Step	1:	Learn	empirical	MDP	model	
§  Count	outcomes	s’	for	each	s,	a	
§  Normalize	to	give	an	es+mate	of	
§  Discover	each																							when	we	experience	(s,	a,	s’)	

§  Step	2:	Solve	the	learned	MDP	
§  For	example,	use	value	itera+on,	as	before	



Example:	Model-Based	Learning	

Input	Policy	π		

Assume:	γ	=	1	

Observed	Episodes	(Training)	 Learned	Model	

A	

B	 C	 D	

E	

B,	east,	C,	-1	
C,	east,	D,	-1	
D,	exit,		x,	+10	

B,	east,	C,	-1	
C,	east,	D,	-1	
D,	exit,		x,	+10	

E,	north,	C,	-1	
C,	east,			A,	-1	
A,	exit,				x,	-10	

Episode	1	 Episode	2	

Episode	3	 Episode	4	
E,	north,	C,	-1	
C,	east,			D,	-1	
D,	exit,				x,	+10	

T(s,a,s’).	
	

T(B,	east,	C)	=	1.00	
T(C,	east,	D)	=	0.75	
T(C,	east,	A)	=	0.25	

…	
	

R(s,a,s’).	
	

R(B,	east,	C)	=	-1	
R(C,	east,	D)	=	-1	
R(D,	exit,	x)	=	+10	

…	



Example:	Expected	Age	
Goal:	Compute	expected	age	of	CSE	473	students	

Unknown	P(A):	“Model	Based”	 Unknown	P(A):	“Model	Free”	

Without	P(A),	instead	collect	samples	[a1,	a2,	…	aN]	

Known	P(A)	

Why	does	this	
work?		Because	
samples	appear	
with	the	right	
frequencies.	

Why	does	this	
work?		Because	
eventually	you	
learn	the	right	

model.	



Model-Free	Learning	



Preview:	Gridworld	Reinforcement	Learning	



Passive	Reinforcement	Learning	



Passive	Reinforcement	Learning	

§  Simplified	task:	policy	evalua+on	
§  Input:	a	fixed	policy	π(s)	
§  You	don’t	know	the	transi+ons	T(s,a,s’)	
§  You	don’t	know	the	rewards	R(s,a,s’)	
§  Goal:	learn	the	state	values	

§  In	this	case:	
§  Learner	is	“along	for	the	ride”	
§  No	choice	about	what	ac+ons	to	take	
§  Just	execute	the	policy	and	learn	from	experience	
§  This	is	NOT	offline	planning!		You	actually	take	ac+ons	in	the	world.	



Direct	Evalua+on	

§  Goal:	Compute	values	for	each	state	under	π	

§  Idea:	Average	together	observed	sample	values	
§  Act	according	to	π	
§  Every	+me	you	visit	a	state,	write	down	what	the	
sum	of	discounted	rewards	turned	out	to	be	

§  Average	those	samples	

§  This	is	called	direct	evalua+on	



Example:	Direct	Evalua+on	

Input	Policy	π		

Assume:	γ	=	1	

Observed	Episodes	(Training)	 Output	Values	

A	

B	 C	 D	

E	

B,	east,	C,	-1	
C,	east,	D,	-1	
D,	exit,		x,	+10	

B,	east,	C,	-1	
C,	east,	D,	-1	
D,	exit,		x,	+10	

E,	north,	C,	-1	
C,	east,			A,	-1	
A,	exit,				x,	-10	

Episode	1	 Episode	2	

Episode	3	 Episode	4	
E,	north,	C,	-1	
C,	east,			D,	-1	
D,	exit,				x,	+10	

A	

B	 C	 D	

E	

+8	 +4	 +10	

-10	

-2	



Problems	with	Direct	Evalua+on	

§  What’s	good	about	direct	evalua+on?	
§  It’s	easy	to	understand	
§  It	doesn’t	require	any	knowledge	of	T,	R	
§  It	eventually	computes	the	correct	average	values,	
using	just	sample	transi+ons	

§  What	bad	about	it?	
§  It	wastes	informa+on	about	state	connec+ons	
§  Each	state	must	be	learned	separately	
§  So,	it	takes	a	long	+me	to	learn	

Output	Values	

	A	

	B	 	C	 	D	

	E	

+8	 +4	 +10	

-10	

-2	

If	B	and	E	both	go	to	C	
under	this	policy,	how	can	
their	values	be	different?	



Why	Not	Use	Policy	Evalua+on?	

§  Simplified	Bellman	updates	calculate	V	for	a	fixed	policy:	
§  Each	round,	replace	V	with	a	one-step-look-ahead	layer	over	V	

§  This	approach	fully	exploited	the	connec+ons	between	the	states	
§  Unfortunately,	we	need	T	and	R	to	do	it!	

§  Key	ques+on:	how	can	we	do	this	update	to	V	without	knowing	T	and	R?	
§  In	other	words,	how	to	we	take	a	weighted	average	without	knowing	the	weights?	

π(s)	

s

s,	π(s)	

s,	π(s),s’	
s’	



Sample-Based	Policy	Evalua+on?	
§  We	want	to	improve	our	es+mate	of	V	by	compu+ng	these	averages:	

§  Idea:	Take	samples	of	outcomes	s’	(by	doing	the	ac+on!)	and	average	

π(s)	

s

s,	π(s)	

s1'	s2'	 s3'	
s,	π(s),s’	

s'	

Almost!		But	we	can’t	
rewind	Bme	to	get	sample	
aCer	sample	from	state	s.	



Temporal	Difference	Learning	



Temporal	Difference	Learning	
§  Big	idea:	learn	from	every	experience!	

§  Update	V(s)	each	+me	we	experience	a	transi+on	(s,	a,	s’,	r)	
§  Likely	outcomes	s’	will	contribute	updates	more	o[en	
	

§  Temporal	difference	learning	of	values	
§  Policy	s+ll	fixed,	s+ll	doing	evalua+on!	
§  Move	values	toward	value	of	whatever	successor	occurs:	running	average	

π(s)	
s

s,	π(s)	

s’	

Sample	of	V(s):	

Update	to	V(s):	

Same	update:	



Exponen+al	Moving	Average	

§  Exponen+al	moving	average		
§  The	running	interpola+on	update:	

§  Makes	recent	samples	more	important:	

§  Forgets	about	the	past	(distant	past	values	were	wrong	anyway)	

§  Decreasing	learning	rate	(alpha)	can	give	converging	averages	



Example:	Temporal	Difference	Learning	

Assume:	γ	=	1,	α	=	1/2	

Observed	Transi+ons	

B,	east,	C,	-2	

0	

0	 0	 8	

0	

0	

-1	 0	 8	

0	

0	

-1	 3	 8	

0	

C,	east,	D,	-2	

A	

B	 C	 D	

E	

States	



Problems	with	TD	Value	Learning	

§  TD	value	leaning	is	a	model-free	way	to	do	policy	evalua+on,	mimicking	
Bellman	updates	with	running	sample	averages	

§  However,	if	we	want	to	turn	values	into	a	(new)	policy,	we’re	sunk:	

§  Idea:	learn	Q-values,	not	values	
§  Makes	ac+on	selec+on	model-free	too!	

a

s

s,	a	

s,a,s’	
s’	



Ac+ve	Reinforcement	Learning	



Ac+ve	Reinforcement	Learning	

§  Full	reinforcement	learning:	op+mal	policies	(like	value	itera+on)	
§  You	don’t	know	the	transi+ons	T(s,a,s’)	
§  You	don’t	know	the	rewards	R(s,a,s’)	
§  You	choose	the	ac+ons	now	
§  Goal:	learn	the	op+mal	policy	/	values	

§  In	this	case:	
§  Learner	makes	choices!	
§  Fundamental	tradeoff:	explora+on	vs.	exploita+on	
§  This	is	NOT	offline	planning!		You	actually	take	ac+ons	in	the	world	and	
find	out	what	happens…	



Detour:	Q-Value	Itera+on	

§  Value	itera+on:	find	successive	(depth-limited)	values	
§  Start	with	V0(s)	=	0,	which	we	know	is	right	
§  Given	Vk,	calculate	the	depth	k+1	values	for	all	states:	

§  But	Q-values	are	more	useful,	so	compute	them	instead	
§  Start	with	Q0(s,a)	=	0,	which	we	know	is	right	
§  Given	Qk,	calculate	the	depth	k+1	q-values	for	all	q-states:	



Q-Learning	
§  Q-Learning:	sample-based	Q-value	itera+on	

§  Learn	Q(s,a)	values	as	you	go	
§  Receive	a	sample	(s,a,s’,r)	
§  Consider	your	old	es+mate:	
§  Consider	your	new	sample	es+mate:	

§  Incorporate	the	new	es+mate	into	a	running	average:	

[Demo:	Q-learning	–	gridworld	(L10D2)]	
[Demo:	Q-learning	–	crawler	(L10D3)]	



Q	learning	with	a	fixed	policy	



Video	of	Demo	Q-Learning	--	Gridworld	



Q-Learning	Proper+es	

§  Amazing	result:	Q-learning	converges	to	op+mal	policy	--	even	
if	you’re	ac+ng	subop+mally!	

§  This	is	called	off-policy	learning	

§  Caveats:	
§  You	have	to	explore	enough	
§  You	have	to	eventually	make	the	learning	rate	
	small	enough	

§  …	but	not	decrease	it	too	quickly	
§  Basically,	in	the	limit,	it	doesn’t	ma?er	how	you	select	ac+ons	(!)	



Explora+on	vs.	Exploita+on	



How	to	Explore?	

§  Several	schemes	for	forcing	explora+on	
§  Simplest:	random	ac+ons	(ε-greedy)	

§  Every	+me	step,	flip	a	coin	
§ With	(small)	probability	ε,	act	randomly	
§ With	(large)	probability	1-ε,	act	on	current	policy	

§  Problems	with	random	ac+ons?	
§  You	do	eventually	explore	the	space,	but	keep	
thrashing	around	once	learning	is	done	

§ One	solu+on:	lower	ε	over	+me	
§ Another	solu+on:	explora+on	func+ons	

[Demo:	Q-learning	–	manual	explora+on	–	bridge	grid	(L11D2)]	
[Demo:	Q-learning	–	epsilon-greedy	--	crawler	(L11D3)]	



Gridworld	RL:	ε-greedy	



Gridworld	RL:	ε-greedy	



Video	of	Demo	Q-learning	–	Epsilon-Greedy	–	Crawler		



Explora+on	Func+ons	
§  When	to	explore?	

§  Random	ac+ons:	explore	a	fixed	amount	
§  Be?er	idea:	explore	areas	whose	badness	is	not	
	(yet)	established,	eventually	stop	exploring	

§  Explora+on	func+on	
§  Takes	a	value	es+mate	u	and	a	visit	count	n,	and	
	returns	an	op+mis+c	u+lity,	e.g.	

	

§  Note:	this	propagates	the	“bonus”	back	to	states	that	lead	to	unknown	states	as	well!	
	 	 	 		

Modified	Q-Update:	

Regular	Q-Update:	

[Demo:	explora+on	–	Q-learning	–	crawler	–	explora+on	func+on	(L11D4)]	



Video	of	Demo	Q-learning	–	Explora+on	Func+on	–	Crawler		



Regret	

§  Even	if	you	learn	the	op+mal	policy,	
you	s+ll	make	mistakes	along	the	way!	

§  Regret	is	a	measure	of	your	total	
mistake	cost:	the	difference	between	
your	(expected)	rewards,	including	
youthful	subop+mality,	and	op+mal	
(expected)	rewards	

§  Minimizing	regret	goes	beyond	
learning	to	be	op+mal	–	it	requires	
op+mally	learning	to	be	op+mal	

§  Example:	random	explora+on	and	
explora+on	func+ons	both	end	up	
op+mal,	but	random	explora+on	has	
higher	regret	



Approximate	Q-Learning	



Generalizing	Across	States	

§  Basic	Q-Learning	keeps	a	table	of	all	q-values	

§  In	realis+c	situa+ons,	we	cannot	possibly	learn	
about	every	single	state!	
§  Too	many	states	to	visit	them	all	in	training	
§  Too	many	states	to	hold	the	q-tables	in	memory	

§  Instead,	we	want	to	generalize:	
§  Learn	about	some	small	number	of	training	states	from	

experience	
§  Generalize	that	experience	to	new,	similar	situa+ons	
§  This	is	a	fundamental	idea	in	machine	learning,	and	we’ll	

see	it	over	and	over	again	

[demo	–	RL	pacman]	



Example:	Pacman	

[Demo:	Q-learning	–	pacman	–	+ny	–	watch	all	(L11D5)]	
[Demo:	Q-learning	–	pacman	–	+ny	–	silent	train	(L11D6)]		
[Demo:	Q-learning	–	pacman	–	tricky	–	watch	all	(L11D7)]	

Let’s	say	we	discover	
through	experience	
that	this	state	is	bad:	

In	naïve	q-learning,	
we	know	nothing	
about	this	state:	

Or	even	this	one!	



Video	of	Demo	Q-Learning	Pacman	–	Tiny	–	Watch	All	



Video	of	Demo	Q-Learning	Pacman	–	Tiny	–	Silent	Train	



Video	of	Demo	Q-Learning	Pacman	–	Tricky	–	Watch	All	



Feature-Based	Representa+ons	

§  Solu+on:	describe	a	state	using	a	vector	of	
features	(proper+es)	
§  Features	are	func+ons	from	states	to	real	numbers	(o[en	

0/1)	that	capture	important	proper+es	of	the	state	
§  Example	features:	

§  Distance	to	closest	ghost	
§  Distance	to	closest	dot	
§  Number	of	ghosts	
§  1	/	(dist	to	dot)2	
§  Is	Pacman	in	a	tunnel?	(0/1)	
§  ……	etc.	
§  Is	it	the	exact	state	on	this	slide?	

§  Can	also	describe	a	q-state	(s,	a)	with	features	(e.g.	
ac+on	moves	closer	to	food)	



Linear	Value	Func+ons	

§  Using	a	feature	representa+on,	we	can	write	a	q	func+on	(or	value	func+on)	for	any	
state	using	a	few	weights:	

§  Advantage:	our	experience	is	summed	up	in	a	few	powerful	numbers	

§  Disadvantage:	states	may	share	features	but	actually	be	very	different	in	value!	



Approximate	Q-Learning	

§  Q-learning	with	linear	Q-func+ons:	

§  Intui+ve	interpreta+on:	
§  Adjust	weights	of	ac+ve	features	
§  E.g.,	if	something	unexpectedly	bad	happens,	blame	the	features	that	were	on:	

disprefer	all	states	with	that	state’s	features	

§  Formal	jus+fica+on:	online	least	squares	

Exact Q’s 

Approximate Q’s 



Example:	Q-Pacman	

[Demo:	approximate	Q-
learning	pacman	(L11D10)]	



Video	of	Demo	Approximate	Q-Learning	--	Pacman	



Q-Learning	and	Least	Squares	



0 20 0 

20 

40 

0 10 20 30 40 

0 
10 

20 
30 

20 
22 
24 
26 

Linear	Approxima+on:	Regression*	

Prediction: Prediction: 



Op+miza+on:	Least	Squares*	

0 20 0 

Error or “residual” 

Prediction 

Observation 



Minimizing	Error*	

Approximate	q	update	explained:	

Imagine	we	had	only	one	point	x,	with	features	f(x),	target	value	y,	and	weights	w:	

“target”	 “predic+on”	



0 2 4 6 8 10 12 14 16 18 20 -15 

-10 

-5 

0 

5 

10 

15 

20 

25 

30 

Degree 15 polynomial 

Overfi{ng:	Why	Limi+ng	Capacity	Can	Help*	



Policy	Search	



Policy	Search	

§  Problem:	o[en	the	feature-based	policies	that	work	well	(win	games,	maximize	
u+li+es)	aren’t	the	ones	that	approximate	V	/	Q	best	
§  E.g.	your	value	func+ons	from	project	2	were	probably	horrible	es+mates	of	future	rewards,	but	they	

s+ll	produced	good	decisions	
§  Q-learning’s	priority:	get	Q-values	close	(modeling)	
§  Ac+on	selec+on	priority:	get	ordering	of	Q-values	right	(predic+on)	
§  We’ll	see	this	dis+nc+on	between	modeling	and	predic+on	again	later	in	the	course	

§  Solu+on:	learn	policies	that	maximize	rewards,	not	the	values	that	predict	them	

§  Policy	search:	start	with	an	ok	solu+on	(e.g.	Q-learning)	then	fine-tune	by	hill	climbing	
on	feature	weights	



Policy	Search	

§  Simplest	policy	search:	
§  Start	with	an	ini+al	linear	value	func+on	or	Q-func+on	
§  Nudge	each	feature	weight	up	and	down	and	see	if	your	policy	is	be?er	than	before	

§  Problems:	
§  How	do	we	tell	the	policy	got	be?er?	
§  Need	to	run	many	sample	episodes!	
§  If	there	are	a	lot	of	features,	this	can	be	imprac+cal	

§  Be?er	methods	exploit	lookahead	structure,	sample	wisely,	change	
mul+ple	parameters…	



Policy	Search	

[Andrew	Ng]	 [Video:	HELICOPTER]	



Conclusion	

§  We’re	done	with	Part	I:	Search	and	Planning!	

§  We’ve	seen	how	AI	methods	can	solve	
problems	in:	
§  Search	
§  Constraint	Sa+sfac+on	Problems	
§  Games	
§  Markov	Decision	Problems	
§  Reinforcement	Learning	

§  Next	up:	Part	II:	Uncertainty	and	Learning!	


