
CSE	473:	Ar+ficial	Intelligence	
	Markov	Decision	Processes	

Luke	Ze@lemoyer	

University	of	Washington	
[These	slides	were	adapted	from	Dan	Klein	and	Pieter	Abbeel	for	CS188	Intro	to	AI	at	UC	Berkeley.		All	CS188	materials	are	available	at	h@p://ai.berkeley.edu.]	

Non-Determinis+c	Search	

Example:	Grid	World	

§  A	maze-like	problem	
§  The	agent	lives	in	a	grid	
§  Walls	block	the	agent’s	path	

§  Noisy	movement:	ac+ons	do	not	always	go	as	planned	
§  80%	of	the	+me,	the	ac+on	North	takes	the	agent	North		

(if	there	is	no	wall	there)	
§  10%	of	the	+me,	North	takes	the	agent	West;	10%	East	
§  If	there	is	a	wall	in	the	direc+on	the	agent	would	have	

been	taken,	the	agent	stays	put	

§  The	agent	receives	rewards	each	+me	step	
§  Small	“living”	reward	each	step	(can	be	nega+ve)	
§  Big	rewards	come	at	the	end	(good	or	bad)	

§  Goal:	maximize	sum	of	rewards	

Grid	World	Ac+ons	
Determinis+c	Grid	World	 Stochas+c	Grid	World	

Markov	Decision	Processes	

§  An	MDP	is	defined	by:	
§  A	set	of	states	s	∈	S	
§  A	set	of	ac+ons	a	∈	A	
§  A	transi+on	func+on	T(s,	a,	s’)	

§  Probability	that	a	from	s	leads	to	s’,	i.e.,	P(s’|	s,	a)	
§  Also	called	the	model	or	the	dynamics	

§  A	reward	func+on	R(s,	a,	s’)		
§  Some+mes	just	R(s)	or	R(s’)	

§  A	start	state	
§  Maybe	a	terminal	state	

§  MDPs	are	non-determinis+c	search	problems	
§  One	way	to	solve	them	is	with	expec+max	search	
§  We’ll	have	a	new	tool	soon	

[Demo	–	gridworld	manual	intro	(L8D1)]	

What	is	Markov	about	MDPs?	

§  “Markov”	generally	means	that	given	the	present	state,	the	
future	and	the	past	are	independent	

§  For	Markov	decision	processes,	“Markov”	means	ac+on	
outcomes	depend	only	on	the	current	state	

§  This	is	just	like	search,	where	the	successor	func+on	could	only	
depend	on	the	current	state	(not	the	history)	

	

Andrey	Markov	
(1856-1922)	

	

Policies	

Op+mal	policy	when	R(s,	a,	s’)	=	-0.03	
for	all	non-terminals	s	

§  In	determinis+c	single-agent	search	problems,	
we	wanted	an	op+mal	plan,	or	sequence	of	
ac+ons,	from	start	to	a	goal	

§  For	MDPs,	we	want	an	op+mal	policy	π*:	S	→	A	
§  A	policy	π	gives	an	ac+on	for	each	state	
§  An	op+mal	policy	is	one	that	maximizes								

expected	u+lity	if	followed	
§  An	explicit	policy	defines	a	reflex	agent	

§  Expec+max	didn’t	compute	en+re	policies	
§  It	computed	the	ac+on	for	a	single	state	only	

Op+mal	Policies	

R(s)	=	-2.0	R(s)	=	-0.4	

R(s)	=	-0.03	R(s)	=	-0.01	

Example:	Racing	

Example:	Racing	
§  A	robot	car	wants	to	travel	far,	quickly	
§  Three	states:	Cool,	Warm,	Overheated	
§  Two	ac+ons:	Slow,	Fast	
§  Going	faster	gets	double	reward	

Cool	

Warm	

Overheated	

Fast	

Fast	

Slow	

Slow	

0.5		

0.5		

0.5		

0.5		

1.0		

1.0		

+1		

+1		

+1		

+2		

+2		

-10	

Racing	Search	Tree	

MDP	Search	Trees	
§  Each	MDP	state	projects	an	expec+max-like	search	tree	

a	

s	

s’	

s,	a	

(s,a,s’)	called	a	transi-on	

T(s,a,s’)	=	P(s’|s,a)	

R(s,a,s’)	

s,a,s’	

s	is	a	state	

(s,	a)	is	a	q-
state	

U+li+es	of	Sequences	

U+li+es	of	Sequences	

§  What	preferences	should	an	agent	have	over	reward	sequences?	

§  More	or	less?	

§  Now	or	later?	

[1,	2,	2]	 [2,	3,	4]		or	

[0,	0,	1]	 [1,	0,	0]		or	

Discoun+ng	

§  It’s	reasonable	to	maximize	the	sum	of	rewards	
§  It’s	also	reasonable	to	prefer	rewards	now	to	rewards	later	
§  One	solu+on:	values	of	rewards	decay	exponen+ally	

Worth	Now	 Worth	Next	Step	 Worth	In	Two	Steps	

Discoun+ng	

§  How	to	discount?	
§  Each	+me	we	descend	a	level,	we	

mul+ply	in	the	discount	once	

§  Why	discount?	
§  Sooner	rewards	probably	do	have	

higher	u+lity	than	later	rewards	
§  Also	helps	our	algorithms	converge	

§  Example:	discount	of	0.5	
§  U([1,2,3])	=	1*1	+	0.5*2	+	0.25*3	
§  U([1,2,3])	<	U([3,2,1])	

Sta+onary	Preferences	

§  Theorem:	if	we	assume	sta+onary	preferences:	

§  Then:	there	are	only	two	ways	to	define	u+li+es	
§  Addi+ve	u+lity:	

§  Discounted	u+lity:	

Quiz:	Discoun+ng	

§  Given:	

§  Ac+ons:	East,	West,	and	Exit	(only	available	in	exit	states	a,	e)	
§  Transi+ons:	determinis+c	

§  Quiz	1:	For	γ	=	1,	what	is	the	op+mal	policy?	

§  Quiz	2:	For	γ	=	0.1,	what	is	the	op+mal	policy?	

§  Quiz	3:	For	which	γ are	West	and	East	equally	good	when	in	state	d?	

Infinite	U+li+es?!	

§  Problem:	What	if	the	game	lasts	forever?		Do	we	get	infinite	rewards?	

§  Solu+ons:	
§  Finite	horizon:	(similar	to	depth-limited	search)	

§  Terminate	episodes	awer	a	fixed	T	steps	(e.g.	life)	
§  Gives	nonsta+onary	policies	(π	depends	on	+me	lew)	

§  Discoun+ng:	use	0	<	γ	<	1	

§  Smaller	γ	means	smaller	“horizon”	–	shorter	term	focus	

§  Absorbing	state:	guarantee	that	for	every	policy,	a	terminal	state	will	eventually	
be	reached	(like	“overheated”	for	racing)	

Recap:	Defining	MDPs	

§ Markov	decision	processes:	
§  Set	of	states	S	
§  Start	state	s0	
§  Set	of	ac+ons	A	
§  Transi+ons	P(s’|s,a)	(or	T(s,a,s’))	
§  Rewards	R(s,a,s’)	(and	discount	γ)	

§ MDP	quan++es	so	far:	
§  Policy	=	Choice	of	ac+on	for	each	state	
§  U+lity	=	sum	of	(discounted)	rewards	

a

s

s,	a	

s,a,s’	
s’	

Solving	MDPs	

Op+mal	Quan++es	

§  The	value	(u+lity)	of	a	state	s:	
V*(s)	=	expected	u+lity	star+ng	in	s	and	
ac+ng	op+mally	

§  The	value	(u+lity)	of	a	q-state	(s,a):	
Q*(s,a)	=	expected	u+lity	star+ng	out	
having	taken	ac+on	a	from	state	s	and	
(thereawer)	ac+ng	op+mally	

	
§  The	op+mal	policy:	

π*(s)	=	op+mal	ac+on	from	state	s	

a	

s	

s’	

s,	a	

(s,a,s’)	is	a		
transi-on	

s,a,s’	

s	is	a	
state	

(s,	a)	is	a	
q-state	

[Demo	–	gridworld	values	(L8D4)]	

Snapshot	of	Demo	–	Gridworld	V	Values	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

Snapshot	of	Demo	–	Gridworld	Q	Values	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

Values	of	States	

§  Fundamental	opera+on:	compute	the	(expec+max)	value	of	a	state	
§  Expected	u+lity	under	op+mal	ac+on	
§  Average	sum	of	(discounted)	rewards	
§  This	is	just	what	expec+max	computed!	

§  Recursive	defini+on	of	value:	

a

s

s, a

s,a,s’
s’

Racing	Search	Tree	

Racing	Search	Tree	

Racing	Search	Tree	

§  We’re	doing	way	too	much	
work	with	expec+max!	

§  Problem:	States	are	repeated		
§  Idea:	Only	compute	needed	

quan++es	once	

§  Problem:	Tree	goes	on	forever	
§  Idea:	Do	a	depth-limited	

computa+on,	but	with	increasing	
depths	un+l	change	is	small	

§  Note:	deep	parts	of	the	tree	
eventually	don’t	ma@er	if	γ	<	1	

Time-Limited	Values	

§  Key	idea:	+me-limited	values	

§  Define	Vk(s)	to	be	the	op+mal	value	of	s	if	the	game	ends	
in	k	more	+me	steps	
§  Equivalently,	it’s	what	a	depth-k	expec+max	would	give	from	s	

[Demo	–	+me-limited	values	(L8D6)]	

k=0	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

k=1	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

k=2	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

k=3	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

k=4	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

k=5	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

k=6	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

k=7	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

k=8	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

k=9	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

k=10	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

k=11	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

k=12	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

k=100	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

Compu+ng	Time-Limited	Values	

Value	Itera+on	

Value	Itera+on	

§  Start	with	V0(s)	=	0:	no	+me	steps	lew	means	an	expected	reward	sum	of	zero	

§  Given	vector	of	Vk(s)	values,	do	one	ply	of	expec+max	from	each	state:	

§  Repeat	un+l	convergence	

§  Complexity	of	each	itera+on:	O(S2A)	

§  Theorem:	will	converge	to	unique	op+mal	values	
§  Basic	idea:	approxima+ons	get	refined	towards	op+mal	values	
§  Policy	may	converge	long	before	values	do	

a

Vk+1(s)	

s,	a	

s,a,s’	

Vk(s’)	

Example:	Value	Itera+on	

		0													0													0	

		2													1													0	

		3.5										2.5										0	

Assume	no	discount!	

Convergence*	

§  How	do	we	know	the	Vk	vectors	are	going	to	converge?	

§  Case	1:	If	the	tree	has	maximum	depth	M,	then	VM	holds	
the	actual	untruncated	values	

§  Case	2:	If	the	discount	is	less	than	1	
§  Sketch:	For	any	state	Vk	and	Vk+1	can	be	viewed	as	depth	k

+1	expec+max	results	in	nearly	iden+cal	search	trees	
§  The	difference	is	that	on	the	bo@om	layer,	Vk+1	has	actual	

rewards	while	Vk	has	zeros	
§  That	last	layer	is	at	best	all	RMAX		
§  It	is	at	worst	RMIN		
§  But	everything	is	discounted	by	γk	that	far	out	
§  So	Vk	and	Vk+1	are	at	most	γk	max|R|	different	
§  So	as	k	increases,	the	values	converge	

Policy	Methods	

Policy	Evalua+on	

Fixed	Policies	

§  Expec+max	trees	max	over	all	ac+ons	to	compute	the	op+mal	values	

§  If	we	fixed	some	policy	π(s),	then	the	tree	would	be	simpler	–	only	one	ac+on	per	state	
§  …	though	the	tree’s	value	would	depend	on	which	policy	we	fixed	

a

s

s,	a	

s,a,s’	
s’	

π(s)	

s

s,	π(s)	

s,	π(s),s’	
s’	

Do	the	op+mal	ac+on	 Do	what	π	says	to	do	

U+li+es	for	a	Fixed	Policy	

§  Another	basic	opera+on:	compute	the	u+lity	of	a	state	s	
under	a	fixed	(generally	non-op+mal)	policy	

§  Define	the	u+lity	of	a	state	s,	under	a	fixed	policy	π:	
Vπ(s)	=	expected	total	discounted	rewards	star+ng	in	s	and	following	π	

§  Recursive	rela+on	(one-step	look-ahead	/	Bellman	equa+on):	

π(s)	

s

s,	π(s)	

s,	π(s),s’	
s’	

Example:	Policy	Evalua+on	
Always	Go	Right	 Always	Go	Forward	

Example:	Policy	Evalua+on	
Always	Go	Right	 Always	Go	Forward	

Policy	Evalua+on	

§  How	do	we	calculate	the	V’s	for	a	fixed	policy	π?	

§  Idea	1:	Turn	recursive	Bellman	equa+ons	into	updates	
	(like	value	itera+on)	

§  Efficiency:	O(S2)	per	itera+on	

§  Idea	2:	Without	the	maxes,	the	Bellman	equa+ons	are	just	a	linear	system	
§  Solve	with	Matlab	(or	your	favorite	linear	system	solver)	

π(s)	

s

s,	π(s)	

s,	π(s),s’	
s’	

Policy	Extrac+on	

Compu+ng	Ac+ons	from	Values	

§  Let’s	imagine	we	have	the	op+mal	values	V*(s)	

§  How	should	we	act?	
§  It’s	not	obvious!	

§  We	need	to	do	a	mini-expec+max	(one	step)	

§  This	is	called	policy	extrac+on,	since	it	gets	the	policy	implied	by	the	values	

Compu+ng	Ac+ons	from	Q-Values	

§  Let’s	imagine	we	have	the	op+mal	q-values:	

§  How	should	we	act?	
§  Completely	trivial	to	decide!	

§  Important	lesson:	ac+ons	are	easier	to	select	from	q-values	than	values!	

Policy	Itera+on	

Problems	with	Value	Itera+on	

§  Value	itera+on	repeats	the	Bellman	updates:	

§  Problem	1:	It’s	slow	–	O(S2A)	per	itera+on	

§  Problem	2:	The	“max”	at	each	state	rarely	changes	

§  Problem	3:	The	policy	owen	converges	long	before	the	values	

a

s

s,	a	

s,a,s’	
s’	

[Demo:	value	itera+on	(L9D2)]	

k=0	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

k=1	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

k=2	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

k=3	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

k=4	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

k=5	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

k=6	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

k=7	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

k=8	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

k=9	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

k=10	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

k=11	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

k=12	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

k=100	

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

Policy	Itera+on	

§  Alterna+ve	approach	for	op+mal	values:	
§  Step	1:	Policy	evalua+on:	calculate	u+li+es	for	some	fixed	policy	(not	op+mal	
u+li+es!)	un+l	convergence	

§  Step	2:	Policy	improvement:	update	policy	using	one-step	look-ahead	with	resul+ng	
converged	(but	not	op+mal!)	u+li+es	as	future	values	

§  Repeat	steps	un+l	policy	converges	

§  This	is	policy	itera+on	
§  It’s	s+ll	op+mal!	
§  Can	converge	(much)	faster	under	some	condi+ons	

Policy	Itera+on	

§  Evalua+on:	For	fixed	current	policy	π,	find	values	with	policy	evalua+on:	
§  Iterate	un+l	values	converge:	

	
§  Improvement:	For	fixed	values,	get	a	be@er	policy	using	policy	extrac+on	

§  One-step	look-ahead:	

Comparison	

§  Both	value	itera+on	and	policy	itera+on	compute	the	same	thing	(all	op+mal	values)	

§  In	value	itera+on:	
§  Every	itera+on	updates	both	the	values	and	(implicitly)	the	policy	
§  We	don’t	track	the	policy,	but	taking	the	max	over	ac+ons	implicitly	recomputes	it	

§  In	policy	itera+on:	
§  We	do	several	passes	that	update	u+li+es	with	fixed	policy	(each	pass	is	fast	because	we	

consider	only	one	ac+on,	not	all	of	them)	
§  Awer	the	policy	is	evaluated,	a	new	policy	is	chosen	(slow	like	a	value	itera+on	pass)	
§  The	new	policy	will	be	be@er	(or	we’re	done)	

§  Both	are	dynamic	programs	for	solving	MDPs	

Summary:	MDP	Algorithms	

§  So	you	want	to….	
§  Compute	op+mal	values:	use	value	itera+on	or	policy	itera+on	
§  Compute	values	for	a	par+cular	policy:	use	policy	evalua+on	
§  Turn	your	values	into	a	policy:	use	policy	extrac+on	(one-step	lookahead)	

§  These	all	look	the	same!	
§  They	basically	are	–	they	are	all	varia+ons	of	Bellman	updates	
§  They	all	use	one-step	lookahead	expec+max	fragments	
§  They	differ	only	in	whether	we	plug	in	a	fixed	policy	or	max	over	ac+ons	

Double	Bandits	

Double-Bandit	MDP	

§  Ac+ons:	Blue,	Red	
§  States:	Win,	Lose	

W L	
$1	
	
1.0	

$1	
	
1.0	

0.25	 	$0	

0.75		
$2	

0.75	 	$2	

0.25		
$0	

No	discount	
	

100	-me	steps	
	

Both	states	have	
the	same	value	

Offline	Planning	

§  Solving	MDPs	is	offline	planning	
§  You	determine	all	quan++es	through	computa+on	
§  You	need	to	know	the	details	of	the	MDP	
§  You	do	not	actually	play	the	game!	

Play	Red	

Play	Blue	

Value	

No	discount	
	

100	-me	steps	
	

Both	states	have	
the	same	value	

150	

100	

W L	
$1	
	
1.0	

$1	
	
1.0	

0.25	 	$0	

0.75		
$2	

0.75	 	$2	

0.25		
$0	

Let’s	Play!	

$2	 $2	 $0	 $2	 $2	
$2	 $2	 $0	 $0	 $0	

Online	Planning	

§  Rules	changed!		Red’s	win	chance	is	different.	

W L	
$1	
	
1.0	

$1	
	
1.0	

??	 	$0	

??		
$2	

??	 	$2	

??		
$0	

Let’s	Play!	

$0	 $0	 $0	 $2	 $0	
$2	 $0	 $0	 $0	 $0	

What	Just	Happened?	

§  That	wasn’t	planning,	it	was	learning!	
§  Specifically,	reinforcement	learning	
§  There	was	an	MDP,	but	you	couldn’t	solve	it	with	just	computa+on	
§  You	needed	to	actually	act	to	figure	it	out	

§  Important	ideas	in	reinforcement	learning	that	came	up	
§  Explora+on:	you	have	to	try	unknown	ac+ons	to	get	informa+on	
§  Exploita+on:	eventually,	you	have	to	use	what	you	know	
§  Regret:	even	if	you	learn	intelligently,	you	make	mistakes	
§  Sampling:	because	of	chance,	you	have	to	try	things	repeatedly	
§  Difficulty:	learning	can	be	much	harder	than	solving	a	known	MDP	

Next	Time:	Reinforcement	Learning!	

