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Today

" Informed Search

" Heuristics
" Greedy Search
= A* Search

" Graph Search




Recap: Search




Recap: Search

= Search problem:
= States (configurations of the world)
= Actions and costs
= Successor function (world dynamics)
= Start state and goal test

= Search tree:
" Nodes: represent plans for reaching states  —__
= Plans have costs (sum of action costs)

= Search algorithm:
= Systematically builds a search tree
* Chooses an ordering of the fringe (unexplored nodes)
" Optimal: finds least-cost plans




Example: Pancake Problem

Cost: Number of pancakes flipped



Example: Pancake Problem
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For a permutation o of the integers from 1 to n, let f(o) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(o)
for all ¢ in (the symmetric group) S,. We show that f(n)=(5n +5)/3, and that f(n)=17n/16 for
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2—-1=g(n)=2n+3.




Example: Pancake Problem

State space graph with costs as weights




General Tree Search

function TREE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

A ( -
Action: flip top two A{  Path to reach goal:
Cost: 2 Flip four, flip three

/ \l' Total cost: 7
>




The One Queue

= All these search algorithms are the
same except for fringe strategies L@_DL_UO‘LEG\O@”\L@M\- - F_\

= Conceptually, all fringes are priority
gueues (i.e. collections of nodes with
attached priorities)

= Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

= Can even code one implementation
that takes a variable queuing object




Uninformed Search




Uniform Cost Search

" Strategy: expand lowest path cost

" The good: UCS is complete and
optimal!

" The bad:
" Explores options in every “direction”
" No information about goal location Goal

[Demo: contours UCS empty (L3D1)]
[Demo: contours UCS pacman small maze (L3D3)]




Video of Demo Contours UCS Empty

® OO Search Strategies Demo




Video of Demo Contours UCS Pacman Small Maze

SCORE: 0



Informed Search




Search Heuristics

= A heuristic is:
= A function that estimates how close a state is to a goal A:/‘:}\

= Designed for a particular search problem ﬂ—l—\g \

Heuriski—Tron

= Examples: Manhattan, Euclidean distance for pathing
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Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place
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Greedy Search




Example: Heuristic Function
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Greedy Search

Fagaras

99

= Expand the node that seems closest...
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253 0

= What can go wrong?




Greedy Search

= Strategy: expand a node that you think
Is closest to a goal state

= Heuristic: estimate of distance to nearest
goal for each state

= A common case:

= Best-first takes you straight to the (wrong)
goal

= Worst-case: like a badly-guided DFS

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]



Video of Demo Contours Greedy (Empty)

® O O Search Strategies Demo




Video of Demo Contours Greedy (Pacman Small Maze)




A* Search




A* Search



Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

h=2 h=0

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager



When should A* terminate?

= Should we stop when we enqueue a goal?

h=2

h=1

= No: only stop when we dequeue a goal



Is A* Optimal?

h=6

= What went wrong?
= Actual bad goal cost < estimated good goal cost
= \We need estimates to be less than actual costs!



Admissible Heuristics

Heuristi = Tron




ldea: Admissibility

Heuristi - Tron

Inadmissible (pessimistic) Admissible (optimistic) heuristics
heuristics break optimality by slow down bad plans but never
trapping good plans on the fringe outweigh true costs



Admissible Heuristics

= A heuristic /1 is admissible (optimistic) if:
0 < h(n) < h*(n)

where h*(n) is the true cost to a nearest goal

o -

= Coming up with admissible heuristics is most of what’s involved
in using A* in practice.




Optimality of A* Tree Search




Optimality of A* Tree Search

Assume:

" Ais an optimal goal node

" B is a suboptimal goal node
" his admissible

Claim:

= A will exit the fringe before B



Optimality of A* Tree Search: Blocking

Proof:
" |magine B is on the fringe

= Some ancestor n of A is on the fringe, too
(maybe Al)
= Claim: n will be expanded before B

1. f(n) is less or equal to f{A)

f(n) =g(n) + h(n) Definition of f-cost
f(n) < g(A) Admissibility of h
g(A) = f(A) h =0 at a goal



Optimality of A* Tree Search: Blocking

Proof:
" |magine B is on the fringe

= Some ancestor n of A is on the fringe, too
(maybe Al)
= Claim: n will be expanded before B

1. f(n)is less or equal to f(A)
2. f(A) is less than f(B)

g(A) < g(B) B is suboptimal
f(A) < f(B) h =0 at a goal



Optimality of A* Tree Search: Blocking

Proof:
" |magine B is on the fringe

= Some ancestor n of A is on the fringe, too
(maybe Al)
= Claim: n will be expanded before B

1. f(n)is less or equal to f(A)
2. f(A) is less than f(B)

3. nexpands before
_
= All ancestors of A expand before B f(n) < f(A) < f(B) }
= A expands before B -

= A* search is optimal




Properties of A*



Properties of A*

Uniform-Cost

A*




UCS vs A* Contours

= Uniform-cost expands equally in all

“directions” @
Sta Goal

= A* expands mainly toward the goal,

but does hedge its bets to ensure
optimality Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]



Video of Demo Contours (Empty) -- UCS

® OO Search Strategies Demo




Video of Demo Contours (Empty) -- Greedy

® OO Search Strategies Demo




Video of Demo Contours (Empty) — A*

® OO Search Strategies Demo




Video of Demo Contours (Pacman Small Maze) — A*




Comparison

SCORE: 0 SCORE: 0 SCORE: 0

Greedy Uniform Cost A*



A* Applications

" Video games

Pathing / routing problems
Resource planning problems
Robot motion planning

Llanguage analysis
Machine translation
Speech recognition

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]



Video of Demo Pacman (Tiny Maze) — UCS / A*
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Video of Demo Empty Water Shallow/Deep — Guess Algorithm
7 Sewrch seategies Oema [N il




Creating Heuristics

YOu GOT

HEURISTILC
UFGRADE!




Creating Admissible Heuristics

" Most of the work in solving hard search problems
optimally is in coming up with admissible heuristics

= Often, admissible heuristics are solutions to relaxed
problems, where new actions are available

" [nadmissible heuristics are often useful too



Example: 8 Puzzle

!

7 2% 3/7|1
sl 6 12/%[5 4
8 3 1 S8l 6 7

Start State Actions Goal State

1-6“

-7

2
3 4|5
6 79

= What are the states? <ulE=—

" How many states?

= What are the actions?

= How many successors from the start state?
= What should the costs be?



8 Puzzle |

Heuristic: Number of tiles misplaced
Why is it admissible?

h(start) = 8

This is a relaxed-problem heuristic

Start State

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
UCS 112 6,300 3.6 x 10°
TILES 13 39 227

Statistics from Andrew Moore




8 Puzzle Il

What if we had an easier 8-puzzle
where any tile could slide any
direction at any time, ignoring other
tiles?

Total Manhattan distance
Why is it admissible?

h(start)= 3+1+2+..=18

Start State

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
TILES 13 39 227
MANHATTAN 12 25 /3




8 Puzzle Il

" How about using the actual cost as a heuristic?
= Would it be admissible?

= Would we save on nodes expanded? 'I m
N/ \Lwore. coat ||

* What's wrong with it?

= With A*: a trade-off between quality of estimate and work per
node

= As heuristics get closer to the true cost, you will expand fewer nodes
but usually do more work per node to compute the heuristic itself



Semi-Lattice of Heuristics



Trivial Heuristics, Dominance

= Dominance: h, > h_if
Vn : hg(n) > he(n)

= Heuristics form a semi-lattice:

= Max of admissible heuristics is
admissible

h(n) = max(ha(n), hp(n))
= Trivial heuristics

= Bottom of lattice is the zero heuristic
(what does this give us?)

" Top of lattice is the exact heuristic

exact
I

mazx(hg, hy)



Graph Search




Tree Search: Extra Work!

= Failure to detect repeated states can cause exponentially more work.

/ State Graph \
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Graph Search

" |n BFS, for example, we shouldn’t bother expanding the circled
nodes (why?)
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Graph Search

ldea: never expand a state twice

How to implement:
" Tree search + set of expanded states (“closed set”)
" Expand the search tree node-by-node, but...

= Before expanding a node, check to make sure its state has never
been expanded before

" |f not new, skip it, if new add to closed set

Important: store the closed set as a set, not a list

Can graph search wreck completeness? Why/why not?
How about optimality?



A* Graph Search Gone Wrong?

State space graph

Search tree

S (0+2)

~—

A (1+4) B(1+1)

! !

C (2+1) C (3+1)

} !

G (5+0) G (6+0)



Consistency of Heuristics

= Main idea: heuristic costs < actual costs
= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from Ato G

® Consistency: heuristic “arc” cost < actual cost for
each arc

h(A) — h(C) < cost(A to C)
= Consequences of consistency:
" The f value along a path never decreases
h(A) < cost(A to C) + h(C)
= A* graph search is optimal




Optimality of A* Graph Search




Optimality of A* Graph Search

= Sketch: consider what A* does with a
consistent heuristic:

" Fact 1: In tree search, A* expands nodes
in increasing total f value (f-contours)

" Fact 2: For every state s, paths that
reach s optimally are expanded before
paths that reach s suboptimally

= Result: A* graph search is optimal



Optimality

Tree search:
* A*is optimal if heuristic is admissible
= UCSis a special case (h=0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h =0 is consistent)

Consistency implies admissibility

In general, most natural admissible
heuristics tend to be consistent,
especially if from relaxed problems



A*: Summary




A*: Summary

= A* uses both backward costs and (estimates of) forward costs
= A* js optimal with admissible / consistent heuristics

" Heuristic design is key: often use relaxed problems

,

e




Tree Search Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure

fringe < INSERT(MAKE-NODE(INITIAL-STATE problem)), fringe)
loop do

if fringe is empty then return failure

node <— REMOVE-FRONT( fringe)

if GOAL-TEST(problem, STATE[node|) then return node

for child-node in EXPAND(STATE|node|, problem) do

fringe <— INSERT(child-node, fringe)

end

end




Graph Search Pseudo-Code

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed <— an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE|problem)|), fringe)
loop do
if fringe is empty then return failure
node <— REMOVE-FRONT( fringe)
if GOAL-TEST(problem, STATE[node|) then return node
if STATE[node| is not in closed then
add STATE[node| to closed
for child-node in EXPAND(STATE|node|, problem) do
fringe <— INSERT( child-node, fringe)
end
end




