
CSE	473:	Ar+ficial	Intelligence	
	

Informed	Search	

Instructor:	Luke	Ze@lemoyer	

University	of	Washington	
[These	slides	were	adapted	from	Dan	Klein	and	Pieter	Abbeel	for	CS188	Intro	to	AI	at	UC	Berkeley.		All	CS188	materials	are	available	at	h@p://ai.berkeley.edu.]	



Today	

§  Informed	Search	
§ Heuris+cs	
§ Greedy	Search	
§ A*	Search	

§ Graph	Search	



Recap:	Search	



Recap:	Search	
§  Search	problem:	

§  States	(configura+ons	of	the	world)	
§  Ac+ons	and	costs	
§  Successor	func+on	(world	dynamics)	
§  Start	state	and	goal	test	

§  Search	tree:	
§  Nodes:	represent	plans	for	reaching	states	
§  Plans	have	costs	(sum	of	ac+on	costs)	

§  Search	algorithm:	
§  Systema+cally	builds	a	search	tree	
§  Chooses	an	ordering	of	the	fringe	(unexplored	nodes)	
§  Op+mal:	finds	least-cost	plans	



Example:	Pancake	Problem	

Cost:	Number	of	pancakes	flipped	



Example:	Pancake	Problem	



Example:	Pancake	Problem	

3	

2	

4	

3	

3	

2	

2	

2	

4	

State	space	graph	with	costs	as	weights	

3	
4	

3	

4	

2	



General	Tree	Search	

Ac+on:	flip	top	two	
Cost:	2	

Ac+on:	flip	all	four	
Cost:	4	
Path	to	reach	goal:	
Flip	four,	flip	three	

Total	cost:	7	



The	One	Queue	

§  All	these	search	algorithms	are	the	
same	except	for	fringe	strategies	
§  Conceptually,	all	fringes	are	priority	
queues	(i.e.	collec+ons	of	nodes	with	
a@ached	priori+es)	

§  Prac+cally,	for	DFS	and	BFS,	you	can	
avoid	the	log(n)	overhead	from	an	
actual	priority	queue,	by	using	stacks	
and	queues	

§  Can	even	code	one	implementa+on	
that	takes	a	variable	queuing	object	



Uninformed	Search	



Uniform	Cost	Search	

§  Strategy:	expand	lowest	path	cost	
	
§  The	good:	UCS	is	complete	and	
op+mal!	

§  The	bad:	
§ Explores	op+ons	in	every	“direc+on”	
§ No	informa+on	about	goal	loca+on	 Start Goal 

…

c ≤ 3 

c ≤ 2 
c ≤ 1 

[Demo:	contours	UCS	empty	(L3D1)]	
[Demo:	contours	UCS	pacman	small	maze	(L3D3)]	



Video	of	Demo	Contours	UCS	Empty	



Video	of	Demo	Contours	UCS	Pacman	Small	Maze	



Informed	Search	



Search	Heuris+cs	
§ A	heuris+c	is:	

§  A	func+on	that	es#mates	how	close	a	state	is	to	a	goal	
§  Designed	for	a	par+cular	search	problem	
§  Examples:	Manha@an,	Euclidean	distance	for	pathing	

10 

5 

11.2 



Example:	Heuris+c	Func+on	

h(x) 



Example:	Heuris+c	Func+on	
Heuris+c:	the	number	of	the	largest	pancake	that	is	s+ll	out	of	place	

4
3

0

2

3

3

3

4

4

3

4

4

4

h(x) 



Greedy	Search	



Example:	Heuris+c	Func+on	

h(x) 



Greedy	Search	

§  Expand	the	node	that	seems	closest…	

§  What	can	go	wrong?	



Greedy	Search	

§  Strategy:	expand	a	node	that	you	think	
is	closest	to	a	goal	state	
§  Heuris+c:	es+mate	of	distance	to	nearest	
goal	for	each	state	

	
§  A	common	case:	

§  Best-first	takes	you	straight	to	the	(wrong)	
goal	

§ Worst-case:	like	a	badly-guided	DFS	

…
b

…
b

[Demo:	contours	greedy	empty	(L3D1)]		
[Demo:	contours	greedy	pacman	small	maze	(L3D4)]	



Video	of	Demo	Contours	Greedy	(Empty)	



Video	of	Demo	Contours	Greedy	(Pacman	Small	Maze)	



A*	Search	



A*	Search	

UCS	 Greedy	

A*	



Combining	UCS	and	Greedy	

§  Uniform-cost	orders	by	path	cost,	or	backward	cost		g(n)	
§  Greedy	orders	by	goal	proximity,	or	forward	cost		h(n)	

§  A*	Search	orders	by	the	sum:	f(n)	=	g(n)	+	h(n)	

S	 a	 d	

b	

G	
h=5	

h=6	

h=2	

1	

8	

1	
1	

2	

h=6	 h=0	

c	

h=7	

3	

e	 h=1	
1	

Example:	Teg	Grenager	

S	

a	

b	

c	

e	d	

d	G	

G	

g	=	0	
h=6	

g	=	1	
h=5	

g	=	2	
h=6	

g	=	3	
h=7	

g	=	4	
h=2	

g	=	6	
h=0	

g	=	9	
h=1	

g	=	10	
h=2	

g	=	12	
h=0	



When	should	A*	terminate?	

§  Should	we	stop	when	we	enqueue	a	goal?	

§  No:	only	stop	when	we	dequeue	a	goal	

S	

B	

A	

G	

2	

3	

2	

2	
h	=	1	

h	=	2	

h	=	0	h	=	3	



Is	A*	Op+mal?	

§ What	went	wrong?	
§  Actual	bad	goal	cost	<	es+mated	good	goal	cost	
§ We	need	es+mates	to	be	less	than	actual	costs!	

A	

G	S	

1	 3	
h	=	6	

h	=	0	

5	

h	=	7	



Admissible	Heuris+cs	



Idea:	Admissibility	

Inadmissible	(pessimis+c)	
heuris+cs	break	op+mality	by	

trapping	good	plans	on	the	fringe	

Admissible	(op+mis+c)	heuris+cs	
slow	down	bad	plans	but	never	

outweigh	true	costs	



Admissible	Heuris+cs	

§  A	heuris+c	h	is	admissible	(op+mis+c)	if:	

	where															is	the	true	cost	to	a	nearest	goal	
	

§  Examples:	

§  Coming	up	with	admissible	heuris+cs	is	most	of	what’s	involved	
in	using	A*	in	prac+ce.	

4	
15	



Op+mality	of	A*	Tree	Search	



Op+mality	of	A*	Tree	Search	

Assume:	
§ A	is	an	op+mal	goal	node	
§ B	is	a	subop+mal	goal	node	
§ h	is	admissible	

Claim:	
§ A	will	exit	the	fringe	before	B	

…



Op+mality	of	A*	Tree	Search:	Blocking	

Defini+on	of	f-cost	
Admissibility	of	h	

…

h	=	0	at	a	goal	

Proof:	
§  Imagine	B	is	on	the	fringe	
§  Some	ancestor	n	of	A	is	on	the	fringe,	too	
(maybe	A!)	

§  Claim:	n	will	be	expanded	before	B	
1.  f(n)	is	less	or	equal	to	f(A)	



Op+mality	of	A*	Tree	Search:	Blocking	

B	is	subop+mal	
h	=	0	at	a	goal	

…

Proof:	
§  Imagine	B	is	on	the	fringe	
§  Some	ancestor	n	of	A	is	on	the	fringe,	too	
(maybe	A!)	

§  Claim:	n	will	be	expanded	before	B	
1.  f(n)	is	less	or	equal	to	f(A)	
2.  f(A)	is	less	than	f(B)	



Op+mality	of	A*	Tree	Search:	Blocking	
Proof:	
§  Imagine	B	is	on	the	fringe	
§  Some	ancestor	n	of	A	is	on	the	fringe,	too	
(maybe	A!)	

§  Claim:	n	will	be	expanded	before	B	
1.  f(n)	is	less	or	equal	to	f(A)	
2.  f(A)	is	less	than	f(B)	
3.  	n	expands	before	B	

§  All	ancestors	of	A	expand	before	B	
§  A	expands	before	B	
§  A*	search	is	op+mal	

…



Proper+es	of	A*	



Proper+es	of	A*	

…
b	

…
b	

Uniform-Cost	 A*	



UCS	vs	A*	Contours	

§  Uniform-cost	expands	equally	in	all	
“direc+ons”	

§  A*	expands	mainly	toward	the	goal,	
but	does	hedge	its	bets	to	ensure	
op+mality	

Start	 Goal	

Start	 Goal	

[Demo:	contours	UCS	/	greedy	/	A*	empty	(L3D1)]	
[Demo:	contours	A*	pacman	small	maze	(L3D5)]	



Video	of	Demo	Contours	(Empty)	--	UCS	



Video	of	Demo	Contours	(Empty)	--	Greedy	



Video	of	Demo	Contours	(Empty)	–	A*	



Video	of	Demo	Contours	(Pacman	Small	Maze)	–	A*	



Comparison	

Greedy	 Uniform	Cost	 A*	



A*	Applica+ons	

§  Video	games	
§  Pathing	/	rou+ng	problems	
§  Resource	planning	problems	
§  Robot	mo+on	planning	
§  Language	analysis	
§ Machine	transla+on	
§  Speech	recogni+on	
§  …	

[Demo:	UCS	/	A*	pacman	+ny	maze	(L3D6,L3D7)]	
[Demo:	guess	algorithm	Empty	Shallow/Deep	(L3D8)]	



Video	of	Demo	Pacman	(Tiny	Maze)	–	UCS	/	A*	



Video	of	Demo	Empty	Water	Shallow/Deep	–	Guess	Algorithm	



Crea+ng	Heuris+cs	



Crea+ng	Admissible	Heuris+cs	

§ Most	of	the	work	in	solving	hard	search	problems	
op+mally	is	in	coming	up	with	admissible	heuris+cs	

§ Oten,	admissible	heuris+cs	are	solu+ons	to	relaxed	
problems,	where	new	ac+ons	are	available	

§  Inadmissible	heuris+cs	are	oten	useful	too	

15	
366	



Example:	8	Puzzle	

§  What	are	the	states?	
§  How	many	states?	
§  What	are	the	ac+ons?	
§  How	many	successors	from	the	start	state?	
§  What	should	the	costs	be?	

Start	State	 Goal	State	Ac+ons	



8	Puzzle	I	

§  Heuris+c:	Number	of	+les	misplaced	
§  Why	is	it	admissible?	
§  h(start)	=	
§  This	is	a	relaxed-problem	heuris+c	

8	

Average	nodes	expanded	
when	the	op+mal	path	has…	
…4	steps	 …8	steps	 …12	steps	

UCS	 112	 6,300	 3.6	x	106	

TILES	 13	 39	 227	

Start	State	 Goal	State	

Sta+s+cs	from	Andrew	Moore	



8	Puzzle	II	

§  What	if	we	had	an	easier	8-puzzle	
where	any	+le	could	slide	any	
direc+on	at	any	+me,	ignoring	other	
+les?	

§  Total	ManhaDan	distance	
§  Why	is	it	admissible?	

§  h(start)	=	 3	+	1	+	2	+	…	=	18	
Average	nodes	expanded	
when	the	op+mal	path	has…	
…4	steps	 …8	steps	 …12	steps	

TILES	 13	 39	 227	
MANHATTAN	 12	 25	 73	

Start	State	 Goal	State	



8	Puzzle	III	

§  How	about	using	the	actual	cost	as	a	heuris+c?	
§ Would	it	be	admissible?	
§ Would	we	save	on	nodes	expanded?	
§ What’s	wrong	with	it?	

	

§ With	A*:	a	trade-off	between	quality	of	es+mate	and	work	per	
node	
§  As	heuris+cs	get	closer	to	the	true	cost,	you	will	expand	fewer	nodes	
but	usually	do	more	work	per	node	to	compute	the	heuris+c	itself	



Semi-Lawce	of	Heuris+cs	



Trivial	Heuris+cs,	Dominance	

§  Dominance:	ha	≥	hc	if	
	
§  Heuris+cs	form	a	semi-lawce:	

§ Max	of	admissible	heuris+cs	is	
admissible	

	

§  Trivial	heuris+cs	
§  Bo@om	of	lawce	is	the	zero	heuris+c	
(what	does	this	give	us?)	

§  Top	of	lawce	is	the	exact	heuris+c	



Graph	Search	



§  Failure	to	detect	repeated	states	can	cause	exponen+ally	more	work.			

Search	Tree	State	Graph	

Tree	Search:	Extra	Work!	



Graph	Search	

§  In	BFS,	for	example,	we	shouldn’t	bother	expanding	the	circled	
nodes	(why?)	

S	

a	

b	

d	 p	

a	

c	

e	

p	

h	

f	

r	

q	

q	 c	 G	

a	

q	e	

p	

h	

f	

r	

q	

q	 c	 G	

a	



Graph	Search	

§  Idea:	never	expand	a	state	twice	
§  How	to	implement:		

§  Tree	search	+	set	of	expanded	states	(“closed	set”)	
§  Expand	the	search	tree	node-by-node,	but…	
§  Before	expanding	a	node,	check	to	make	sure	its	state	has	never	
been	expanded	before	

§  If	not	new,	skip	it,	if	new	add	to	closed	set	
§  Important:	store	the	closed	set	as	a	set,	not	a	list	
§  Can	graph	search	wreck	completeness?		Why/why	not?	
§  How	about	op+mality?	



A*	Graph	Search	Gone	Wrong?	

S	

A	

B	

C	

G	

1	

1	

1	

2	
3	

h=2	

h=1	

h=4	

h=1	

h=0	

S	(0+2)	

A	(1+4)	 B	(1+1)	

C	(2+1)	

G	(5+0)	

C	(3+1)	

G	(6+0)	

State	space	graph	 Search	tree	



Consistency	of	Heuris+cs	

§ Main	idea:	heuris+c	costs	≤	actual	costs	
§  Admissibility:	heuris+c	cost	≤	actual	cost	to	goal	
	 	h(A)	≤	actual	cost	from	A	to	G	

§  Consistency:	heuris+c	“arc”	cost	≤	actual	cost	for	
each	arc	
	 	h(A)	–	h(C)	≤	cost(A	to	C)	

§  Consequences	of	consistency:	
§  The	f	value	along	a	path	never	decreases	
	 		h(A)	≤	cost(A	to	C)	+	h(C)	

§  A*	graph	search	is	op+mal	

3	

A	

C	

G	

h=4	 h=1	
1	

h=2	



Op+mality	of	A*	Graph	Search	



Op+mality	of	A*	Graph	Search	

§  Sketch:	consider	what	A*	does	with	a	
consistent	heuris+c:	
§ Fact	1:	In	tree	search,	A*	expands	nodes	
in	increasing	total	f	value	(f-contours)	

§ Fact	2:	For	every	state	s,	paths	that	
reach	s	op+mally	are	expanded	before	
paths	that	reach	s	subop+mally	

§ Result:	A*	graph	search	is	op+mal	

…

f	≤	3	

f	≤	2	

f	≤	1	



Op+mality	

§  Tree	search:	
§  A*	is	op+mal	if	heuris+c	is	admissible	
§  UCS	is	a	special	case	(h	=	0)	

§  Graph	search:	
§  A*	op+mal	if	heuris+c	is	consistent	
§  UCS	op+mal	(h	=	0	is	consistent)	

§  Consistency	implies	admissibility	

§  In	general,	most	natural	admissible	
heuris+cs	tend	to	be	consistent,	
especially	if	from	relaxed	problems	



A*:	Summary	



A*:	Summary	

§  A*	uses	both	backward	costs	and	(es+mates	of)	forward	costs	

§  A*	is	op+mal	with	admissible	/	consistent	heuris+cs	

§  Heuris+c	design	is	key:	oten	use	relaxed	problems	



Tree	Search	Pseudo-Code	



Graph	Search	Pseudo-Code	


