CSE 473: Artificial Intelligence

Informed Search

Instructor: Luke Zettlemoyer

University of Washington

[These slides were adapted from Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today

" Informed Search

" Heuristics
" Greedy Search
= A* Search

" Graph Search

Recap: Search

Recap: Search

= Search problem:
= States (configurations of the world)
= Actions and costs
= Successor function (world dynamics)
= Start state and goal test

= Search tree:
" Nodes: represent plans for reaching states —__
= Plans have costs (sum of action costs)

= Search algorithm:
= Systematically builds a search tree
* Chooses an ordering of the fringe (unexplored nodes)
" Optimal: finds least-cost plans

Example: Pancake Problem

Cost: Number of pancakes flipped

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES
Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*T
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978
Revised 28 August 1978

For a permutation o of the integers from 1 to n, let f(o) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(o)
for all ¢ in (the symmetric group) S,. We show that f(n)=(5n +5)/3, and that f(n)=17n/16 for
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2—-1=g(n)=2n+3.

Example: Pancake Problem

State space graph with costs as weights

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

A (-
Action: flip top two A{ Path to reach goal:
Cost: 2 Flip four, flip three

/ \l' Total cost: 7
>

The One Queue

= All these search algorithms are the
same except for fringe strategies L@_DL_UO‘LEG\O@”\L@M\- - F_\

= Conceptually, all fringes are priority
gueues (i.e. collections of nodes with
attached priorities)

= Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

= Can even code one implementation
that takes a variable queuing object

Uninformed Search

Uniform Cost Search

" Strategy: expand lowest path cost

" The good: UCS is complete and
optimal!

" The bad:
" Explores options in every “direction”
" No information about goal location Goal

[Demo: contours UCS empty (L3D1)]
[Demo: contours UCS pacman small maze (L3D3)]

Video of Demo Contours UCS Empty

® OO Search Strategies Demo

Video of Demo Contours UCS Pacman Small Maze

SCORE: 0

Informed Search

Search Heuristics

= A heuristic is:
= A function that estimates how close a state is to a goal A:/‘:}\

= Designed for a particular search problem ﬂ—l—\g \

Heuriski—Tron

= Examples: Manhattan, Euclidean distance for pathing

75

Arad [

Example: Heuristic Function

[] Vaslui

Timisoara

142

11 Pitesti

98
] Hirsova

86

] Mehadia Urziceni

75

Dobreta [J

= Craiova Eforie

[] Giurgiu

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

ﬂtra ight—line distance \

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
850
199
374

J

h(x)

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

3 —
4=/ I h(X)
4i 3=\

3 — 0 —/—/—

4 —_ N 3 =
$ 4 = \

4 —

Greedy Search

Example: Heuristic Function

/ Straight—line distance \
to Bucharest

Arad 366

Bucharest 0

75 Craiova 160
Dobreta 242

Arad Eforie 161
Fagaras 178

118 _ Giurgiu 77
] Vaslui Hirsova 151

lasi 226

Timisoara Lugoj 244

142 Mehadia 241

Neamt 234

98 Oradea 380

Hirsova Pitesti 98

] Mehadia Urziceni Rimnicu Vilcea 193

75 86 Sibiu 253

Bucharest Timisoara 329

Dobreta [an Urziceni 80

Eforie Vaslui 199

L Glurgiu KZerind 374 /
h(x)

Greedy Search

Fagaras

99

= Expand the node that seems closest...

] Mehadia

75
Arad

Dobreta [J

Eforie

329 374

380 193

366
253 0

= What can go wrong?

Greedy Search

= Strategy: expand a node that you think
Is closest to a goal state

= Heuristic: estimate of distance to nearest
goal for each state

= A common case:

= Best-first takes you straight to the (wrong)
goal

= Worst-case: like a badly-guided DFS

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]

Video of Demo Contours Greedy (Empty)

® O O Search Strategies Demo

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

A* Search

Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

h=2 h=0

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

When should A* terminate?

= Should we stop when we enqueue a goal?

h=2

h=1

= No: only stop when we dequeue a goal

Is A* Optimal?

h=6

= What went wrong?
= Actual bad goal cost < estimated good goal cost
= \We need estimates to be less than actual costs!

Admissible Heuristics

Heuristi = Tron

ldea: Admissibility

Heuristi - Tron

Inadmissible (pessimistic) Admissible (optimistic) heuristics
heuristics break optimality by slow down bad plans but never
trapping good plans on the fringe outweigh true costs

Admissible Heuristics

= A heuristic /1 is admissible (optimistic) if:
0 < h(n) < h*(n)

where h*(n) is the true cost to a nearest goal

o -

= Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

" Ais an optimal goal node

" B is a suboptimal goal node
" his admissible

Claim:

= A will exit the fringe before B

Optimality of A* Tree Search: Blocking

Proof:
" |magine B is on the fringe

= Some ancestor n of A is on the fringe, too
(maybe Al)
= Claim: n will be expanded before B

1. f(n) is less or equal to f{A)

f(n) =g(n) + h(n) Definition of f-cost
f(n) < g(A) Admissibility of h
g(A) = f(A) h =0 at a goal

Optimality of A* Tree Search: Blocking

Proof:
" |magine B is on the fringe

= Some ancestor n of A is on the fringe, too
(maybe Al)
= Claim: n will be expanded before B

1. f(n)is less or equal to f(A)
2. f(A) is less than f(B)

g(A) < g(B) B is suboptimal
f(A) < f(B) h =0 at a goal

Optimality of A* Tree Search: Blocking

Proof:
" |magine B is on the fringe

= Some ancestor n of A is on the fringe, too
(maybe Al)
= Claim: n will be expanded before B

1. f(n)is less or equal to f(A)
2. f(A) is less than f(B)

3. nexpands before
_
= All ancestors of A expand before B f(n) < f(A) < f(B) }
= A expands before B -

= A* search is optimal

Properties of A*

Properties of A*

Uniform-Cost

A*

UCS vs A* Contours

= Uniform-cost expands equally in all

“directions” @
Sta Goal

= A* expands mainly toward the goal,

but does hedge its bets to ensure
optimality Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]

Video of Demo Contours (Empty) -- UCS

® OO Search Strategies Demo

Video of Demo Contours (Empty) -- Greedy

® OO Search Strategies Demo

Video of Demo Contours (Empty) — A*

® OO Search Strategies Demo

Video of Demo Contours (Pacman Small Maze) — A*

Comparison

SCORE: 0 SCORE: 0 SCORE: 0

Greedy Uniform Cost A*

A* Applications

" Video games

Pathing / routing problems
Resource planning problems
Robot motion planning

Llanguage analysis
Machine translation
Speech recognition

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Video of Demo Pacman (Tiny Maze) — UCS / A*

2 Pydey - [cipse - =

File Edit Navigate Search Project Run Window |Help

e~ B-0-Q- S 9~ - T R T [Pycer | &° Team
@ 1 search demo empty il e
@ a' 2 search -~ contaurs greedy vs ucs (greedy) *
I @. 3 search -- contours greedy vs ucs (ucs) c=
@ 4 search -- contours greedy vs ucs (astar)
e' S seacch - plan tny astar
& Gsearch-- pt{i tiny ucs
& 7 vearch - grekdy bad
e' 8 search -~ greedy good
& 9 search demo maze
& sesrch demo costs
Kun As ’
Run Canfigurations..
Organize Favorites

(J Console X % cxpldlFet) @™ ~"0
<terminated> empty.ba

unpber O0f unigue ncdes expanded: 113 -

Numwber of unigue n

11:53 AM
12

P' -' .ll" “\ '

Video of Demo Empty Water Shallow/Deep — Guess Algorithm
7 Sewrch seategies Oema [N il

Creating Heuristics

YOu GOT

HEURISTILC
UFGRADE!

Creating Admissible Heuristics

" Most of the work in solving hard search problems
optimally is in coming up with admissible heuristics

= Often, admissible heuristics are solutions to relaxed
problems, where new actions are available

" [nadmissible heuristics are often useful too

Example: 8 Puzzle

!

7 2% 3/7|1
sl 6 12/%[5 4
8 3 1 S8l 6 7

Start State Actions Goal State

1-6“

-7

2
3 4|5
6 79

= What are the states? <ulE=—

" How many states?

= What are the actions?

= How many successors from the start state?
= What should the costs be?

8 Puzzle |

Heuristic: Number of tiles misplaced
Why is it admissible?

h(start) = 8

This is a relaxed-problem heuristic

Start State

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
UCS 112 6,300 3.6 x 10°
TILES 13 39 227

Statistics from Andrew Moore

8 Puzzle Il

What if we had an easier 8-puzzle
where any tile could slide any
direction at any time, ignoring other
tiles?

Total Manhattan distance
Why is it admissible?

h(start)= 3+1+2+..=18

Start State

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
TILES 13 39 227
MANHATTAN 12 25 /3

8 Puzzle Il

" How about using the actual cost as a heuristic?
= Would it be admissible?

= Would we save on nodes expanded? 'I m
N/ \Lwore. coat ||

* What's wrong with it?

= With A*: a trade-off between quality of estimate and work per
node

= As heuristics get closer to the true cost, you will expand fewer nodes
but usually do more work per node to compute the heuristic itself

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

= Dominance: h, > h_if
Vn : hg(n) > he(n)

= Heuristics form a semi-lattice:

= Max of admissible heuristics is
admissible

h(n) = max(ha(n), hp(n))
= Trivial heuristics

= Bottom of lattice is the zero heuristic
(what does this give us?)

" Top of lattice is the exact heuristic

exact
I

mazx(hg, hy)

Graph Search

Tree Search: Extra Work!

= Failure to detect repeated states can cause exponentially more work.

/ State Graph \

-~

;7 N

Y. Y
N i

B ——_
% N

C

C T —_
- N

Y\ /Y
D —@—
N

_ v

Search Tree

~

Graph Search

" |n BFS, for example, we shouldn’t bother expanding the circled
nodes (why?)

d e p
/\ |
b/jg h r q
| @ /\@ |
a h r @ f
N | N
p q f q ¢ 6
| PN |
a

Graph Search

ldea: never expand a state twice

How to implement:
" Tree search + set of expanded states (“closed set”)
" Expand the search tree node-by-node, but...

= Before expanding a node, check to make sure its state has never
been expanded before

" |f not new, skip it, if new add to closed set

Important: store the closed set as a set, not a list

Can graph search wreck completeness? Why/why not?
How about optimality?

A* Graph Search Gone Wrong?

State space graph

Search tree

S (0+2)

~—

A (1+4) B(1+1)

! !

C (2+1) C (3+1)

} !

G (5+0) G (6+0)

Consistency of Heuristics

= Main idea: heuristic costs < actual costs
= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from Ato G

® Consistency: heuristic “arc” cost < actual cost for
each arc

h(A) — h(C) < cost(A to C)
= Consequences of consistency:
" The f value along a path never decreases
h(A) < cost(A to C) + h(C)
= A* graph search is optimal

Optimality of A* Graph Search

Optimality of A* Graph Search

= Sketch: consider what A* does with a
consistent heuristic:

" Fact 1: In tree search, A* expands nodes
in increasing total f value (f-contours)

" Fact 2: For every state s, paths that
reach s optimally are expanded before
paths that reach s suboptimally

= Result: A* graph search is optimal

Optimality

Tree search:
* A*is optimal if heuristic is admissible
= UCSis a special case (h=0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h =0 is consistent)

Consistency implies admissibility

In general, most natural admissible
heuristics tend to be consistent,
especially if from relaxed problems

A*: Summary

A*: Summary

= A* uses both backward costs and (estimates of) forward costs
= A* js optimal with admissible / consistent heuristics

" Heuristic design is key: often use relaxed problems

,

e

Tree Search Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure

fringe < INSERT(MAKE-NODE(INITIAL-STATE problem)), fringe)
loop do

if fringe is empty then return failure

node <— REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE[node|) then return node

for child-node in EXPAND(STATE|node|, problem) do

fringe <— INSERT(child-node, fringe)

end

end

Graph Search Pseudo-Code

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed <— an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE|problem)|), fringe)
loop do
if fringe is empty then return failure
node <— REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node|) then return node
if STATE[node| is not in closed then
add STATE[node| to closed
for child-node in EXPAND(STATE|node|, problem) do
fringe <— INSERT(child-node, fringe)
end
end

