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Reasoning	over	Time	or	Space	

§  OXen,	we	want	to	reason	about	a	sequence	of	observa+ons	
§  Speech	recogni+on	
§  Robot	localiza+on	
§  User	a@en+on	
§  Medical	monitoring	

§  Need	to	introduce	+me	(or	space)	into	our	models	



Markov	Models	

§  Value	of	X	at	a	given	+me	is	called	the	state	

§  Parameters:	called	transi+on	probabili+es	or	dynamics,	specify	how	the	state	
evolves	over	+me	(also,	ini+al	state	probabili+es)	

§  Sta+onarity	assump+on:	transi+on	probabili+es	the	same	at	all	+mes	
§  Same	as	MDP	transi+on	model,	but	no	choice	of	ac+on	

X2 X1 X3 X4 



Example	Markov	Chain:	Weather	

§  States:	X	=	{rain,	sun}	
	

rain	 sun	

0.9	

0.7	

0.3	

0.1	

Two	new	ways	of	represen+ng	the	same	CPT	

sun	

rain	

sun	

rain	

0.1	

0.9	

0.7	

0.3	

Xt-1	 Xt	 P(Xt|Xt-1)	

sun	 sun	 0.9	

sun	 rain	 0.1	

rain	 sun	 0.3	

rain	 rain	 0.7	

§  Ini+al	distribu+on:	1.0	sun	

§  CPT	P(Xt	|	Xt-1):	



Joint	Distribu+on	of	a	Markov	Model	

§  Joint	distribu+on:	

§  More	generally:	

§  Ques+ons	to	be	resolved:	
§  Does	this	indeed	define	a	joint	distribu+on?	
§  Can	every	joint	distribu+on	be	factored	this	way,	or	are	we	making	some	assump+ons	
about	the	joint	distribu+on	by	using	this	factoriza+on?	

X2 X1 X3 X4 

P (X1, X2, X3, X4) = P (X1)P (X2|X1)P (X3|X2)P (X4|X3)

P (X1, X2, . . . , XT ) = P (X1)P (X2|X1)P (X3|X2) . . . P (XT |XT�1)

= P (X1)
TY

t=2

P (Xt|Xt�1)



Chain	Rule	and	Markov	Models	

§  From	the	chain	rule,	every	joint	distribu+on	over																																	can	be	wri@en	as:	

§  Assuming	that	
																																																																				and	

				results	in	the	expression	posited	on	the	previous	slide:		

X2 X1 X3 X4 

P (X1, X2, X3, X4) = P (X1)P (X2|X1)P (X3|X2)P (X4|X3)

X1, X2, X3, X4

P (X1, X2, X3, X4) = P (X1)P (X2|X1)P (X3|X1, X2)P (X4|X1, X2, X3)

X4 ?? X1, X2 | X3X3 ?? X1 | X2



Chain	Rule	and	Markov	Models	

§  From	the	chain	rule,	every	joint	distribu+on	over																																									can	be	wri@en	as:	

§  Assuming	that	for	all	t:		

				gives	us	the	expression	posited	on	the	earlier	slide:		

X2 X1 X3 X4 

Xt ?? X1, . . . , Xt�2 | Xt�1

P (X1, X2, . . . , XT ) = P (X1)
TY

t=2

P (Xt|Xt�1)

P (X1, X2, . . . , XT ) = P (X1)
TY

t=2

P (Xt|X1, X2, . . . , Xt�1)

X1, X2, . . . , XT



Implied	Condi+onal	Independencies	

§ We	assumed:																																	and	

§  Do	we	also	have 	 	 	 	 	?	
§  Yes!		
§  Proof:	

X2 X1 X3 X4 

X4 ?? X1, X2 | X3X3 ?? X1 | X2

X1 ?? X3, X4 | X2

P (X1 | X2, X3, X4) =
P (X1, X2, X3, X4)

P (X2, X3, X4)

=
P (X1)P (X2 | X1)P (X3 | X2)P (X4 | X3)P
x1

P (x1)P (X2 | x1)P (X3 | X2)P (X4 | X3)

=
P (X1, X2)

P (X2)

= P (X1 | X2)

P (X1 | X2, X3, X4) =
P (X1, X2, X3, X4)

P (X2, X3, X4)

=
P (X1)P (X2 | X1)P (X3 | X2)P (X4 | X3)P
x1

P (x1)P (X2 | x1)P (X3 | X2)P (X4 | X3)

=
P (X1, X2)

P (X2)

= P (X1 | X2)

P (X1 | X2, X3, X4) =
P (X1, X2, X3, X4)

P (X2, X3, X4)

=
P (X1)P (X2 | X1)P (X3 | X2)P (X4 | X3)P
x1

P (x1)P (X2 | x1)P (X3 | X2)P (X4 | X3)

=
P (X1, X2)

P (X2)

= P (X1 | X2)

P (X1 | X2, X3, X4) =
P (X1, X2, X3, X4)

P (X2, X3, X4)

=
P (X1)P (X2 | X1)P (X3 | X2)P (X4 | X3)P
x1

P (x1)P (X2 | x1)P (X3 | X2)P (X4 | X3)

=
P (X1, X2)

P (X2)

= P (X1 | X2)

P (X1 | X2, X3, X4) =
P (X1, X2, X3, X4)

P (X2, X3, X4)

=
P (X1)P (X2 | X1)P (X3 | X2)P (X4 | X3)P
x1

P (x1)P (X2 | x1)P (X3 | X2)P (X4 | X3)

=
P (X1, X2)

P (X2)

= P (X1 | X2)



Markov	Models	Recap	

§  Explicit	assump+on	for	all			t	:	
§  Consequence,	joint	distribu+on	can	be	wri@en	as:		

§  Implied	condi+onal	independencies:		(try	to	prove	this!)	
§  Past	variables	independent	of	future	variables	given	the	present	
i.e.,	if																					or																						then:	

§  Addi+onal	explicit	assump+on:																									is	the	same	for	all	t	

Xt ?? X1, . . . , Xt�2 | Xt�1

P (X1, X2, . . . , XT ) = P (X1)P (X2|X1)P (X3|X2) . . . P (XT |XT�1)

= P (X1)
TY

t=2

P (Xt|Xt�1)

Xt1 ?? Xt3 | Xt2t1 < t2 < t3 t1 > t2 > t3

P (Xt | Xt�1)



Example	Markov	Chain:	Weather	

§  Ini+al	distribu+on:	1.0	sun	

§ What	is	the	probability	distribu+on	aXer	one	step?	

rain	 sun	

0.9	

0.7	

0.3	

0.1	



Mini-Forward	Algorithm	

§  Ques+on:	What’s	P(X)	on	some	day	t?	

Forward simulation 

X2 X1 X3 X4 

P (xt) =
X

xt�1

P (x
t�1, xt

)

=
X

xt�1

P (x
t

| x
t�1)P (x

t�1)



Proof	of	Mini-Forward	Algorithm	

§  Ques+on:	What’s	P(x3)?	

P (X1, X2, . . . , XT ) = P (X1)
TY

t=2

P (Xt|Xt�1)

[Inference by enumeration] 

[Def. of Markov model] 

[Factoring: basic algebra] 

[Def. of Markov model] 

P (x3) =
X

x1

X

x2

P (x1, x2, x3)

=
X

x1

X

x2

P (x1)P (x2|x1)P (x3|x2)

=
X

x2

P (x3|x2)
X

x1

P (x1)P (x2|x1)

=
X

x2

P (x3|x2)P (x2)



Proof	of	Mini-Forward	Algorithm	

§  Ques+on:	What’s	P(XT)?	

P (X1, X2, . . . , XT ) = P (X1)
TY

t=2

P (Xt|Xt�1)

=
X

xT�1

P (x
T

|x
T�1)

X

x1,...xT�2

P (x1)
T�1Y

t=2

P (x
t

|x
t�1)

=
X

x1,...xT�1

P (x1)
TY

t=2

P (x
t

|x
t�1)

X

x1,...xT�1

P (x1, . . . , xT

)
P (xT ) =

=
X

xT�1

P (x
T

| x
T�1)P (x

T�1)

[Inference by enumeration] 

[Def. of Markov model] 

[Factoring: basic algebra] 

[Def. of Markov model] 

=
X

xT�1

P (x
T

|x
T�1)

X

x1,...xT�2

P (x1)
T�1Y

t=2

P (x
t

|x
t�1)=

X

xT�1

P (x
T

|x
T�1)

X

x1,...xT�2

P (x1)
T�1Y

t=2

P (x
t

|x
t�1)=

X

xT�1

P (x
T

|x
T�1)

X

x1,...xT�2

P (x1)
T�1Y

t=2

P (x
t

|x
t�1)



Example	Run	of	Mini-Forward	Algorithm	

§  From	ini+al	observa+on	of	sun	

		
§  From	ini+al	observa+on	of	rain	

§  From	yet	another	ini+al	distribu+on	P(X1):	

P(X1) P(X2) P(X3) P(X∞) P(X4) 

P(X1) P(X2) P(X3) P(X∞) P(X4) 

P(X1) P(X∞) 
… 

[Demo:	L13D1,2,3]	



Mini-Forward	Algorithm	



§  Sta+onary	distribu+on:	
§  The	distribu+on	we	end	up	with	is	called	
the	sta+onary	distribu+on			        of	the	
chain	

§  It	sa+sfies	

Sta+onary	Distribu+ons	

§  For	most	chains:	
§  Influence	of	the	ini+al	distribu+on	
gets	less	and	less	over	+me.	

§  The	distribu+on	we	end	up	in	is	
independent	of	the	ini+al	distribu+on	

P1(X) = P1+1(X) =
X

x

P (X|x)P1(x)

P1



Example:	Sta+onary	Distribu+ons	

§  Ques+on:	What’s	P(X)	at	+me	t	=	infinity?	

X2 X1 X3 X4 

Xt-1	 Xt	 P(Xt|Xt-1)	

sun	 sun	 0.9	

sun	 rain	 0.1	

rain	 sun	 0.3	

rain	 rain	 0.7	

P1(sun) = P (sun|sun)P1(sun) + P (sun|rain)P1(rain)

P1(rain) = P (rain|sun)P1(sun) + P (rain|rain)P1(rain)

P1(sun) = 0.9P1(sun) + 0.3P1(rain)

P1(rain) = 0.1P1(sun) + 0.7P1(rain)

P1(sun) = 3P1(rain)

P1(rain) = 1/3P1(sun)

P1(sun) + P1(rain) = 1

P1(sun) = 3/4

P1(rain) = 1/4Also:	



Applica+on	of	Sta+onary	Distribu+on:	Web	Link	Analysis	

§  PageRank	over	a	web	graph	
§  Each	web	page	is	a	state	
§  Ini+al	distribu+on:	uniform	over	pages	
§  Transi+ons:	

§  With	prob.	c,	uniform	jump	to	a	
	random	page	(do@ed	lines,	not	all	shown)	

§  With	prob.	1-c,	follow	a	random	
	outlink	(solid	lines)	

§  Sta+onary	distribu+on	
§  Will	spend	more	+me	on	highly	reachable	pages	
§  E.g.	many	ways	to	get	to	the	Acrobat	Reader	download	page	
§  Somewhat	robust	to	link	spam	
§  Google	1.0	returned	the	set	of	pages	containing	all	your	

keywords	in	decreasing	rank,	now	all	search	engines	use	link	
analysis	along	with	many	other	factors	(rank	actually	gesng	
less	important	over	+me)	



Hidden	Markov	Models	



Hidden	Markov	Models	

§  Markov	chains	not	so	useful	for	most	agents	
§  Need	observa+ons	to	update	your	beliefs	

§  Hidden	Markov	models	(HMMs)	
§  Underlying	Markov	chain	over	states	X	
§  You	observe	outputs	(effects)	at	each	+me	step	

X5	X2	

E1	

X1	 X3	 X4	

E2	 E3	 E4	 E5	



Example:	Weather	HMM	

Rt	 Rt+1	 P(Rt+1|Rt)	

+r	 +r	 0.7	

+r	 -r	 0.3	

-r	 +r	 0.3	

-r	 -r	 0.7	

Umbrellat-1	

Rt	 Ut	 P(Ut|Rt)	

+r	 +u	 0.9	

+r	 -u	 0.1	

-r	 +u	 0.2	

-r	 -u	 0.8	

Umbrellat	 Umbrellat+1	

Raint-1	 Raint	 Raint+1	

§  An	HMM	is	defined	by:	
§  Ini+al	distribu+on:	
§  Transi+ons:	
§  Emissions:	

P (Xt | Xt�1)
P (Et | Xt)

P (Xt | Xt�1)

P (Et | Xt)



Example:	Ghostbusters	HMM	

§  P(X1)	=	uniform	

§  P(X|X’)	=	usually	move	clockwise,	but	
some+mes	move	in	a	random	direc+on	or	
stay	in	place	

§  P(Rij|X)	=	same	sensor	model	as	before:	
red	means	close,	green	means	far	away.	

1/9	 1/9	

1/9	 1/9	

1/9	

1/9	

1/9	 1/9	 1/9	

P(X1)	

P(X|X’=<1,2>)	

1/6	 1/6	

0	 1/6	

1/2	

0	

0	 0	 0	

X5	

X2	

Ri,j	

X1	 X3	 X4	

Ri,j	 Ri,j	 Ri,j	
[Demo:	Ghostbusters	–	Circular	Dynamics	–	HMM	(L14D2)]	



Joint	Distribu+on	of	an	HMM	

§  Joint	distribu+on:	

§  More	generally:	

§  Ques+ons	to	be	resolved:	
§  Does	this	indeed	define	a	joint	distribu+on?	
§  Can	every	joint	distribu+on	be	factored	this	way,	or	are	we	making	some	assump+ons	about	the	
joint	distribu+on	by	using	this	factoriza+on?	

X5	X2	

E1	

X1	 X3	

E2	 E3	 E5	

P (X1, E1, X2, E2, X3, E3) = P (X1)P (E1|X1)P (X2|X1)P (E2|X2)P (X3|X2)P (E3|X3)

P (X1, E1, . . . , XT , ET ) = P (X1)P (E1|X1)
TY

t=2

P (Xt|Xt�1)P (Et|Xt)



§  From	the	chain	rule,	every	joint	distribu+on	over																																											can	be	wri@en	as:	

§  Assuming	that	
		

					
gives	us	the	expression	posited	on	the	previous	slide:		

X1, E1, X2, E2, X3, E3

P (X1, E1, X2, E2, X3, E3) = P (X1)P (E1|X1)P (X2|X1)P (E2|X2)P (X3|X2)P (E3|X3)

X2	

E1	

X1	 X3	

E2	 E3	

Chain	Rule	and	HMMs	

X2 ?? E1 | X1, E2 ?? X1, E1 | X2, X3 ?? X1, E1, E2 | X2, E3 ?? X1, E1, X2, E2 | X3

P (X1, E1, X2, E2, X3, E3) =P (X1)P (E1|X1)P (X2|X1, E1)P (E2|X1, E1, X2)

P (X3|X1, E1, X2, E2)P (E3|X1, E1, X2, E2, X3)

P (X1, E1, X2, E2, X3, E3) =P (X1)P (E1|X1)P (X2|X1, E1)P (E2|X1, E1, X2)

P (X3|X1, E1, X2, E2)P (E3|X1, E1, X2, E2, X3)



Chain	Rule	and	HMMs	

§  From	the	chain	rule,	every	joint	distribu+on	over																																									can	be	wri@en	as:	

§  Assuming	that	for	all	t:		
§  State	independent	of	all	past	states	and	all	past	evidence	given	the	previous	state,	i.e.:		

§  Evidence	is	independent	of	all	past	states	and	all	past	evidence	given	the	current	state,	i.e.:	
					
	

						gives	us	the	expression	posited	on	the	earlier	slide:		

X1, E1, . . . , XT , ET

P (X1, E1, . . . , XT , ET ) = P (X1)P (E1|X1)
TY

t=2

P (Xt|X1, E1, . . . , Xt�1, Et�1)P (Et|X1, E1, . . . , Xt�1, Et�1, Xt)

Xt ?? X1, E1, . . . , Xt�2, Et�2, Et�1 | Xt�1

X2	

E1	

X1	 X3	

E2	 E3	

Et ?? X1, E1, . . . , Xt�2, Et�2, Xt�1, Et�1 | Xt

P (X1, E1, . . . , XT , ET ) = P (X1)P (E1|X1)
TY

t=2

P (Xt|Xt�1)P (Et|Xt)



Implied	Condi+onal	Independencies	

§ Many	implied	condi+onal	independencies,	e.g.,	

§  To	prove	them	
§  Approach	1:	follow	similar	(algebraic)	approach	to	what	we	did	in	the	
Markov	models	lecture	

§  Approach	2:	directly	from	the	graph	structure	(3	lectures	from	now)	
§  Intui+on:	If	path	between	U	and	V	goes	through	W,	then	

X2	

E1	

X1	 X3	

E2	 E3	

E1 ?? X2, E2, X3, E3 | X1

U ?? V | W [Some	fineprint	later]	



Real	HMM	Examples	

§  Speech	recogni+on	HMMs:	
§  Observa+ons	are	acous+c	signals	(con+nuous	valued)	
§  States	are	specific	posi+ons	in	specific	words	(so,	tens	of	thousands)	

§  Machine	transla+on	HMMs:	
§  Observa+ons	are	words	(tens	of	thousands)	
§  States	are	transla+on	op+ons	

§  Robot	tracking:	
§  Observa+ons	are	range	readings	(con+nuous)	
§  States	are	posi+ons	on	a	map	(con+nuous)	



Filtering	/	Monitoring	

§  Filtering,	or	monitoring,	is	the	task	of	tracking	the	
distribu+on	Bt(X)	=	Pt(Xt	|	e1,	…,	et)	(the	belief	state)	over	
+me	

§  We	start	with	B1(X)	in	an	ini+al	sesng,	usually	uniform	

§  As	+me	passes,	or	we	get	observa+ons,	we	update	B(X)	

§  The	Kalman	filter	was	invented	in	the	60’s	and	first	
implemented	as	a	method	of	trajectory	es+ma+on	for	
the	Apollo	program	



Example:	Robot	Localiza+on	

t=0	
Sensor	model:	can	read	in	which	direc+ons	there	is	a	wall,	

never	more	than	1	mistake	
Mo+on	model:	may	not	execute	ac+on	with	small	prob.	

1	0	Prob	

Example	from	
Michael	Pfeiffer	



Example:	Robot	Localiza+on	

t=1	
Lighter	grey:	was	possible	to	get	the	reading,	but	less	likely	b/c	

required	1	mistake	

1	0	Prob	



Example:	Robot	Localiza+on	

t=2	

1	0	Prob	



Example:	Robot	Localiza+on	

t=3	

1	0	Prob	



Example:	Robot	Localiza+on	

t=4	

1	0	Prob	



Example:	Robot	Localiza+on	

t=5	

1	0	Prob	



Inference:	Base	Cases	

E1	

X1	

X2	X1	



Passage	of	Time	

§  Assume	we	have	current	belief	P(X	|	evidence	to	date)	

§  Then,	aXer	one	+me	step	passes:	

§  Basic	idea:	beliefs	get	“pushed”	through	the	transi+ons	
§  With	the	“B”	nota+on,	we	have	to	be	careful	about	what	+me	step	t	the	belief	is	about,	and	what	

evidence	it	includes	

X2	X1	

=
X

xt

P (X
t+1, xt

|e1:t)

=
X

xt

P (X
t+1|xt

, e1:t)P (x
t

|e1:t)

=
X

xt

P (X
t+1|xt

)P (x
t

|e1:t)

§  Or	compactly:	

P (Xt+1|e1:t)

B

0(X
t+1) =

X

xt

P (X
t+1|xt

)B(x
t

)



Example:	Passage	of	Time	

§  As	+me	passes,	uncertainty	“accumulates”	

T	=	1	 T	=	2	 T	=	5	

(Transi+on	model:	ghosts	usually	go	clockwise)	



Observa+on	
§  Assume	we	have	current	belief	P(X	|	previous	evidence):	

§  Then,	aXer	evidence	comes	in:	

§  Or,	compactly:	

E1	

X1	
B0(Xt+1) = P (Xt+1|e1:t)

P (Xt+1|e1:t+1) = P (Xt+1, et+1|e1:t)/P (et+1|e1:t)
/Xt+1 P (Xt+1, et+1|e1:t)

= P (et+1|Xt+1)P (Xt+1|e1:t)

= P (et+1|e1:t, Xt+1)P (Xt+1|e1:t)

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)

§  Basic	idea:	beliefs	“reweighted”	
by	likelihood	of	evidence	

§  Unlike	passage	of	+me,	we	have	
to	renormalize	



Example:	Observa+on	

§  As	we	get	observa+ons,	beliefs	get	reweighted,	uncertainty	“decreases”	

Before	observa+on	 AXer	observa+on	



Example:	Weather	HMM	

Rt	 Rt+1	 P(Rt+1|Rt)	

+r	 +r	 0.7	

+r	 -r	 0.3	

-r	 +r	 0.3	

-r	 -r	 0.7	

Rt	 Ut	 P(Ut|Rt)	

+r	 +u	 0.9	

+r	 -u	 0.1	

-r	 +u	 0.2	

-r	 -u	 0.8	Umbrella1	 Umbrella2	

Rain0	 Rain1	 Rain2	

B(+r)	=	0.5	
B(-r)		=	0.5	

B’(+r)	=	0.5	
B’(-r)		=	0.5	

B(+r)	=	0.818	
B(-r)		=	0.182	

B’(+r)	=	0.627	
B’(-r)		=	0.373	

B(+r)	=	0.883	
B(-r)		=	0.117	

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)B

0(X
t+1) =

X

xt

P (X
t+1|xt

)B(x
t

)



Online	Belief	Updates	

§  Every	+me	step,	we	start	with	current	P(X	|	evidence)	
§  We	update	for	+me:	

§  We	update	for	evidence:	

§  The	forward	algorithm	does	both	at	once	(and	doesn’t	normalize)	

X2	X1	

X2	

E2	



Proof	of	Forward	Algorithm	

§  Ques+on:	What’s	P(XT|e1,…eT)?	

[Inference by enumeration] 

[Def. of HMM] 

[Factoring: basic algebra] 

[Def. of HMM] 

P (X1, E1, . . . , XT , ET ) = P (X1)P (E1|X1)
TY

t=2

P (Xt|Xt�1)P (Et|Xt)

Final step: normalize entries in P(XT,e1,…eT) to get P(XT|e1,…eT)  

X

x1,...xT�1

P (x1, e1 . . . , xT

, e

T

)P (xT , e1, . . . , eT ) =

=
X

x1,...xT�1

P (x1)P (e1|x1)
TY

t=2

P (x
t

|x
t�1)P (e

t

|x
t

)

= P (e
T

|x
T

)
X

xT�1

P (x
T

|x
T�1)

X

x1,...,xT�2

P (x1)P (e1|x1)
T�1Y

t=2

P (x
t

|x
t�1)P (e

t

|x
t

)

= P (e
T

|x
T

)
X

xT�1

P (x
T

| x
T�1)P (x

T�1, e1, . . . , eT�1)



Forward	Algorithm	



Pacman	–	Sonar	(P4)	

[Demo:	Pacman	–	Sonar	–	No	Beliefs(L14D1)]	



Video	of	Demo	Pacman	–	Sonar	(with	beliefs)	



Par+cle	Filtering	



Par+cle	Filtering	

0.0	 0.1	

0.0	 0.0	

0.0	

0.2	

0.0	 0.2	 0.5	

§  Filtering:	approximate	solu+on	

§  Some+mes	|X|	is	too	big	to	use	exact	inference	
§  |X|	may	be	too	big	to	even	store	B(X)	
§  E.g.	X	is	con+nuous	

§  Solu+on:	approximate	inference	
§  Track	samples	of	X,	not	all	values	
§  Samples	are	called	par+cles	
§  Time	per	step	is	linear	in	the	number	of	samples	
§  But:	number	needed	may	be	large	
§  In	memory:	list	of	par+cles,	not	states	

§  This	is	how	robot	localiza+on	works	in	prac+ce	
§  Par+cle	is	just	new	name	for	sample	



Representa+on:	Par+cles	

§  Our	representa+on	of	P(X)	is	now	a	list	of	N	par+cles	(samples)	
§  Generally,	N	<<	|X|	
§  Storing	map	from	X	to	counts	would	defeat	the	point	

§  P(x)	approximated	by	number	of	par+cles	with	value	x	
§  So,	many	x	may	have	P(x)	=	0!		
§  More	par+cles,	more	accuracy	

§  For	now,	all	par+cles	have	a	weight	of	1	

Par+cles:	
				(3,3)	
				(2,3)	
				(3,3)				
				(3,2)	
				(3,3)	
				(3,2)	
				(1,2)	
				(3,3)	
				(3,3)	
				(2,3)	



Par+cle	Filtering:	Elapse	Time	

§  Each	par+cle	is	moved	by	sampling	its	next	
posi+on	from	the	transi+on	model	

§  This	is	like	prior	sampling	–	samples’	frequencies	
reflect	the	transi+on	probabili+es	

§  Here,	most	samples	move	clockwise,	but	some	move	in	
another	direc+on	or	stay	in	place	

§  This	captures	the	passage	of	+me	
§  If	enough	samples,	close	to	exact	values	before	and	

aXer	(consistent)	

Par+cles:	
				(3,3)	
				(2,3)	
				(3,3)				
				(3,2)	
				(3,3)	
				(3,2)	
				(1,2)	
				(3,3)	
				(3,3)	
				(2,3)	

Par+cles:	
				(3,2)	
				(2,3)	
				(3,2)				
				(3,1)	
				(3,3)	
				(3,2)	
				(1,3)	
				(2,3)	
				(3,2)	
				(2,2)	



§  Slightly	trickier:	
§  Don’t	sample	observa+on,	fix	it	

§  Similar	to	likelihood	weigh+ng,	downweight	
samples	based	on	the	evidence	

§  As	before,	the	probabili+es	don’t	sum	to	one,	
since	all	have	been	downweighted	(in	fact	they	
now	sum	to	(N	+mes)	an	approxima+on	of	P(e))	

Par+cle	Filtering:	Observe	

Par+cles:	
				(3,2)		w=.9	
				(2,3)		w=.2	
				(3,2)		w=.9	
				(3,1)		w=.4	
				(3,3)		w=.4	
				(3,2)		w=.9	
				(1,3)		w=.1	
				(2,3)		w=.2	
				(3,2)		w=.9	
				(2,2)		w=.4	

Par+cles:	
				(3,2)	
				(2,3)	
				(3,2)				
				(3,1)	
				(3,3)	
				(3,2)	
				(1,3)	
				(2,3)	
				(3,2)	
				(2,2)	



Par+cle	Filtering:	Resample	

§  Rather	than	tracking	weighted	samples,	we	
resample	

§  N	+mes,	we	choose	from	our	weighted	sample	
distribu+on	(i.e.	draw	with	replacement)	

§  This	is	equivalent	to	renormalizing	the	
distribu+on	

§  Now	the	update	is	complete	for	this	+me	step,	
con+nue	with	the	next	one	

Par+cles:	
				(3,2)		w=.9	
				(2,3)		w=.2	
				(3,2)		w=.9	
				(3,1)		w=.4	
				(3,3)		w=.4	
				(3,2)		w=.9	
				(1,3)		w=.1	
				(2,3)		w=.2	
				(3,2)		w=.9	
				(2,2)		w=.4	

(New)	Par+cles:	
				(3,2)	
				(2,2)	
				(3,2)				
				(2,3)	
				(3,3)	
				(3,2)	
				(1,3)	
				(2,3)	
				(3,2)	
				(3,2)	



Recap:	Par+cle	Filtering	
§  Par+cles:	track	samples	of	states	rather	than	an	explicit	distribu+on	

Par+cles:	
				(3,3)	
				(2,3)	
				(3,3)				
				(3,2)	
				(3,3)	
				(3,2)	
				(1,2)	
				(3,3)	
				(3,3)	
				(2,3)	

Elapse	 Weight	 Resample	

Par+cles:	
				(3,2)	
				(2,3)	
				(3,2)				
				(3,1)	
				(3,3)	
				(3,2)	
				(1,3)	
				(2,3)	
				(3,2)	
				(2,2)	

					Par+cles:	
				(3,2)		w=.9	
				(2,3)		w=.2	
				(3,2)		w=.9	
				(3,1)		w=.4	
				(3,3)		w=.4	
				(3,2)		w=.9	
				(1,3)		w=.1	
				(2,3)		w=.2	
				(3,2)		w=.9	
				(2,2)		w=.4	

(New)	Par+cles:	
				(3,2)	
				(2,2)	
				(3,2)				
				(2,3)	
				(3,3)	
				(3,2)	
				(1,3)	
				(2,3)	
				(3,2)	
				(3,2)	

[Demos:	ghostbusters	par+cle	filtering	(L15D3,4,5)]	



Which	Algorithm?	

Exact filter, 
uniform initial 
beliefs 



Which	Algorithm?	

Particle filter, 
uniform initial 
beliefs, 300 
particles 



Which	Algorithm?	

Particle filter, 
uniform initial 
beliefs, 25 
particles 



Robot	Localiza+on	

§  In	robot	localiza+on:	
§  We	know	the	map,	but	not	the	robot’s	posi+on	
§  Observa+ons	may	be	vectors	of	range	finder	readings	
§  State	space	and	readings	are	typically	con+nuous	(works	

basically	like	a	very	fine	grid)	and	so	we	cannot	store	B(X)	
§  Par+cle	filtering	is	a	main	technique	

	



Par+cle	Filter	Localiza+on	



Dynamic	Bayes	Nets	



Dynamic	Bayes	Nets	(DBNs)	
§  We	want	to	track	mul+ple	variables	over	+me,	using	

mul+ple	sources	of	evidence	

§  Idea:	Repeat	a	fixed	Bayes	net	structure	at	each	+me	

§  Variables	from	+me	t	can	condi+on	on	those	from	t-1	

§  Dynamic	Bayes	nets	are	a	generaliza+on	of	HMMs	

G1
a	

E1a	 E1b	

G1
b	

G2
a	

E2a	 E2b	

G2
b	

t	=1	 t	=2	

G3
a	

E3a	 E3b	

G3
b	

t	=3	

[Demo:	pacman	sonar	ghost	DBN	model	(L15D6)]	



DBN	Par+cle	Filters	

§  A	par+cle	is	a	complete	sample	for	a	+me	step	

§  Ini3alize:	Generate	prior	samples	for	the	t=1	Bayes	net	
§  Example	par+cle:	G1

a	=	(3,3)	G1
b	=	(5,3)		

§  Elapse	3me:	Sample	a	successor	for	each	par+cle		
§  Example	successor:	G2

a	=	(2,3)	G2
b	=	(6,3)	

§  Observe:	Weight	each	en=re	sample	by	the	likelihood	of	the	evidence	condi+oned	on	
the	sample	
§  Likelihood:	P(E1a	|G1

a	)	*	P(E1b	|G1
b	)		

§  Resample:	Select	prior	samples	(tuples	of	values)	in	propor+on	to	their	likelihood	


