CSE 473: Artificial Intelligence

Constraint Satisfaction Problems

Instructor: Luke Zettlemoyer

University of Washington

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

What is Search For?

Assumptions about the world: a single agent, deterministic actions, fully observed
state, discrete state space

Planning: sequences of actions
= The path to the goal is the important thing

= Paths have various costs, depths

= Heuristics give problem-specific guidance

|dentification: assignments to variables
= The goal itself is important, not the path
= All paths at the same depth (for some formulations)
= (CSPs are specialized for identification problems

Constraint Satisfaction Problems

=

Constraint Satisfaction Problems

Standard search problems:
= State is a “black box”: arbitrary data structure
= Goal test can be any function over states
= Successor function can also be anything

Constraint satisfaction problems (CSPs):
= A special subset of search problems

= State is defined by variables X; with values from a
domain D (sometimes D depends on i)

= Goal testis a set of constraints specifying allowable
combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more
power than standard search algorithms

CSP Examples

_

=

Example: Map Coloring

Variables: WA, NT, Q, NSW, V, SA, T

Domains: D = {red, green, blue}

Constraints: adjacent regions must have different
colors

Implicit: WA = NT

Explicit: (WA,NT) € {(red,green), (red, blue), ...}

Solutions are assignments satisfying all
constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green,
V=red, SA=blue, T=green}

Example: N-Queens

" Formulation 1:
" Variables: X
= Domains: {0,1}

= Constraints

Vi, j, k (X5, X)) € {(0,0),(0,1),(1,0)}

Vi,j.k (Xij Xg;) € {(0,0),(0,1), (1,0} X, =
Vi, j, k (Xij, Xitk j+k) € 1(0,0),(0,1),(1,0)} 0,
Vi, j, k (X, Xigr i—k) € 1(0,0),(0,1),(1,0)}

Example: N-Queens

= Formulation 2: Q1
= Variables: Qg Q2
Q3

* Domains: {1,2,3,...N} Qa

" Constraints:

implicit: Vi,j non-threatening(Q;, Q;)

Explicit: (QlaQQ) - {(1,3),(1,4),...}

Constraint Graphs

Constraint Graphs

= Binary CSP: each constraint relates (at most) two @

variables e
o]~

= Binary constraint graph: nodes are variables, arcs
show constraints

= General-purpose CSP algorithms use the graph @
structure to speed up search. E.g., Tasmania is an
independent subproblem!

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Screenshot of Demo N-Queens

EI =| CSP Applet Version 4.6.1 --- fiveQuee
' File Edit View CSP Options Help

il

Fine Step

=Tl

Step

£ ®
»
Auto Arc-Consistency | AutoSolve

o

m

»

C

Click on a variable to splitits domain.
Click on a constraint to reorder its variables.
Click on an arc to make it arc-consistent.

A
{12345}
Queens 4 Queens 1
Queens 3
Queens 3 Queens 2

Queens 1

Queens 2 Queens 2

Queens 1

Queens1

»

File

Edit

View

Insert Actions

) Dl e P

Tools Help

400

x9N\ W >

5~ Quesn

L

3958

-

— 2 | I

|

m

1/1

€€ 5| 4
L

Example: Cryptarithmetic

= Variables:
FTUWRO X1 X X3

" Domains:
{0,1,2,3,4,5,6,7,8,9}

= Constraints:
alldiff(F, T, U, W, R, O)

O+0=R+10-X;

Example: Sudoku

= Variables:
= Each (open) square
= Domains:

g (el 8|~ = {1,2,..,9}
8 | 4 1161 7 ’ » Constraints:

5 o1l

1 318 9 9-way alldiff for each column

6 2 9 ;1 :13 9-way alldiff for each row

> > 9-way alldiff for each region
/ (or can have a bunch of

7|8 2|6 7 pairwise inequality

2 3 constraints)

Example: The Waltz Algorithm

= The Waltz algorithm is for interpreting
line drawings of solid polyhedra as 3D
objects

= An early example of an Al computation
posed as a CSP

N

N7
= Approach:

= Each intersection is a variable

= Adjacent intersections impose constraints
on each other

= Solutions are physically realizable 3D
interpretations

Example: The Waltz Algorithm

= The Waltz algorithm is for interpreting
line drawings of solid polyhedra as 3D
objects

= An early example of an Al computation
posed as a CSP

= Approach:
= Each intersection is a variable

= Adjacent intersections impose constraints
on each other

= Solutions are physically realizable 3D
interpretations

Varieties of CSPs and Constraints

Varieties of CSPs

= Dijscrete Variables
= Finite domains

= Size d means O(d") complete assignments

= E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)

* |nfinite domains (integers, strings, etc.)
= E.g., job scheduling, variables are start/end times for each job
= Linear constraints solvable, nonlinear undecidable

= Continuous variables

= E.g., start/end times for Hubble Telescope observations

= Linear constraints solvable in polynomial time by LP methods
(see cs170 for a bit of this theory)

Varieties of Constraints

= Varieties of Constraints

= Unary constraints involve a single variable (equivalent to
reducing domains), e.g.:

SA # green

= Binary constraints involve pairs of variables, e.g.:

SA £ WA

= Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

= Preferences (soft constraints):
= E.g.,redis better than green
= Often representable by a cost for each variable assignment
= Gives constrained optimization problems
= (WEe’ll ignore these until we get to Bayes’ nets)

Real-World CSPs

Assignment problems: e.g., who teaches what class

Timetabling problems: e.g., which class is offered when and where?
Hardware configuration
Transportation scheduling

Factory scheduling

Circuit layout

Fault diagnosis

... lots more!

Many real-world problems involve real-valued variables...

Solving CSPs

Standard Search Formulation

= Standard search formulation of CSPs

= States defined by the values assigned
so far (partial assignments)
" |nitial state: the empty assignment, {}

= Successor function: assign a value to an
unassigned variable

= Goal test: the current assignment is
complete and satisfies all constraints

= We'll start with the straightforward,
naive approach, then improve it

Search Methods

= \What would BFS do?

= \What would DFS do?

= What problems does naive search have? @

[Demo: coloring -- dfs]

Video of O

Demo
Coloring --

e (

Backtracking Search

Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time
= Variable assighments are commutative, so fix ordering
= |.e., [WA=redthen NT = green] same as [NT = green then WA =red]
= Only need to consider assignments to a single variable at each step

Idea 2: Check constraints as you go
= |.e. consider only values which do not conflict previous assignments
= Might have to do some computation to check the constraint
= “Incremental goal test”

Depth-first search with these two improvements
is called backtracking search (not the best name)

Can solve n-queens for n = 25

Backtracking Example

e

Pl

- ¢ &
—
"o

&S

oo

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution /failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
if assignment is complete then return assignment
var«— SELECT-UNASSIGNED- VARIABLE(VARIABLES[csp|, assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp| then
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

» Backtracking = DFS + variable-ordering + fail-on-violation
= What are the choice points?

[Demo: coloring -- backtracking]

Video of O\/C\ /3
Demo
Coloring -
: (O~ —

/.
Backtracking) W g

aaaaaaaaa

Video of
Demo
Coloring -
Backtracking

Improving Backtracking

General-purpose ideas give huge gains in speed
= .. butit’s all still NP-hard

Filtering: Can we detect inevitable failure early?

Ordering:
= Which variable should be assigned next? (MRV)
=" |n what order should its values be tried? (LCV)

Structure: Can we exploit the problem structure?

Arc Consistency and Beyond

Forward Checking wa fo Lo
.s_SlV\ ——

= |dea: Keep track of remaining legal values for unassigned
variables (using immediate constraints)

= |dea: Terminate when any variable has no legal values

(T

M

WA NT Q NSW \"4 SA T

Forward

Checking

10 &0 ¢ l\\
Jps?ﬁ

Mwm.v”

(XX v«.m

D BN
O

Are We Done?

Constraint Propagation SN

WA SA |
.Q_SXV\ —
V

= Forward checking propagates information from assigned to adjacent unassigned variabies, but doesn't
detect more distant failures:

!

WA NT Q NSW A\ SA T
(N EE T EErT E e EErT e[e =]
(] " EErEErEErE] e[|
— E[ra e mEmrm Emrm

= NT and SA cannot both be blue!
= Why didn’t we detect this yet?
= Constraint propagation repeatedly enforces constraints (locally)

Arc Consistency of an Entire CSP

= Asimple form of propagation makes sure all arcs are simultaneously consistent:

WA NT Q NSW \'

SA

NT
| Q
‘SA T 1 [m mE[mrE] =]

5 — ~———

= Arc consistency detects failure earlier than forward checking
" |mportant: If X loses a value, neighbors of X need to be rechecked!
= Must rerun after each assignment!

Remember: Delete
from the tail!

g

/N
'JAO“\”W”"‘O‘O
£ N
e.e\...H : b & N

..
-
- .
S

Auton's Graphics

S NN N W N Hep Na WL Hap
e o XINy XEINEXIN

N Sy WL IR WA M S
S e o Eo

CH-R ©
%‘Q".A&‘Q *

e

R 5
&Q@g 3 a.vba.av

e‘&eea&“aﬁ.‘asea
@ﬂ& a‘e’a " ‘N&\@

&
&
%
;

0 B0 B B el B—ao
ala.\éa QB A s\&%&
Q"l&ie@a:ev\a’s@ g‘a’a
O B o el et o &
\.r 6 X)

%

SURL VI VI SV)

Are We Done?

Limitations of Arc Consistency

= After enforcing arc
consistency:

= Can have one solution left

" Can have multiple solutions left

= Can have no solutions left (and @
not know it) ‘

= Arc consistency still runs What went
. . . here?
inside a backtracking search! g nere

Ordering: Minimum Remaining Values

" Minimum remaining values (MRV):
" Choose the variable with the fewest legal values

J ~— ™S

)
~\

= Why min rather than max?
= Also called “most constrained variable”
= “Fail-fast” ordering

Ordering: Degree Heuristic

" Tie-breaker among MRV variables

" Degree heuristic:
" Choose the variable participating in the most constraints on remaining variables

‘l _’_ﬁ_’\ﬁ_’\ﬁ‘

1_\ ~— ~— ~—

= Why most rather than fewest constraints?

Ordering: Least Constraining Value

= Given a choice of variable:
» Choose the least constraining value
= The one that rules out the fewest values in the

remaining variables . *
= Note that it may take some computation to -
N

determine this! “l '\ <
N

_

= Why least rather than most? |

= Combining these heuristics makes 1000
gueens feasible

Auton's Graphics

% R bk o
AN m.Qs’sﬂ@vQ.a\a ¥
@l

G R e B Do-atn TR €

sdaa's“a\a.) € @aA& £

AN e@& 3
\\¥

Nt Hay Han W NI oy Hu I Han .
QMQ“@M@QQ‘Q%
S NS PN Ny SN Wy 3 3 U U SO VI 9
izl

. . INL 7
Nl a'a.a.be.a
S oo 600 B Wy e @

Propagation with
Ordering

K-Consistency

K-Consistency

" |ncreasing degrees of consistency

= 1-Consistency (Node Consistency): Each single node’s domain has a Q
value which meets that node’s unary constraints

= 2-Consistency (Arc Consistency): For each pair of nodes, any Q = O
consistent assignment to one can be extended to the other

= K-Consistency: For each k nodes, any consistent assignment to k-1 can @
be extended to the k" node.

= Higher k more expensive to compute

" (You need to know the k=2 case: arc consistency) CID

Strong K-Consistency

Strong k-consistency: also k-1, k-2, ... 1 consistent
Claim: strong n-consistency means we can solve without backtracking!

Why?
= Choose any assignment to any variable
= Choose a new variable
= By 2-consistency, there is a choice consistent with the first
= Choose a new variable
= By 3-consistency, there is a choice consistent with the first 2

Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called
path consistency)

Structure

Problem Structure

Extreme case: independent subproblems
= Example: Tasmania and mainland do not interact u

Independent subproblems are identifiable as
connected components of constraint graph

Suppose a graph of n variables can be broken into
subproblems of only c variables:

= Worst-case solution cost is O((n/c)(d¢)), linear in n

= Eg.,n=80,d=2,c=20

= 280 =4 pillion years at 10 million nodes/sec

= (4)(2%°) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

* Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d?) time
= Compare to general CSPs, where worst-case time is O(d")

= This property also applies to probabilistic reasoning (earlier): an example of the
relation between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

= Algorithm for tree-structured CSPs:
= Order: Choose a root variable, order variables so that parents precede children

g HEOCOE

= Remove backward: Fori=n: 2, apply Removelnconsistent(Parent(X.),X.)
= Assign forward: Fori=1:n, assign X, consistently with Parent(X)

= Runtime: O(n d?) (why?)

Tree-Structured CSPs

Claim 1: After backward pass, all root-to-leaf arcs are consistent

Proof: Each X—Y was made consistent at one point and Y’s domain could not have
been reduced thereafter (because Y’s children were processed before Y)

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
Proof: Induction on position

Why doesn’t this algorithm work with cycles in the constraint graph?

Note: same basic idea as variable elimination in Bayes’ nets

Improving Structure

Nearly Tree-Structured CSPs

@‘:""’@

O
@

Nearly Tree-Structured CSPs

@ O,

= Conditioning: instantiate a variable, prune its neighbors' domains

@“b"’ C
ST

= Cutset conditioning: instantiate (in all ways) a set of variables such that
the remaining constraint graph is a tree

= Cutset size c gives runtime O((d¢) (n-c) d?), very fast for small c

Cutset Conditioning

N

Choose a cutset

o

!

[]

Instantiate the cutset /
[(all possible ways) J w‘w"@
[]
[]

]

9‘:‘9

@5
O

l

g

Compute residual CSP
for each assignment

4_
4_

Solve the residual CSPs
(tree structured)

Cutset Quiz

" Find the smallest cutset for the graph below.

Tree Decomposition®

= |dea: create a tree-structured graph of mega-variables
= Each mega-variable encodes part of the original CSP
= Subproblems overlap to ensure consistent solutions @

sJeA paJeys | uo saiby
sJeA paJeys | uo salby
sJeA paJjeys | uo salby

«WA:r,SA:g,NT:b)’ {(NTzr’SAzg’sz)’ Agree: (M1 ,M2) &
(V\;A=b,SA=r,NT=g), (N;—:b’SAzg’er)’ {((WA=g,SA=g,NT=g), (NT:g,SA:g,ng))’ . }

Iterative Improvement

Iterative Algorithms for CSPs

" Local search methods typically work with “complete” states, i.e., all variables assigned

= To apply to CSPs:
= Take an assignment with unsatisfied constraints
= Qperators reassign variable values
= No fringe! Live on the edge.

000

= Algorithm: While not solved,
= Variable selection: randomly select any conflicted variable

= Value selection: min-conflicts heuristic:
= Choose a value that violates the fewest constraints
= |.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

= States: 4 queens in 4 columns (4% = 256 states)
= QOperators: move queen in column

= Goal test: no attacks

= Evaluation: ¢(n) = number of attacks

[Demo: n-queens — iterative improvement (L5D1)]
[Demo: coloring — iterative improvement]

Video of Demo lterative Improvement — n Queens

Video of Demo lterative Improvement — Coloring

Reset Prev Pause Next Play Faster

Performance of Min-Conflicts

= Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n =10,000,000)!

= The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

o number of constraints
number of variables

CPU
time

|
critical
ratio

Summary: CSPs

= CSPs are a special kind of search problem:
= States are partial assignments

" Goal test defined by constrail wo| T | v [w | F
S
= Basic solution: backtracking sea
= Speed-ups:
* Ordering —
= Filtering

= Structure

" [terative min-conflicts is often effective in practice

Local Search

i

Local Search

= Tree search keeps unexplored alternatives on the fringe (ensures completeness)
" Local search: improve a single option until you can’t make it better (no fringe!)

= New successor function: local changes

| o

999

= Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

= Simple, general idea:
= Start wherever
= Repeat: move to the best neighboring state
" |f no neighbors better than current, quit

= What’s bad about this approach?
= Complete?
= Optimal?

= What's good about it?

Hill Climbing Diagram

objective function qlobal maximum

shoulder

\ local maximum

"flat" local maximum

state space
curren

state

Hill Climbing Quiz

Objective Function
L 3 /

State Space

=
»

Starting from X, where do you end up ?
Starting from Y, where do you end up ?

Starting from Z, where do you end up ?

Simulated Annealing

" |dea: Escape local maxima by allowing downhill moves

= But make them rarer as time goes on

function SIMULATED- ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
next, a node
1, a "temperature” controlling prob. of downward steps

current < MAKE-NODE(INITIAL-STATE[problem])
for t— 1 to oo do

T'— schedule]t]

if 7'= 0 then return current

next < a randomly selected successor of current

AE+— VALUE[nezt] — VALUE[current]

if AE > 0 then current <« next

else current <« next only with probability e

A E/T

Simulated Annealing

" Theoretical guarantee: B(z)
= Stationary distribution: p(x) oc € kT

= |f T decreased slowly enough,
will converge to optimal state!

" |s this an interesting guarantee?

= Sounds like magic, but reality is reality:

= The more downhill steps you need to escape a local

optimum, the less likely you are to ever make them all in a
row

= People think hard about ridge operators which let you
jump around the space in better ways

Genetic Algorithms

24748552 |24 31% 327§52411 32748552 3274802
32752411 %ﬁ: 247@48552 >—< 24752411 24752411
24415124 20\26%‘ 327.52§411 32752124 32252124
32543213 | 11 14% 244155124 >_< 24415411 2441541[7]

Fithess Selection

Pairs

Cross—Over

" Genetic algorithms use a natural selection metaphor
= Keep best N hypotheses at each step (selection) based on a fithess function
= Also have pairwise crossover operators, with optional mutation to give variety

= Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: N-Queens

Why does crossover make sense here?
When wouldn’t it make sense?

= What would mutation be?
What would a good fitness function be?

