
CSE	473:	Ar+ficial	Intelligence	
	Constraint	Sa+sfac+on	Problems	

Instructor:	Luke	Ze@lemoyer	

University	of	Washington	
[These	slides	were	created	by	Dan	Klein	and	Pieter	Abbeel	for	CS188	Intro	to	AI	at	UC	Berkeley.		All	CS188	materials	are	available	at	h@p://ai.berkeley.edu.]	



What	is	Search	For?	
§  Assump+ons	about	the	world:	a	single	agent,	determinis+c	ac+ons,	fully	observed	

state,	discrete	state	space	

§  Planning:	sequences	of	ac+ons	
§  The	path	to	the	goal	is	the	important	thing	
§  Paths	have	various	costs,	depths	
§  Heuris+cs	give	problem-specific	guidance	

§  Iden+fica+on:	assignments	to	variables	
§  The	goal	itself	is	important,	not	the	path	
§  All	paths	at	the	same	depth	(for	some	formula+ons)	
§  CSPs	are	specialized	for	iden+fica+on	problems	



Constraint	Sa+sfac+on	Problems	



Constraint	Sa+sfac+on	Problems	

§  Standard	search	problems:	
§  State	is	a	“black	box”:	arbitrary	data	structure	
§  Goal	test	can	be	any	func+on	over	states	
§  Successor	func+on	can	also	be	anything	

§  Constraint	sa+sfac+on	problems	(CSPs):	
§  A	special	subset	of	search	problems	
§  State	is	defined	by	variables	Xi		with	values	from	a	

domain	D (some+mes	D	depends	on	i)	
§  Goal	test	is	a	set	of	constraints	specifying	allowable	

combina+ons	of	values	for	subsets	of	variables	

§  Simple	example	of	a	formal	representa-on	language	

§  Allows	useful	general-purpose	algorithms	with	more	
power	than	standard	search	algorithms	



CSP	Examples	



Example:	Map	Coloring	

§  Variables:	

§  Domains:	

§  Constraints:	adjacent	regions	must	have	different	
colors	

§  Solu+ons	are	assignments	sa+sfying	all	
constraints,	e.g.:	

		

Implicit:	

Explicit:	



Example:	N-Queens	

§  Formula+on	1:	
§  Variables:	
§  Domains:	
§  Constraints	



Example:	N-Queens	

§  Formula+on	2:	
§  Variables:	

§  Domains:	

§  Constraints:	
Implicit:	

Explicit:	



Constraint	Graphs	



Constraint	Graphs	

§  Binary	CSP:	each	constraint	relates	(at	most)	two	
variables	

§  Binary	constraint	graph:	nodes	are	variables,	arcs	
show	constraints	

§  General-purpose	CSP	algorithms	use	the	graph	
structure	to	speed	up	search.	E.g.,	Tasmania	is	an	
independent	subproblem!	

[Demo:	CSP	applet	(made	available	by	aispace.org)	--	n-queens]	



Screenshot	of	Demo	N-Queens	



Example:	Cryptarithme+c	

§  Variables:	

§  Domains:	

§  Constraints:	



Example:	Sudoku	

§  Variables:	
§  Each	(open)	square	

§  Domains:	
§  {1,2,…,9}	

§  Constraints:	

9-way	alldiff	for	each	row	

9-way	alldiff	for	each	column	

9-way	alldiff	for	each	region	

(or	can	have	a	bunch	of	
pairwise	inequality	
constraints)	



Example:	The	Waltz	Algorithm	

§  The	Waltz	algorithm	is	for	interpre+ng	
line	drawings	of	solid	polyhedra	as	3D	
objects	

§  An	early	example	of	an	AI	computa+on	
posed	as	a	CSP		

? 
§  Approach:	

§  Each	intersec+on	is	a	variable	
§  Adjacent	intersec+ons	impose	constraints	

on	each	other	
§  Solu+ons	are	physically	realizable	3D	

interpreta+ons	



Example:	The	Waltz	Algorithm	

§  The	Waltz	algorithm	is	for	interpre+ng	
line	drawings	of	solid	polyhedra	as	3D	
objects	

§  An	early	example	of	an	AI	computa+on	
posed	as	a	CSP		

§  Approach:	
§  Each	intersec+on	is	a	variable	
§  Adjacent	intersec+ons	impose	constraints	

on	each	other	
§  Solu+ons	are	physically	realizable	3D	

interpreta+ons	

? 



Varie+es	of	CSPs	and	Constraints	



Varie+es	of	CSPs	

§  Discrete	Variables	
§  Finite	domains	

§  Size	d	means	O(dn)	complete	assignments	
§  E.g.,	Boolean	CSPs,	including	Boolean	sa+sfiability	(NP-
complete)	

§  Infinite	domains	(integers,	strings,	etc.)	
§  E.g.,	job	scheduling,	variables	are	start/end	+mes	for	each	job	
§  Linear	constraints	solvable,	nonlinear	undecidable	

§  Con+nuous	variables	
§  E.g.,	start/end	+mes	for	Hubble	Telescope	observa+ons	
§  Linear	constraints	solvable	in	polynomial	+me	by	LP	methods	

(see	cs170	for	a	bit	of	this	theory)	



Varie+es	of	Constraints	

§  Varie+es	of	Constraints	
§  Unary	constraints	involve	a	single	variable	(equivalent	to	

reducing	domains),	e.g.:	
		

	
§  Binary	constraints	involve	pairs	of	variables,	e.g.:	

§  Higher-order	constraints	involve	3	or	more	variables:	
				e.g.,	cryptarithme+c	column	constraints	

§  Preferences	(som	constraints):	
§  E.g.,	red	is	be@er	than	green	
§  Omen	representable	by	a	cost	for	each	variable	assignment	
§  Gives	constrained	op+miza+on	problems	
§  (We’ll	ignore	these	un+l	we	get	to	Bayes’	nets)	

		



Real-World	CSPs	

§  Assignment	problems:	e.g.,	who	teaches	what	class	
§  Timetabling	problems:	e.g.,	which	class	is	offered	when	and	where?	
§  Hardware	configura+on	
§  Transporta+on	scheduling	
§  Factory	scheduling	
§  Circuit	layout	
§  Fault	diagnosis	
§  …	lots	more!	

§  Many	real-world	problems	involve	real-valued	variables…	



Solving	CSPs	



Standard	Search	Formula+on	

§  Standard	search	formula+on	of	CSPs	

§  States	defined	by	the	values	assigned	
so	far	(par+al	assignments)	
§  Ini+al	state:	the	empty	assignment,	{}	
§  Successor	func+on:	assign	a	value	to	an	
unassigned	variable	

§  Goal	test:	the	current	assignment	is	
complete	and	sa+sfies	all	constraints	

§  We’ll	start	with	the	straighqorward,	
naïve	approach,	then	improve	it	



Search	Methods	

§  What	would	BFS	do?	

§  What	would	DFS	do?	

§  What	problems	does	naïve	search	have?	

[Demo:	coloring	--	dfs]	



Video	of	
Demo	

Coloring	--	
DFS	



Backtracking	Search	



Backtracking	Search	

§  Backtracking	search	is	the	basic	uninformed	algorithm	for	solving	CSPs	

§  Idea	1:	One	variable	at	a	+me	
§  Variable	assignments	are	commuta+ve,	so	fix	ordering	
§  I.e.,	[WA	=	red	then	NT	=	green]	same	as	[NT	=	green	then	WA	=	red]	
§  Only	need	to	consider	assignments	to	a	single	variable	at	each	step	

§  Idea	2:	Check	constraints	as	you	go	
§  I.e.	consider	only	values	which	do	not	conflict	previous	assignments	
§  Might	have	to	do	some	computa+on	to	check	the	constraints	
§  “Incremental	goal	test”	

§  Depth-first	search	with	these	two	improvements	
	is	called	backtracking	search	(not	the	best	name)	

§  Can	solve	n-queens	for	n	≈	25	



Backtracking	Example	



Backtracking	Search	

§  Backtracking	=	DFS	+	variable-ordering	+	fail-on-viola+on	
§  What	are	the	choice	points?	

[Demo:	coloring	--	backtracking]	



Video	of	
Demo	

Coloring	–		
Backtracking	



Video	of	
Demo	

Coloring	–		
Backtracking	



Improving	Backtracking	

§  General-purpose	ideas	give	huge	gains	in	speed	
§  …	but	it’s	all	s+ll	NP-hard	

§  Filtering:	Can	we	detect	inevitable	failure	early?	

§  Ordering:	
§  Which	variable	should	be	assigned	next?		(MRV)	
§  In	what	order	should	its	values	be	tried?		(LCV)	
	

§  Structure:	Can	we	exploit	the	problem	structure?	



Arc	Consistency	and	Beyond	



Forward	Checking	

§  Idea:	Keep	track	of	remaining	legal	values	for	unassigned	
variables	(using	immediate	constraints)	

§  Idea:	Terminate	when	any	variable	has	no	legal	values	

WA SA 
NT Q 

NSW 
V 



Forward	
Checking	



Are	We	Done?	



Constraint	Propaga+on	

§  Forward	checking	propagates	informa+on	from	assigned	to	adjacent	unassigned	variables,	but	doesn't	
detect	more	distant	failures:	

WA SA 
NT Q 

NSW 
V 

§  NT and SA cannot both be blue! 
§  Why didn’t we detect this yet? 
§  Constraint propagation repeatedly enforces constraints (locally) 



Arc	Consistency	of	an	En+re	CSP	
§  A	simple	form	of	propaga+on	makes	sure	all	arcs	are	simultaneously	consistent:	

§  Arc	consistency	detects	failure	earlier	than	forward	checking	
§  Important:	If	X	loses	a	value,	neighbors	of	X	need	to	be	rechecked!	
§  Must	rerun	amer	each	assignment!	

Remember:	Delete	
from		the	tail!	

WA	 SA	

NT	 Q	

NSW	

V	



Constraint	
Propaga+on	



Are	We	Done?	



Limita+ons	of	Arc	Consistency	

§  Amer	enforcing	arc	
consistency:	
§  Can	have	one	solu+on	lem	
§  Can	have	mul+ple	solu+ons	lem	
§  Can	have	no	solu+ons	lem	(and	
not	know	it)	

§  Arc	consistency	s+ll	runs	
inside	a	backtracking	search!	

What	went	
wrong	here?	



Ordering:	Minimum	Remaining	Values	

§  Minimum	remaining	values	(MRV):	
§  Choose	the	variable	with	the	fewest	legal	values	

§  Why	min	rather	than	max?	
§  Also	called	“most	constrained	variable”	
§  “Fail-fast”	ordering	



Ordering:	Degree	Heuris+c	

§  Tie-breaker	among	MRV	variables	
§  Degree	heuris+c:	

§  Choose	the	variable	par+cipa+ng	in	the	most	constraints	on	remaining	variables	

§  Why	most	rather	than	fewest	constraints?	



Ordering:	Least	Constraining	Value	

§  Given	a	choice	of	variable:	
§  Choose	the	least	constraining	value	
§  The	one	that	rules	out	the	fewest	values	in	the	

remaining	variables	
§  Note	that	it	may	take	some	computa+on	to	

determine	this!	

§  Why	least	rather	than	most?	

§  Combining	these	heuris+cs	makes	1000	
queens	feasible	



Propaga+on	with	
Ordering	



K-Consistency	



K-Consistency	
§  Increasing	degrees	of	consistency	

§  1-Consistency	(Node	Consistency):	Each	single	node’s	domain	has	a	
value	which	meets	that	node’s	unary	constraints	

§  2-Consistency	(Arc	Consistency):	For	each	pair	of	nodes,	any	
consistent	assignment	to	one	can	be	extended	to	the	other	

§  K-Consistency:	For	each	k	nodes,	any	consistent	assignment	to	k-1	can	
be	extended	to	the	kth	node.	

§  Higher	k	more	expensive	to	compute	

§  (You	need	to	know	the	k=2	case:	arc	consistency)	



Strong	K-Consistency	

§  Strong	k-consistency:	also	k-1,	k-2,	…	1	consistent	

§  Claim:	strong	n-consistency	means	we	can	solve	without	backtracking!	

§  Why?	
§  Choose	any	assignment	to	any	variable	
§  Choose	a	new	variable	
§  By	2-consistency,	there	is	a	choice	consistent	with	the	first	
§  Choose	a	new	variable	
§  By	3-consistency,	there	is	a	choice	consistent	with	the	first	2	
§  …	

§  Lots	of	middle	ground	between	arc	consistency	and	n-consistency!		(e.g.	k=3,	called	
path	consistency)	



Structure	



Problem	Structure	

§  Extreme	case:	independent	subproblems	
§  Example:	Tasmania	and	mainland	do	not	interact	

§  Independent	subproblems	are	iden+fiable	as	
connected	components	of	constraint	graph	

§  Suppose	a	graph	of	n	variables	can	be	broken	into	
subproblems	of	only	c	variables:	
§  Worst-case	solu+on	cost	is	O((n/c)(dc)),	linear	in	n	
§  E.g.,	n	=	80,	d	=	2,	c	=20	
§  280	=	4	billion	years	at	10	million	nodes/sec	
§  (4)(220)	=	0.4	seconds	at	10	million	nodes/sec	



Tree-Structured	CSPs	

§  Theorem:	if	the	constraint	graph	has	no	loops,	the	CSP	can	be	solved	in	O(n	d2)	+me	
§  Compare	to	general	CSPs,	where	worst-case	+me	is	O(dn)	

§  This	property	also	applies	to	probabilis+c	reasoning	(earlier):	an	example	of	the	
rela+on	between	syntac+c	restric+ons	and	the	complexity	of	reasoning	



Tree-Structured	CSPs	
§  Algorithm	for	tree-structured	CSPs:	

§  Order:	Choose	a	root	variable,	order	variables	so	that	parents	precede	children	

§  Remove	backward:	For	i	=	n	:	2,	apply	RemoveInconsistent(Parent(Xi),Xi)	
§  Assign	forward:	For	i	=	1	:	n,	assign	Xi	consistently	with	Parent(Xi)	

§  Run+me:	O(n	d2)		(why?)	



Tree-Structured	CSPs	

§  Claim	1:	Amer	backward	pass,	all	root-to-leaf	arcs	are	consistent	
§  Proof:	Each	X→Y	was	made	consistent	at	one	point	and	Y’s	domain	could	not	have	

been	reduced	thereamer	(because	Y’s	children	were	processed	before	Y)	

§  Claim	2:	If	root-to-leaf	arcs	are	consistent,	forward	assignment	will	not	backtrack	
§  Proof:	Induc+on	on	posi+on	

§  Why	doesn’t	this	algorithm	work	with	cycles	in	the	constraint	graph?	

§  Note:	same	basic	idea	as	variable	elimina+on	in	Bayes’	nets	



Improving	Structure	



Nearly	Tree-Structured	CSPs	



Nearly	Tree-Structured	CSPs	

§  Condi+oning:	instan+ate	a	variable,	prune	its	neighbors'	domains	

§  Cutset	condi+oning:	instan+ate	(in	all	ways)	a	set	of	variables	such	that	
the	remaining	constraint	graph	is	a	tree	

§  Cutset	size	c	gives	run+me	O(	(dc)	(n-c)	d2	),	very	fast	for	small	c	



Cutset	Condi+oning	

SA	

SA	 SA	 SA	

Instan+ate	the	cutset	
(all	possible	ways)	

Compute	residual	CSP	
for	each	assignment	

Solve	the	residual	CSPs	
(tree	structured)	

Choose	a	cutset	



Cutset	Quiz	

§  Find	the	smallest	cutset	for	the	graph	below.	



Tree	Decomposi+on*	
§  Idea:	create	a	tree-structured	graph	of	mega-variables	
§  Each	mega-variable	encodes	part	of	the	original	CSP	
§  Subproblems	overlap	to	ensure	consistent	solu+ons	

M1 M2 M3 M4 

         {(WA=r,SA=g,NT=b),       
          (WA=b,SA=r,NT=g), 
          …} 

         {(NT=r,SA=g,Q=b), 
          (NT=b,SA=g,Q=r), 
          …} 

Agree: (M1,M2) ∈  
        {((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)),  …} 

A
gree on    shared vars 

NT 

SA 

≠ 
WA 

≠ ≠ 

Q 

SA 

≠ 
NT 

≠ ≠ 

A
gree on    shared vars 

NS
W 

SA 

≠ 
Q 

≠ ≠ 

A
gree on    shared vars 

V 

SA 

≠ NS
W 

≠ ≠ 



Itera+ve	Improvement	



Itera+ve	Algorithms	for	CSPs	

§  Local	search	methods	typically	work	with	“complete”	states,	i.e.,	all	variables	assigned	

§  To	apply	to	CSPs:	
§  Take	an	assignment	with	unsa+sfied	constraints	
§  Operators	reassign	variable	values	
§  No	fringe!		Live	on	the	edge.	

§  Algorithm:	While	not	solved,	
§  Variable	selec+on:	randomly	select	any	conflicted	variable	
§  Value	selec+on:	min-conflicts	heuris+c:	

§  Choose	a	value	that	violates	the	fewest	constraints	
§  I.e.,	hill	climb	with	h(n)	=	total	number	of	violated	constraints	



Example:	4-Queens	

§  States:	4	queens	in	4	columns	(44	=	256	states)	
§  Operators:	move	queen	in	column	
§  Goal	test:	no	a@acks	
§  Evalua+on:	c(n)	=	number	of	a@acks	

[Demo:	n-queens	–	itera+ve	improvement	(L5D1)]	
[Demo:	coloring	–	itera+ve	improvement]	



Video	of	Demo	Itera+ve	Improvement	–	n	Queens	



Video	of	Demo	Itera+ve	Improvement	–	Coloring	



Performance	of	Min-Conflicts	

§  Given	random	ini+al	state,	can	solve	n-queens	in	almost	constant	+me	for	arbitrary	
n	with	high	probability	(e.g.,	n	=	10,000,000)!	

§  The	same	appears	to	be	true	for	any	randomly-generated	CSP	except	in	a	narrow	
range	of	the	ra+o	



Summary:	CSPs	

§  CSPs	are	a	special	kind	of	search	problem:	
§  States	are	par+al	assignments	
§  Goal	test	defined	by	constraints	

§  Basic	solu+on:	backtracking	search	

§  Speed-ups:	
§  Ordering	
§  Filtering	
§  Structure	

§  Itera+ve	min-conflicts	is	omen	effec+ve	in	prac+ce	



Local	Search	



Local	Search	

§  Tree	search	keeps	unexplored	alterna+ves	on	the	fringe	(ensures	completeness)	

§  Local	search:	improve	a	single	op+on	un+l	you	can’t	make	it	be@er	(no	fringe!)	

§  New	successor	func+on:	local	changes	

§  Generally	much	faster	and	more	memory	efficient	(but	incomplete	and	subop+mal)	



Hill	Climbing	

§  Simple,	general	idea:	
§  Start	wherever	
§  Repeat:	move	to	the	best	neighboring	state	
§  If	no	neighbors	be@er	than	current,	quit	

§  What’s	bad	about	this	approach?	
§  Complete?	
§  Op+mal?	

§  What’s	good	about	it?	



Hill	Climbing	Diagram	



Hill	Climbing	Quiz	

Star+ng	from	X,	where	do	you	end	up	?	
		

Star+ng	from	Y,	where	do	you	end	up	?	
	
Star+ng	from	Z,	where	do	you	end	up	?	



Simulated	Annealing	
§  Idea:		Escape	local	maxima	by	allowing	downhill	moves	

§  But	make	them	rarer	as	+me	goes	on	

70 



Simulated	Annealing	

§  Theore+cal	guarantee:	
§  Sta+onary	distribu+on:	
§  If	T	decreased	slowly	enough,	
	will	converge	to	op+mal	state!	

§  Is	this	an	interes+ng	guarantee?	

§  Sounds	like	magic,	but	reality	is	reality:	
§  The	more	downhill	steps	you	need	to	escape	a	local	
op+mum,	the	less	likely	you	are	to	ever	make	them	all	in	a	
row	

§  People	think	hard	about	ridge	operators	which	let	you	
jump	around	the	space	in	be@er	ways	



Gene+c	Algorithms	

§  Gene+c	algorithms	use	a	natural	selec+on	metaphor	
§  Keep	best	N	hypotheses	at	each	step	(selec+on)	based	on	a	fitness	func+on	
§  Also	have	pairwise	crossover	operators,	with	op+onal	muta+on	to	give	variety	

§  Possibly	the	most	misunderstood,	misapplied	(and	even	maligned)	technique	around	



Example:	N-Queens	

§  Why	does	crossover	make	sense	here?	
§  When	wouldn’t	it	make	sense?	
§  What	would	muta+on	be?	
§  What	would	a	good	fitness	func+on	be?	


