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Probabilistic Models

Models describe how (a portion of) the world works

Models are always simplifications
= May not account for every variable
= May not account for all interactions between variables

= “All models are wrong; but some are useful.”
— George E. P. Box

What do we do with probabilistic models?

= We (or our agents) need to reason about unknown
variables, given evidence

= Example: explanation (diagnostic reasoning)
= Example: prediction (causal reasoning)
= Example: value of information



Independence




Independence

= Two variables are independent if:
Vz,y : P(z,y) = P(x)P(y)

= This says that their joint distribution factors into a product two
simpler distributions

= Another form:

v,y P(ely) = P(x)

= Wewrite: X || YV

" |ndependence is a simplifying modeling assumption
= Empirical joint distributions: at best “close” to independent

= What could we assume for {Weather, Traffic, Cavity, Toothache}?



Example: Independence?

P1(T,W)

T W P
hot sun | 0.4
hot rain | 0.1
cold sun | 0.2
cold rain | 0.3

P>(T, W)

T W P
hot sun 0.3
hot rain | 0.2
cold sun | 0.3
cold rain | 0.2

P(T)
T P
hot 0.5
cold | 0.5
P(W)
W P
sun 0.6

rain 0.4




Example: Independence

= N fair, independent coin flips:

P(X1) P(X5) P(Xp)

H |05 H |05 o H |o5

T 0.5 T 0.5 T 0.5
~ U

—




Conditional Independence




Conditional Independence

P(Toothache, Cavity, Catch)

If | have a cavity, the probability that the probe catches in it
doesn't depend on whether | have a toothache:

= P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if | don’ t have a cavity:
= P(+catch | +toothache, -cavity) = P(+catch| -cavity)

Catch is conditionally independent of Toothache given Cavity:
= P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:
= P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
= P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
= One can be derived from the other easily



Conditional Independence

* Unconditional (absolute) independence very rare (why?)

» Conditional independence is our most basic and robust form
of knowledge about uncertain environments.

= X is conditionally independent of Y given Z XiI_Y]Z

if and only if:
Vz,y,z : P(x,ylz) = P(z]2)P(yl2)

or, equivalently, if and only if

Va,y,z 1 P(x|z,y) = P(z|2)



Conditional Independence

= What about this domain:

= Traffic
= Umbrella
= Raining




Conditional Independence

» What about this domain: Y~

= Fire

= Smoke /ﬁ%

= Alarm




Conditional Independence and the Chain Rule

= Chainrule: P(Xl, Xo, ... Xn) = P(Xl)P(X2|X1)P(X3|X1, XQ) e

" Trivial decomposition:

P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic|Rain) P(Umbrella|Rain, Traffic)

= With assumption of conditional independence:

P(Traffic, Rain, Umbrella) =
P(Rain)P(Traffic|Rain) P(Umbrella|Rain)

= Bayes nets / graphical models help us express conditional independence assumptions



Ghostbusters Chain Rule

Each sensor depends only

on where the ghost is P(T,B,G) = P(G) P(T|G) P(B|G)
That means, the two sensors are T B G P(T,B,G)
conditionally independent, given the

ghost position +t +b +g 0.16

+t +b -g 0.16
+t -b +g 0.24
+t -b -g 0.04

T: Top square is red
B: Bottom square is red
G: Ghost is in the top

Givens: t | +b | +g | 0.04
P(+g)=0.5

P( -g)=0.5 -t +b -8 0.24
P(+t | +g)=0.8 -t b | +g 0.06
P(+t | -g)=0.4

P(+b | +g)=0.4 -t b | -g 0.06
P(+b| -g)=0.8



Bayes Nets: Big Picture




Bayes Nets: Big Picture

= Two problems with using full joint distribution tables
as our probabilistic models:

= Unless there are only a few variables, the joint is WAY too
big to represent explicitly

* Hard to learn (estimate) anything empirically about more
than a few variables at a time

= Bayes nets: a technique for describing complex joint
distributions (models) using simple, local
distributions (conditional probabilities)
= More properly called graphical models
= We describe how variables locally interact

= Local interactions chain together to give global, indirect
interactions

= For about 10 min, we’ll be vague about how these
interactions are specified




Example Bayes Net: Insurance




Example Bayes Net: Car

alternator fanbelt
broken broke

fuel line starter
blocked hroke



Graphical Model Notation

(unobserved)
= Arcs: interactions
= |ndicate “direct influence” between variables

= Formally: encode conditional independence
(more later)

" For now: imagine that arrows mean Toothache @

direct causation (in general, they don’ t!)

= Nodes: variables (with domains)
= Can be assigned (observed) or unassigned




Example: Coin Flips

" N independent coin flips

" No interactions between variables: absolute independence



Example: Traffic

= Variables:
= R:I[trains
= T:There is traffic

= Model 1: independence = Model 2: rain causes traffic

(® O
@ O

= Why is an agent using model 2 better?



Example: Traffic Il

= Let’s build a causal graphical model!

| ) an
. Variables i e e

= T: Traffic
R: It rains

L: Low pressure
= D: Roof drips

= B: Ballgame

C: Cavity




Example: Alarm Network

= Variables A a -
= B: Burglary \\I/\ N—o7 rd
= A:Alarm goes off Vj}g =) %!‘

= M: Mary calls

= J:John calls
= E: Earthquake!




Bayes Net Semantics




Bayes Net Semantics

= A set of nodes, one per variable X
= Adirected, acyclic graph

= A conditional distribution for each node

= A collection of distributions over X, one for each
combination of parents’ values

P(Xl|aqy...an)

= CPT: conditional probability table

= Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities



Probabilities in BNs

= Bayes netsimplicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply all the
relevant conditionals together:

n

P(z1,x2,...xzn) = || P(=z;|parents(X;))

1=1
Toothache @

P(+cavity, 4+catch, -toothache)

= Example:




Probabilities in BNs L el

* Why are we guaranteed that setting

n
P(z1,x2,...xzn) = || P(=z;|parents(X;))
i=1
results in a proper joint distribution?

n
* Chain rule (valid for all distributions): P(z1,z2,...zn) = || P(zilz1...2—1)
i=1
= Assume conditional independences: P(zi|x1,...7,1) = P(x;|parents(X;))

n
- Consequence:  P(z1,zp,...zn) = || P(z;|parents(X;))
i=1

= Not every BN can represent every joint distribution

= The topology enforces certain conditional independencies



Example: Coin Flips

P(X1) P(X>) P(Xn)
h |05 h |05 o h |05
t |05 t |05 t |05

P(h,h,t,h) =

Only distributions whose variables are absolutely independent can be
represented by a Bayes  net with no arcs.



P(R)

Example: Traffic

+r

1/4

3/4

+r

P(T|R)

+t

3/4

1/4

+t

1/2

1/2

P(+r,—t) =




= Causal direction

P(R)

+r

1/4

3/4

P(T|R)

Example: Traffic

+r

+t

3/4

1/4

+t

1/2

P(T, R)
+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16

1/2




Example: Reverse Traffic

_

|

—~

=

. o
= Reverse causality? 5 \

D

P(T)

+t 9/16 |
t | 7/16 P(T,R)
P(R’T) +r +t 3/16
+r -t 1/16
+t +r 1/3
P 2/3 -r +t 6/16
-r -t 6/16
-t +r 1/7
-r 6/7




Causality?

= When Bayes nets reflect the true causal patterns:

= Often simpler (nodes have fewer parents) e
= Often easier to think about
= Often easier to elicit from experts

= BNs need not actually be causal
= Sometimes no causal net exists over the domain
(especially if variables are missing)
= E.g. consider the variables Traffic and Drips
= End up with arrows that reflect correlation, not causation

= What do the arrows really mean?

= Topology may happen to encode causal structure
= Topology really encodes conditional independence

P(z;|zy, ... xi_1) = P(z;|parents(X;))



Example: Alarm Network

B P(B)
+b | 0.001
-b | 0.999
A J P(J|A) 0
+a | + 0.9
val - | 01
-a +j 0.05
al| - | o095
| A _
P(+b, —e,4+a,—j,+m) =

Ll
R
) X
a “
= =
//? // ’

E P(E)

+e | 0.002

-e | 0.998

A M P(M|A)
+3a +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99

B | E| A | PA|BE)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e | -a 0.06
-b | +e | +a 0.29
b | +e | -a 0.71
-b | -e | +a 0.001
-b | -e | -a 0.999




Example: Alarm Network

— (&) (&
+b | 0.001
b | 0.999

Al 1| pula) 0

+a | + 0.9

va | 4 | o1

a +j 0.05 0 @

a | 5| oos

P(+b, —e,4+a,—j,+m) =
P(+b)P(—e)P(+a|l + b, —e)P(—j| + a)P(+m|+a) =

0.001 x 0.998 x 0.94 x 0.1 x 0.7

E P(E)

+e | 0.002

-e | 0.998

A M P(M|A)
+a | +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99

ﬁ s 7
B | E P(A|B,E)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e | -a 0.06
-b | +e | +a 0.29
-b | +e | -a 0.71
-b | -e | +a 0.001
-b | -e | -a 0.999




Size of a Bayes Net

= How bigis a joint distribution over N = Both give you the power to calculate

Boolean variables?
2N P(X17X27---Xn)

= BNs: Huge space savings!

= How bigis an N-node net if nodes
have up to k parents?

O(N * 2k+1) = Also faster to answer queries (coming)

= Also easier to elicit local CPTs




Bayes’ Nets

= So far: how a Bayes’ net encodes a joint
distribution

= Next: how to answer queries about that
distribution

= Today:
= First assembled BNs using an intuitive notion of
conditional independence as causality

= Then saw that key property is conditional independence

= Main goal: answer queries about conditional
independence and influence

= After that: how to answer numerical queries
(inference)



Bayes’ Nets

JRepresentation
= Conditional Independences
" Probabilistic Inference

" Learning Bayes’ Nets from Data



Conditional Independence

X and Y are independent if

Ve,y P(z,y) = P(z)P(y) —--= X1Y

X and Y are conditionally independent given Z

Vz,y,z2 P(z,y|z) = P(z|2)P(ylz) —--=> X 1Y|[Z

(Conditional) independence is a property of a distribution

Example:

Alarm AL Fire|Smoke




Bayes Nets: Assumptions

= Assumptions we are required to make to define the
Bayes net when given the graph:

P(x;lxy - - x;_1) = P(x;|parents(X;))

= Beyond above “chain rule > Bayes net” conditional
independence assumptions

= Often additional conditional independences

= They can be read off the graph

" |mportant for modeling: understand assumptions made

when choosing a Bayes net graph



Example

OnOnOR0

" Conditional independence assumptions directly from simplifications in chain rule:

= Additional implied conditional independence assumptions?



Independence in a BN

" |mportant question about a BN:
= Are two nodes independent given certain evidence?
= |f yes, can prove using algebra (tedious in general)
" |f no, can prove with a counter example

= Example:

" Question: are X and Z necessarily independent?
= Answer: no. Example: low pressure causes rain, which causes traffic.
= X can influence Z, Z can influence X (via Y)
= Addendum: they could be independent: how?






D-separation: Outline

= Study independence properties for triples
= Analyze complex cases in terms of member triples

= D-separation: a condition / algorithm for answering such
gueries



Causal Chains

= This configuration is a “causal chain” = Guaranteed X independent of Z? No!

One example set of CPTs for which X is not
P mdependent of Z is sufficient to show this
L //// o )f’j independence is not guaranteed.
= Example:

aﬁ‘

= Low pressure causes rain causes traffic,

’ high pressure causes no rain causes no
traffic
X: Low pressure Y: Rain Z: Traffic
" |n numbers:
P(z,y,z) = P(z)P(y|lz)P(z|y) Plry Ix)=1Ply | -x)=1,

P(+z | +y)=1,P(-z|-y)=1



Causal Chains

= This configuration is a “causal chain” = Guaranteed X independent of Z given Y?

P(x,y, z)
P(x,y)

_ P(z)P(ylz) P(z]y)
P(x) P(yl|z)

P(z|lz,y) =

X: Low pressure Y: Rain Z: Traffic — P(Z|y)

Yes!

P = P P P i ””
(z,y,2) (@) P(yle) P(z]y) = Evidence along the chain “blocks” the

influence



Common Cause

= This configuration is a “common cause” = Guaranteed X independentof Z? No!
Y: Project *Pm;c’:Y " One example set of CPTs for which X is not
due | Duwe! | independent of Z is sufficient to show this

independence is not guaranteed.

= Example:

= Project due causes both forums busy

NZ Y and lab full
;@ @ " In numbers:

P ) — — /|

" I;chJr'SL:lms = o€ &L ’.:;. Z: Lab full P(+x | +y)=1,P(-x|-y)=1,
p— e P(+z | +y)=1,P(z|y)=1

P(xz,y,z) = P(y)P(z|y) P(z|y)



Common Cause

= This configuration is a “common cause” = Guaranteed X and Z independent given Y?
Y: Project Praject P(x,vy,z
due Pue: P(z|z,y) = (z,y, 2)
P(z,y)
_ P@)P(zly) P(z]y)
P(y)P(z|y)
= P(zly)
X: Forums
busy Yes!
P(x,y,z) = P(y)P(x|y)P(z|y) = Observing the cause blocks influence

between effects.



Common Effect

= |ast configuration: two causesof one = Are XandY independent?

effect (v-structures
( ) = Yes: the ballgame and the rain cause traffic, but

they are not correlated

X: Raining Y: Ballgame

= Still need to prove they must be (try it!)

= Are Xand Y independent given Z?

= No: seeing traffic puts the rain and the ballgame in
competition as explanation.

= This is backwards from the other cases

= QObserving an effect activates influence between

possible causes.




The General Case




The General Case

" General question: in a given BN, are two variables independent
(given evidence)?

= Solution: analyze the graph

= Any complex example can be broken
into repetitions of the three canonical cases




Reachability

= Recipe: shade evidence nodes, look
for paths in the resulting graph

= Attempt 1: if two nodes are connected 0 @
by an undirected path not blocked by
a shaded node, they are conditionally
independent

= Almost works, but not quite
= Where does it break?

= Answer: the v-structure at T doesn’t count
as a link in a path unless “active”




Active / Inactive Paths

= Question: Are X and Y conditionally independent given ~ Active Triples Inactive Triples

evidence variables {Z}?

= Yes, if Xand Y “d-separated” by Z
= Consider all (undirected) paths from XtoY
= No active paths = independence!

= A pathis active if each triple is active:
= Causal chain A— B — C where B is unobserved (either direction)
= Common cause A <= B — C where B is unobserved
= Common effect (aka v-structure)
A — B <— C where B or one of its descendents is observed

= All it takes to block a path is a single inactive segment

~d{ §



D-Separation

= Query: X; 1l Xj‘{Xkl,...,an} ?

= Check all (undirected!) paths between X; and X

= |f one or more active, then independence not guaranteed
X; N X Xy ooy X, }

= Otherwise (i.e. if all paths are inactive),

then independence is guaranteed



Example

Active Triples Inactive Triples

R1 B Yes
R 1 B|T

R B|T'

{ 28

~d{ §




Active Triples

~d{ §

>
V)
0
.
<
®
{ ? % :
]
(%}

Example

LIT\T Yes
L1 B Yes
L1 B|T

L1 BT’

LU B|T,R Yes



Active Triples

~d{ §

Inactive Triples

{ 28

Example

= \/ariables:

= R: Raining
= T: Traffic
= D: Roof drips

= S: I’'m sad

= Questions:

R Yes




Structure Implications

" Given a Bayes net structure, can run d-
separation algorithm to build a complete list of
conditional independences that are necessarily

true of the form

Xi L Xi{ Xkyses Xk, }

= This list determines the set of probability
distributions that can be represented




Computing All Independences

OMPUTE A LL THE
C\:N'DE.PENDE NCES/

S
5%
hel
£



Topology Limits Distributions

Given some graph topology
G, only certain joint
distributions can be
encoded

The graph structure
guarantees certain
(conditional) independences

(There might be more
independence)

Adding arcs increases the
set of distributions, but has
several costs

Full conditioning can encode
any distribution

(XY, X1 ZY 1 Z, (X 1L Z|Y)
XUZ|Y,XULY|2ZYlLZ|X)

®
® @

U

5P &P
5P &P
PP PFP



Bayes Nets Representation Summary

= Bayes nets compactly encode joint distributions

= Guaranteed independencies of distributions can be
deduced from BN graph structure

= D-separation gives precise conditional independence
guarantees from graph alone

= ABayes net sjointdistribution may have further
(conditional) independence that is not detectable until
you inspect its specific distribution



Bayes’ Nets

JRepresentation
JConditionaI Independences

= Probabilistic Inference

" Enumeration (exact, exponential complexity)

= Variable elimination (exact, worst-case
exponential complexity, often better)

" Probabilistic inference is NP-complete

= Sampling (approximate)

" Learning Bayes’ Nets from Data



