
CSE	473:	Ar+ficial	Intelligence	
	

Bayes’	Nets:	Inference	

Luke	Ze@lemoyer	---	University	of	Washington	
[These	slides	were	created	by	Dan	Klein	and	Pieter	Abbeel	for	CS188	Intro	to	AI	at	UC	Berkeley.		All	CS188	materials	are	available	at	h@p://ai.berkeley.edu.]	

Bayes’	Net	Representa+on	

§  A	directed,	acyclic	graph,	one	node	per	random	variable	
§  A	condi+onal	probability	table	(CPT)	for	each	node	

§  A	collec+on	of	distribu+ons	over	X,	one	for	each	combina+on	
of	parents’	values	

§  Bayes’ nets	implicitly	encode	joint	distribu+ons	

§  As	a	product	of	local	condi+onal	distribu+ons	

§  To	see	what	probability	a	BN	gives	to	a	full	assignment,	
mul+ply	all	the	relevant	condi+onals	together:	

Example:	Alarm	Network	

Burglary	 Earthqk	

Alarm	

John	
calls	

Mary	
calls	

B	 P(B)	

+b	 0.001	

-b	 0.999	

E	 P(E)	

+e	 0.002	

-e	 0.998	

B	 E	 A	 P(A|B,E)	

+b	 +e	 +a	 0.95	

+b	 +e	 -a	 0.05	

+b	 -e	 +a	 0.94	

+b	 -e	 -a	 0.06	

-b	 +e	 +a	 0.29	

-b	 +e	 -a	 0.71	

-b	 -e	 +a	 0.001	

-b	 -e	 -a	 0.999	

A	 J	 P(J|A)	

+a	 +j	 0.9	

+a	 -j	 0.1	

-a	 +j	 0.05	

-a	 -j	 0.95	

A	 M	 P(M|A)	

+a	 +m	 0.7	

+a	 -m	 0.3	

-a	 +m	 0.01	

-a	 -m	 0.99	
[Demo: BN Applet]

Example:	Alarm	Network	
B	 P(B)	

+b	 0.001	

-b	 0.999	

E	 P(E)	

+e	 0.002	

-e	 0.998	

B	 E	 A	 P(A|B,E)	

+b	 +e	 +a	 0.95	

+b	 +e	 -a	 0.05	

+b	 -e	 +a	 0.94	

+b	 -e	 -a	 0.06	

-b	 +e	 +a	 0.29	

-b	 +e	 -a	 0.71	

-b	 -e	 +a	 0.001	

-b	 -e	 -a	 0.999	

A	 J	 P(J|A)	

+a	 +j	 0.9	

+a	 -j	 0.1	

-a	 +j	 0.05	

-a	 -j	 0.95	

A	 M	 P(M|A)	

+a	 +m	 0.7	

+a	 -m	 0.3	

-a	 +m	 0.01	

-a	 -m	 0.99	

B	 E	

A	

M	J	

Example:	Alarm	Network	
B	 P(B)	

+b	 0.001	

-b	 0.999	

E	 P(E)	

+e	 0.002	

-e	 0.998	

B	 E	 A	 P(A|B,E)	

+b	 +e	 +a	 0.95	

+b	 +e	 -a	 0.05	

+b	 -e	 +a	 0.94	

+b	 -e	 -a	 0.06	

-b	 +e	 +a	 0.29	

-b	 +e	 -a	 0.71	

-b	 -e	 +a	 0.001	

-b	 -e	 -a	 0.999	

A	 J	 P(J|A)	

+a	 +j	 0.9	

+a	 -j	 0.1	

-a	 +j	 0.05	

-a	 -j	 0.95	

A	 M	 P(M|A)	

+a	 +m	 0.7	

+a	 -m	 0.3	

-a	 +m	 0.01	

-a	 -m	 0.99	

B	 E	

A	

M	J	

Bayes’	Nets	

§  Representa+on	

§  Condi+onal	Independences	

§  Probabilis+c	Inference	
§  Enumera+on	(exact,	exponen+al	complexity)	

§  Variable	elimina+on	(exact,	worst-case	exponen+al	
complexity,	ohen	be@er)	

§  Inference	is	NP-complete	

§  Sampling	(approximate)	

§  Learning	Bayes’	Nets	from	Data	

§  Examples:	

§  Posterior	probability	

§  Most	likely	explana+on:	

Inference	

§  Inference:	calcula+ng	some	
useful	quan+ty	from	a	joint	
probability	distribu+on	

Inference	by	Enumera+on	
§  General	case:	

§  Evidence	variables:		
§  Query*	variable:	
§  Hidden	variables:	 All	variables	

*	Works	fine	with	
mul:ple	query	
variables,	too	

§  We	want:	

§  Step	1:	Select	the	
entries	consistent	
with	the	evidence	

§  Step	2:	Sum	out	H	to	get	joint	
of	Query	and	evidence	

§  Step	3:	Normalize	

⇥ 1

Z

Inference	by	Enumera+on	in	Bayes’	Net	
§  Given	unlimited	+me,	inference	in	BNs	is	easy	

§  Reminder	of	inference	by	enumera+on	by	example:	
B	 E	

A	

M	J	

P (B |+ j,+m) /B P (B,+j,+m)

=
X

e,a

P (B, e, a,+j,+m)

=
X

e,a

P (B)P (e)P (a|B, e)P (+j|a)P (+m|a)

=P (B)P (+e)P (+a|B,+e)P (+j|+ a)P (+m|+ a) + P (B)P (+e)P (�a|B,+e)P (+j|� a)P (+m|� a)

P (B)P (�e)P (+a|B,�e)P (+j|+ a)P (+m|+ a) + P (B)P (�e)P (�a|B,�e)P (+j|� a)P (+m|� a)

Inference	by	Enumera+on?	

P (Antilock|observed variables) = ?

Inference	by	Enumera+on	vs.	Variable	Elimina+on	
§  Why	is	inference	by	enumera+on	so	slow?	

§  You	join	up	the	whole	joint	distribu+on	before	
you	sum	out	the	hidden	variables	

§  Idea:	interleave	joining	and	marginalizing!	
§  Called	“Variable	Elimina+on”	
§  S+ll	NP-hard,	but	usually	much	faster	than	

inference	by	enumera+on	

§  First	we’ll	need	some	new	nota+on:	factors	

Factor	Zoo	

Factor	Zoo	I	

§  Joint	distribu+on:	P(X,Y)	
§  Entries	P(x,y)	for	all	x,	y	
§  Sums	to	1	

§  Selected	joint:	P(x,Y)	
§  A	slice	of	the	joint	distribu+on	
§  Entries	P(x,y)	for	fixed	x,	all	y	
§  Sums	to	P(x)	

§  Number	of	capitals	=	
dimensionality	of	the	table	

T	 W	 P	

hot	 sun	 0.4	

hot	 rain	 0.1	

cold	 sun	 0.2	

cold	 rain	 0.3	

T	 W	 P	

cold	 sun	 0.2	

cold	 rain	 0.3	

Factor	Zoo	II	

§  Single	condi+onal:	P(Y	|	x)	
§  Entries	P(y	|	x)	for	fixed	x,	all	y	
§  Sums	to	1	

§  Family	of	condi+onals:		
	P(X	|Y)	
§  Mul+ple	condi+onals	
§  Entries	P(x	|	y)	for	all	x,	y	
§  Sums	to	|Y|	

T	 W	 P	

hot	 sun	 0.8	

hot	 rain	 0.2	

cold	 sun	 0.4	

cold	 rain	 0.6	

T	 W	 P	

cold	 sun	 0.4	

cold	 rain	 0.6	

Factor	Zoo	III	

§  Specified	family:	P(y	|	X)	
§  Entries	P(y	|	x)	for	fixed	y,	
	but	for	all	x	

§  Sums	to	…	who	knows!	

T	 W	 P	

hot	 rain	 0.2	

cold	 rain	 0.6	

Factor	Zoo	Summary	

§  In	general,	when	we	write	P(Y1	…	YN	|	X1	…	XM)	

§  It	is	a	“factor,”	a	mul+-dimensional	array	

§  Its	values	are	P(y1	…	yN	|	x1	…	xM)	

§  Any	assigned	(=lower-case)	X	or	Y	is	a	dimension	missing	(selected)	from	the	array	

Example:	Traffic	Domain	

§  Random	Variables	
§  R:	Raining	
§  T:	Traffic	
§  L:	Late	for	class!	 T

L

R
+r	 0.1	
-r	 0.9	

+r	 +t	 0.8	
+r	 -t	 0.2	
-r	 +t	 0.1	
-r	 -t	 0.9	

+t	 +l	 0.3	
+t	 -l	 0.7	
-t	 +l	 0.1	
-t	 -l	 0.9	

P (L) = ?

=
X

r,t

P (r, t, L)

=
X

r,t

P (r)P (t|r)P (L|t)

Variable	Elimina+on	(VE)	

Inference	by	Enumera+on:	Procedural	Outline	

§  Track	objects	called	factors	
§  Ini+al	factors	are	local	CPTs	(one	per	node)	

§  Any	known	values	are	selected	
§  E.g.	if	we	know																		,	the	ini+al	factors	are	

§  Procedure:	Join	all	factors,	then	eliminate	all	hidden	variables	

+r	 0.1	
-r	 0.9	

+r	 +t	 0.8	
+r	 -t	 0.2	
-r	 +t	 0.1	
-r	 -t	 0.9	

+t	 +l	 0.3	
+t	 -l	 0.7	
-t	 +l	 0.1	
-t	 -l	 0.9	

+t	 +l	 0.3	
-t	 +l	 0.1	

+r	 0.1	
-r	 0.9	

+r	 +t	 0.8	
+r	 -t	 0.2	
-r	 +t	 0.1	
-r	 -t	 0.9	

Opera+on	1:	Join	Factors	

§  First	basic	opera+on:	joining	factors	
§  Combining	factors:	

§  Just	like	a	database	join	
§  Get	all	factors	over	the	joining	variable	
§  Build	a	new	factor	over	the	union	of	the	variables	

involved	

§  Example:	Join	on	R	

§  Computa+on	for	each	entry:	pointwise	products	

+r	 0.1	
-r	 0.9	

+r	 +t	 0.8	
+r	 -t	 0.2	
-r	 +t	 0.1	
-r	 -t	 0.9	

+r	 +t	 0.08	
+r	 -t	 0.02	
-r	 +t	 0.09	
-r	 -t	 0.81	T

R

R,T

Example:	Mul+ple	Joins	

Example:	Mul+ple	Joins	

T

R Join	R	

L

R, T

L

+r	 0.1	
-r	 0.9	

+r	 +t	 0.8	
+r	 -t	 0.2	
-r	 +t	 0.1	
-r	 -t	 0.9	

+t	 +l	 0.3	
+t	 -l	 0.7	
-t	 +l	 0.1	
-t	 -l	 0.9	

+r	 +t	 0.08	
+r	 -t	 0.02	
-r	 +t	 0.09	
-r	 -t	 0.81	

+t	 +l	 0.3	
+t	 -l	 0.7	
-t	 +l	 0.1	
-t	 -l	 0.9	

R, T, L

+r	 +t	 +l	 0.024	
+r	 +t	 -l	 0.056	
+r	 -t	 +l	 0.002	
+r	 -t	 -l	 0.018	
-r	 +t	 +l	 0.027	
-r	 +t	 -l	 0.063	
-r	 -t	 +l	 0.081	
-r	 -t	 -l	 0.729	

Join	T	

Opera+on	2:	Eliminate	

§  Second	basic	opera+on:	marginaliza+on	

§  Take	a	factor	and	sum	out	a	variable	
§  Shrinks	a	factor	to	a	smaller	one	

§  A	projec+on	opera+on	

§  Example:	

+r	 +t	 0.08	
+r	 -t	 0.02	
-r	 +t	 0.09	
-r	 -t	 0.81	

+t	 0.17	
-t	 0.83	

Mul+ple	Elimina+on	

Sum	
out	R	

Sum	
out	T	

T, L L R, T, L

+r	 +t	 +l	 0.024	
+r	 +t	 -l	 0.056	
+r	 -t	 +l	 0.002	
+r	 -t	 -l	 0.018	
-r	 +t	 +l	 0.027	
-r	 +t	 -l	 0.063	
-r	 -t	 +l	 0.081	
-r	 -t	 -l	 0.729	

+t	 +l	 0.051	
+t	 -l	 0.119	
-t	 +l	 0.083	
-t	 -l	 0.747	

+l	 0.134	
-l	 0.886	

Thus	Far:	Mul+ple	Join,	Mul+ple	Eliminate	(=	Inference	by	Enumera+on)	

Marginalizing	Early	(=	Variable	Elimina+on)	

Traffic	Domain	

§  Inference	by	Enumera+on	T

L

R P (L) = ?

§  Variable	Elimina+on	

=
X

t

P (L|t)
X

r

P (r)P (t|r)

Join	on	r	Join	on	r	

Join	on	t	

Join	on	t	

Eliminate	r	

Eliminate	t	

Eliminate	r	

=
X

t

X

r

P (L|t)P (r)P (t|r)

Eliminate	t	

Marginalizing	Early!	(aka	VE)	
Sum	out	R	

T

L

+r	 +t	 0.08	
+r	 -t	 0.02	
-r	 +t	 0.09	
-r	 -t	 0.81	

+t	 +l	 0.3	
+t	 -l	 0.7	
-t	 +l	 0.1	
-t	 -l	 0.9	

+t	 0.17	
-t	 0.83	

+t	 +l	 0.3	
+t	 -l	 0.7	
-t	 +l	 0.1	
-t	 -l	 0.9	

T

R

L

+r	 0.1	
-r	 0.9	

+r	 +t	 0.8	
+r	 -t	 0.2	
-r	 +t	 0.1	
-r	 -t	 0.9	

+t	 +l	 0.3	
+t	 -l	 0.7	
-t	 +l	 0.1	
-t	 -l	 0.9	

Join	R	

R, T

L

T, L L

+t	 +l	 0.051	
+t	 -l	 0.119	
-t	 +l	 0.083	
-t	 -l	 0.747	

+l	 0.134	
-l	 0.866	

Join	T	 Sum	out	T	

Evidence	

§  If	evidence,	start	with	factors	that	select	that	evidence	
§  No	evidence	uses	these	ini+al	factors:	

§  Compu+ng																								,	the	ini+al	factors	become:	

§  We	eliminate	all	vars	other	than	query	+	evidence	

+r	 0.1	
-r	 0.9	

+r	 +t	 0.8	
+r	 -t	 0.2	
-r	 +t	 0.1	
-r	 -t	 0.9	

+t	 +l	 0.3	
+t	 -l	 0.7	
-t	 +l	 0.1	
-t	 -l	 0.9	

+r	 0.1	 +r	 +t	 0.8	
+r	 -t	 0.2	

+t	 +l	 0.3	
+t	 -l	 0.7	
-t	 +l	 0.1	
-t	 -l	 0.9	

Evidence	II	

§  Result	will	be	a	selected	joint	of	query	and	evidence	
§  E.g.	for	P(L	|	+r),	we	would	end	up	with:	

§  To	get	our	answer,	just	normalize	this!	

§  That	’s	it!	

+l	 0.26	
-l	 0.74	

+r	 +l	 0.026	
+r	 -l	 0.074	

Normalize	

General	Variable	Elimina+on	

§  Query:	

§  Start	with	ini+al	factors:	
§  Local	CPTs	(but	instan+ated	by	evidence)	

§  While	there	are	s+ll	hidden	variables	
(not	Q	or	evidence):	
§  Pick	a	hidden	variable	H	
§  Join	all	factors	men+oning	H	
§  Eliminate	(sum	out)	H	

§  Join	all	remaining	factors	and	normalize	

Example	

Choose A

Example	

Choose	E	

Finish	with	B	

Normalize	

Example	2:	P(B|a)	

A	 B	 P	

+a	 +b	 0.08	

+a	 ¬b	 0.09	B	 A	 P	

+b	 +a	 0.8	

b	 ¬a	 0.2	

¬b	 +a	 0.1	

¬b	 ¬a	 0.9	

B	 P	

+b	 0.1	

¬b	 0.9	 a

B a, B

Start	/	Select	 Join	on	B	 Normalize	

A	 B	 P	

+a	 +b	 8/17	

+a	 ¬b	 9/17	

Same	Example	in	Equa+ons	

	

marginal	can	be	obtained	from	joint	by	summing	out	
	

use	Bayes’	net	joint	distribu+on	expression	
	

use	x*(y+z)	=	xy	+	xz	
	

joining	on	a,	and	then	summing	out	gives	f1	
	

use	x*(y+z)		=	xy	+	xz	
	

joining	on	e,	and	then	summing	out	gives	f2	

All	we	are	doing	is	exploi4ng	uwy	+	uwz	+	uxy	+	uxz	+	vwy	+	vwz	+	vxy	+vxz	=	(u+v)(w+x)(y+z)	to	improve	computa4onal	efficiency!	

Another	Variable	Elimina+on	Example	

Computa+onal	complexity	cri+cally	
depends	on	the	largest	factor	being	
generated	in	this	process.		Size	of	factor	
=	number	of	entries	in	table.		In	
example	above	(assuming	binary)	all	
factors	generated	are	of	size	2	---	as	
they	all	only	have	one	variable	(Z,	Z,	
and	X3	respec+vely).		

Variable	Elimina+on	Ordering	

§  For	the	query	P(Xn|y1,…,yn)	work	through	the	following	two	different	orderings	
as	done	in	previous	slide:	Z,	X1,	…,	Xn-1	and	X1,	…,	Xn-1,	Z.		What	is	the	size	of	the	
maximum	factor	generated	for	each	of	the	orderings?	

§  Answer:	2n+1	versus	22	(assuming	binary)	

§  In	general:	the	ordering	can	greatly	affect	efficiency.			

…	

…	

VE:	Computa+onal	and	Space	Complexity	

§  The	computa+onal	and	space	complexity	of	variable	elimina+on	is	
determined	by	the	largest	factor	

§  The	elimina+on	ordering	can	greatly	affect	the	size	of	the	largest	factor.			
§  E.g.,	previous	slide’s	example	2n	vs.	2	

§  Does	there	always	exist	an	ordering	that	only	results	in	small	factors?	
§  No!	

Worst	Case	Complexity?	
§  CSP:			

§  If	we	can	answer	P(z)	equal	to	zero	or	not,	we	answered	whether	the	3-SAT	problem	has	a	solu+on.	

§  Hence	inference	in	Bayes’	nets	is	NP-hard.		No	known	efficient	probabilis+c	inference	in	general.	

…

…

Polytrees	

§  A	polytree	is	a	directed	graph	with	no	undirected	cycles	

§  For	poly-trees	you	can	always	find	an	ordering	that	is	efficient		
§  Try	it!!	

§  Cut-set	condi+oning	for	Bayes’	net	inference	
§  Choose	set	of	variables	such	that	if	removed	only	a	polytree	remains	
§  Exercise:	Think	about	how	the	specifics	would	work	out!	

Bayes’	Nets	

§  Representa+on	

§  Condi+onal	Independences	

§  Probabilis+c	Inference	
§  Enumera+on	(exact,	exponen+al	

complexity)	

§  Variable	elimina+on	(exact,	worst-case	
exponen+al	complexity,	ohen	be@er)	

§  Inference	is	NP-complete	

§  Sampling	(approximate)	

§  Learning	Bayes’	Nets	from	Data	

Approximate	Inference:	Sampling	

Sampling	
§  Sampling	is	a	lot	like	repeated	simula+on	

§  Predic+ng	the	weather,	basketball	games,	…	

§  Basic	idea	
§  Draw	N	samples	from	a	sampling	distribu+on	S	

§  Compute	an	approximate	posterior	probability	

§  Show	this	converges	to	the	true	probability	P	

§  Why	sample?	
§  Learning:	get	samples	from	a	distribu+on	

you	don’t	know	

§  Inference:	gewng	a	sample	is	faster	than	
compu+ng	the	right	answer	(e.g.	with	
variable	elimina+on)	

Sampling	

§  Sampling	from	given	distribu+on	
§  Step	1:	Get	sample	u	from	uniform	

distribu+on	over	[0,	1)	
§  E.g.	random()	in	python	

§  Step	2:	Convert	this	sample	u	into	an	
outcome	for	the	given	distribu+on	by	
having	each	outcome	associated	with	
a	sub-interval	of	[0,1)	with	sub-interval	
size	equal	to	probability	of	the	
outcome	

§  Example	

§  If	random()	returns	u	=	0.83,	
then	our	sample	is	C	=	blue	

§  E.g,	aher	sampling	8	+mes:	

C	 P(C)	
red	 0.6	
green	 0.1	
blue	 0.3	

Sampling	in	Bayes’	Nets	

§  Prior	Sampling	

§  Rejec+on	Sampling	

§  Likelihood	Weigh+ng	

§  Gibbs	Sampling	

Prior	Sampling	

Prior	Sampling	

Cloudy	

Sprinkler	 Rain	

WetGrass	

Cloudy	

Sprinkler	 Rain	

WetGrass	

+c	 0.5	
-c	 0.5	

+c	
	

+s	 0.1	
-s	 0.9	

-c	
	

+s	 0.5	
-s	 0.5	

+c	
	

+r	 0.8	
-r	 0.2	

-c	
	

+r	 0.2	
-r	 0.8	

+s	
	
	
	

+r	
	

+w	 0.99	
-w	 0.01	

-r	
	

+w	 0.90	
-w	 0.10	

-s	
	
	
	

+r	
	

+w	 0.90	
-w	 0.10	

-r	
	

+w	 0.01	
-w	 0.99	

Samples:	

+c,	-s,	+r,	+w	
-c,	+s,	-r,	+w	

…	

Prior	Sampling	

§  For	i=1,	2,	…,	n	
§  Sample	xi	from	P(Xi	|	Parents(Xi))	

§  Return	(x1,	x2,	…,	xn)	

Prior	Sampling	

§  This	process	generates	samples	with	probability:	

	…i.e.	the	BN’s	joint	probability	

§  Let	the	number	of	samples	of	an	event	be	

§  Then	

§  I.e.,	the	sampling	procedure	is	consistent	

Example	

§  We’ll	get	a	bunch	of	samples	from	the	BN:	
	+c,	-s,	+r,	+w	
	+c,	+s,	+r,	+w	
	-c,	+s,	+r,		-w	
	+c,	-s,	+r,	+w	
	-c,		-s,		-r,	+w	

§  If	we	want	to	know	P(W)	
§  We	have	counts	<+w:4,	-w:1>	
§  Normalize	to	get	P(W)	=	<+w:0.8,	-w:0.2>	
§  This	will	get	closer	to	the	true	distribu+on	with	more	samples	
§  Can	es+mate	anything	else,	too	
§  What	about	P(C|	+w)?			P(C|	+r,	+w)?		P(C|	-r,	-w)?	
§  Fast:	can	use	fewer	samples	if	less	+me	(what’s	the	drawback?)	

S	 R	

W	

C	

Rejec+on	Sampling	

	+c,	-s,	+r,	+w	
	+c,	+s,	+r,	+w	
	-c,	+s,	+r,		-w	
	+c,	-s,	+r,	+w	
	-c,		-s,		-r,	+w	

Rejec+on	Sampling	

§  Let’s	say	we	want	P(C)	
§  No	point	keeping	all	samples	around	
§  Just	tally	counts	of	C	as	we	go	

§  Let’s	say	we	want	P(C|	+s)	
§  Same	thing:	tally	C	outcomes,	but	
ignore	(reject)	samples	which	don’t	
have	S=+s	

§  This	is	called	rejec+on	sampling	
§  It	is	also	consistent	for	condi+onal	
probabili+es	(i.e.,	correct	in	the	limit)	

S	 R	

W	

C	

Rejec+on	Sampling	
§  IN:	evidence	instan+a+on	
§  For	i=1,	2,	…,	n	

§  Sample	xi	from	P(Xi	|	Parents(Xi))	

§  If	xi	not	consistent	with	evidence	
§  Reject:	Return,	and	no	sample	is	generated	in	this	cycle	

§  Return	(x1,	x2,	…,	xn)	

Likelihood	Weigh+ng	

§  Idea:	fix	evidence	variables	and	sample	the	
rest	
§  Problem:	sample	distribu+on	not	consistent!	
§  Solu+on:	weight	by	probability	of	evidence	

given	parents	

Likelihood	Weigh+ng	

§  Problem	with	rejec+on	sampling:	
§  If	evidence	is	unlikely,	rejects	lots	of	samples	
§  Evidence	not	exploited	as	you	sample	
§  Consider	P(Shape|blue)	

Shape	 Color	Shape	 Color	

	pyramid,		green	
	pyramid,		red	
	sphere,					blue	
	cube,									red	
	sphere,						green	

	pyramid,		blue	
	pyramid,		blue	
	sphere,					blue	
	cube,									blue	
	sphere,						blue	

Likelihood	Weigh+ng	

+c	 0.5	
-c	 0.5	

+c	
	

+s	 0.1	
-s	 0.9	

-c	
	

+s	 0.5	
-s	 0.5	

+c	
	

+r	 0.8	
-r	 0.2	

-c	
	

+r	 0.2	
-r	 0.8	

+s	
	
	
	

+r	
	

+w	 0.99	
-w	 0.01	

-r	
	

+w	 0.90	
-w	 0.10	

-s	
	
	
	

+r	
	

+w	 0.90	
-w	 0.10	

-r	
	

+w	 0.01	
-w	 0.99	

Samples:	

+c,	+s,	+r,	+w	
…	

Cloudy	

Sprinkler	 Rain	

WetGrass	

Cloudy	

Sprinkler	 Rain	

WetGrass	

Likelihood	Weigh+ng	
§  IN:	evidence	instan+a+on	
§  w	=	1.0	
§  for	i=1,	2,	…,	n	

§  if	Xi	is	an	evidence	variable	
§  Xi	=	observa+on	xi	for	Xi	
§  Set	w	=	w	*	P(xi	|	Parents(Xi))	

§  else	
§  Sample	xi	from	P(Xi	|	Parents(Xi))	

§  return	(x1,	x2,	…,	xn),	w	

Likelihood	Weigh+ng	

§  Sampling	distribu+on	if	z	sampled	and	e	fixed	evidence	

§  Now,	samples	have	weights	

§  Together,	weighted	sampling	distribu+on	is	consistent	

Cloudy	

R	

C	

S	

W	

Likelihood	Weigh+ng	

§  Likelihood	weigh+ng	is	good	
§  We	have	taken	evidence	into	account	as	we	

generate	the	sample	
§  E.g.	here,	W’s	value	will	get	picked	based	on	the	

evidence	values	of	S,	R	
§  More	of	our	samples	will	reflect	the	state	of	the	

world	suggested	by	the	evidence	

		

§  Likelihood	weigh+ng	doesn’t	solve	all	our	
problems	
§  Evidence	influences	the	choice	of	downstream	

variables,	but	not	upstream	ones	(C	isn’t	more	
likely	to	get	a	value	matching	the	evidence)	

§  We	would	like	to	consider	evidence	when	we	
sample	every	variable	
	à	Gibbs	sampling	

Gibbs	Sampling	

Gibbs	Sampling	

§  Procedure:	keep	track	of	a	full	instan+a+on	x1,	x2,	…,	xn.			Start	with	an	arbitrary	
instan+a+on	consistent	with	the	evidence.		Sample	one	variable	at	a	+me,	
condi+oned	on	all	the	rest,	but	keep	evidence	fixed.		Keep	repea+ng	this	for	a	
long	+me.	

§  Property:	in	the	limit	of	repea+ng	this	infinitely	many	+mes	the	resul+ng	sample	
is	coming	from	the	correct	distribu+on	

§  Ra:onale:	both	upstream	and	downstream	variables	condi+on	on	evidence.	
		

§  In	contrast:	likelihood	weigh+ng	only	condi+ons	on	upstream	evidence,	and	
hence	weights	obtained	in	likelihood	weigh+ng	can	some+mes	be	very	small.		
Sum	of	weights	over	all	samples	is	indica+ve	of	how	many	“effec+ve”	samples	
were	obtained,	so	want	high	weight.	

§  Step	2:	Ini+alize	other	variables		
§  Randomly	

Gibbs	Sampling	Example:	P(S	|	+r)	

§  Step	1:	Fix	evidence	
§  R	=	+r	

§  Steps	3:	Repeat	
§  Choose	a	non-evidence	variable	X	
§  Resample	X	from	P(X	|	all	other	variables)	

S	 +r	

W	

C	

S	 +r	

W	

C	

S	 +r	
W	

C	
S	 +r	

W	

C	
S	 +r	

W	

C	
S	 +r	

W	

C	
S	 +r	

W	

C	
S	 +r	

W	

C	

Efficient	Resampling	of	One	Variable	

§  	Sample	from	P(S	|	+c,	+r,	-w) 		

§  Many	things	cancel	out	–	only	CPTs	with	S	remain!	
§  More	generally:	only	CPTs	that	have	resampled	variable	need	to	be	considered,	and	

joined	together	

S	 +r	

W	

C	

Bayes’	Net	Sampling	Summary	
§  Prior	Sampling		P	

§  Likelihood	Weigh+ng		P(Q	|	e)	

§  Rejec+on	Sampling		P(Q	|	e)	

§  Gibbs	Sampling		P(Q	|	e)	

Further	Reading	on	Gibbs	Sampling*	

§  Gibbs	sampling	produces	sample	from	the	query	distribu+on	P(Q	|	e)	
in	limit	of	re-sampling	infinitely	ohen	

§  Gibbs	sampling	is	a	special	case	of	more	general	methods	called	
Markov	chain	Monte	Carlo	(MCMC)	methods		

§  Metropolis-Has+ngs	is	one	of	the	more	famous	MCMC	methods	(in	fact,	Gibbs	
sampling	is	a	special	case	of	Metropolis-Has+ngs)		

§  You	may	read	about	Monte	Carlo	methods	–	they’re	just	sampling	

How	About	Par+cle	Filtering?	

Par+cles:	
				(3,3)	
				(2,3)	
				(3,3)				
				(3,2)	
				(3,3)	
				(3,2)	
				(1,2)	
				(3,3)	
				(3,3)	
				(2,3)	

Elapse	 Weight	 Resample	

Par+cles:	
				(3,2)	
				(2,3)	
				(3,2)				
				(3,1)	
				(3,3)	
				(3,2)	
				(1,3)	
				(2,3)	
				(3,2)	
				(2,2)	

Par+cles:	
				(3,2)		w=.9	
				(2,3)		w=.2	
				(3,2)		w=.9	
				(3,1)		w=.4	
				(3,3)		w=.4	
				(3,2)		w=.9	
				(1,3)		w=.1	
				(2,3)		w=.2	
				(3,2)		w=.9	
				(2,2)		w=.4	

(New)	Par+cles:	
				(3,2)	
				(2,2)	
				(3,2)				
				(2,3)	
				(3,3)	
				(3,2)	
				(1,3)	
				(2,3)	
				(3,2)	
				(3,2)	

X2 X1 X2

E2

= likelihood weighting

Par+cle	Filtering	

§  Par+cle	filtering	operates	on	ensemble	of	samples	
§  Performs	likelihood	weigh+ng	for	each	individual	sample	to	elapse	+me	and	
incorporate	evidence	

§  Resamples	from	the	weighted	ensemble	of	samples	to	focus	computa+on	for	
the	next	+me	step	where	most	of	the	probability	mass	is	es+mated	to	be	

