CSE 473: Artificial Intelligence

Bayes' Nets: Inference

Luke Zettlemoyer --- University of Washington

Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- Bayes' nets implicitly encode joint distributions

- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

Example: Alarm Network

E	$P(E)$
$+e$	0.002
$-e$	0.998

B	E	A	$P(A \mid B, E)$
$+b$	$+e$	$+a$	0.95
$+b$	$+e$	$-a$	0.05
$+b$	$-e$	$+a$	0.94
$+b$	$-e$	$-a$	0.06
$-b$	$+e$	$+a$	0.29
$-b$	$+e$	$-a$	0.71
$-b$	$-e$	$+a$	0.001
$-b$	$-e$	$-a$	0.999

Example: Alarm Network

B	$P(B)$
$+b$	0.001
$-b$	0.999

B	E	A	$P(A \mid B, E)$
$+b$	$+e$	$+a$	0.95
$+b$	$+e$	$-a$	0.05
$+b$	$-e$	$+a$	0.94
$+b$	$-e$	$-a$	0.06
$-b$	$+e$	$+a$	0.29
$-b$	$+e$	$-a$	0.71
$-b$	$-e$	$+a$	0.001
$-b$	$-e$	$-a$	0.999

Example: Alarm Network

B	$P(B)$
$+b$	0.001
$-b$	0.999

B	E	A	$P(A \mid B, E)$
$+b$	$+e$	$+a$	0.95
$+b$	$+e$	$-a$	0.05
$+b$	$-e$	$+a$	0.94
$+b$	$-e$	$-a$	0.06
$-b$	$+e$	$+a$	0.29
$-b$	$+e$	$-a$	0.71
$-b$	$-e$	$+a$	0.001
$-b$	$-e$	$-a$	0.999

$P(+b,-e,+a,-j,+m)=$
$P(+b) P(-e) P(+a \mid+b,-e) P(-j \mid+a) P(+m \mid+a)=$
$0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$

Bayes' Nets

Representation

Conditional Independences

- Probabilistic Inference
- Enumeration (exact, exponential complexity)
- Variable elimination (exact, worst-case exponential complexity, often better)
- Inference is NP-complete
- Sampling (approximate)
- Learning Bayes’ Nets from Data

Inference

- Inference: calculating some useful quantity from a joint probability distribution
- Examples:
- Posterior probability

$$
P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)
$$

- Most likely explanation:

$$
\operatorname{argmax}_{q} P\left(Q=q \mid E_{1}=e_{1} \ldots\right)
$$

Inference by Enumeration

- General case:
- Evidence variables:
- Query* variable:
- Hidden variables:
- Step 1: Select the entries consistent with the evidence

- Step 2: Sum out H to get joint of Query and evidence

$$
P\left(Q, e_{1} \ldots e_{k}\right)=\sum_{h_{1} \ldots h_{r}} P(\underbrace{Q, h_{1} \ldots h_{r}, e_{1} \ldots e_{k}}_{X_{1}, X_{2}, \ldots X_{n}})
$$

- We want:

$$
P\left(Q \mid e_{1} \ldots e_{k}\right)
$$

* Works fine with multiple query
variables, too

Step 3: Normalize

$$
P\left(Q \mid e_{1} \cdots e_{k}\right)=\frac{1}{Z} P\left(Q, e_{1} \cdots e_{k}\right)
$$

Inference by Enumeration in Bayes' Net

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

$$
P(B \mid+j,+m) \propto_{B} P(B,+j,+m)
$$

$$
\begin{aligned}
& =\sum_{e, a} P(B, e, a,+j,+m) \\
& =\sum_{e, a} P(B) P(e) P(a \mid B, e) P(+j \mid a) P(+m \mid a)
\end{aligned}
$$

$$
=P(B) P(+e) P(+a \mid B,+e) P(+j \mid+a) P(+m \mid+a)+P(B) P(+e) P(-a \mid B,+e) P(+j \mid-a) P(+m \mid-a)
$$

$$
P(B) P(-e) P(+a \mid B,-e) P(+j \mid+a) P(+m \mid+a)+P(B) P(-e) P(-a \mid B,-e) P(+j \mid-a) P(+m \mid-a)
$$

Inference by Enumeration?

$P($ Antilock \mid observed variables $)=?$

Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
- You join up the whole joint distribution before you sum out the hidden variables

- Idea: interleave joining and marginalizing!
- Called "Variable Elimination"
- Still NP-hard, but usually much faster than inference by enumeration

- First we'll need some new notation: factors

Factor Zoo

Factor Zoo I

- Joint distribution: $P(X, Y)$
- Entries $P(x, y)$ for all x, y
- Sums to 1

$$
P(T, W)
$$

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Selected joint: $\mathrm{P}(\mathrm{x}, \mathrm{Y})$
- A slice of the joint distribution
- Entries $\mathrm{P}(\mathrm{x}, \mathrm{y})$ for fixed x , all y
- Sums to $\mathrm{P}(\mathrm{x})$
$P($ cold,$W)$

T	W	P
cold	sun	0.2
cold	rain	0.3

- Number of capitals = dimensionality of the table

Factor Zoo II

- Single conditional: $P(Y \mid x)$
- Entries P(y|x) for fixed x, all
- Sums to 1

$P(W \mid$ cold $)$

T	W	P
cold	sun	0.4
cold	rain	0.6

- Family of conditionals: $P(X \mid Y)$
- Multiple conditionals
- Entries $P(x \mid y)$ for all x, y
- Sums to $|\mathrm{Y}|$

$P(W \mid T)$

Factor Zoo III

- Specified family: $P(y \mid X)$
- Entries $P(y \mid x)$ for fixed y, but for all x
- Sums to ... who knows!
$P(\operatorname{rain} \mid T)$
\(\left.\begin{array}{|c|c|c|}\hline T \& \mathrm{W} \& \mathrm{P}

\hline hot \& rain \& 0.2

\hline cold \& rain \& 0.6

\hline\end{array}\right\}\)| $P($ rain \mid hot $)$ |
| :--- |
| $P($ rain \mid cold $)$ |

Factor Zoo Summary

- In general, when we write $P\left(Y_{1} \ldots Y_{N} \mid X_{1} \ldots X_{M}\right)$
- It is a "factor," a multi-dimensional array
- Its values are $P\left(y_{1} \ldots y_{N} \mid x_{1} \ldots x_{M}\right)$
- Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

Example: Traffic Domain

- Random Variables
- R: Raining
- T: Traffic
- L: Late for class!

$$
\begin{aligned}
P(L) & =? \\
& =\sum_{r, t} P(r, t, L) \\
& =\sum_{r, t} P(r) P(t \mid r) P(L \mid t)
\end{aligned}
$$

$P(R)$

$+r$	0.1
$-r$	0.9

$P(T \mid R)$		
+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

$P(L \mid T)$

+t	+l	0.3
+t	-l	0.7
-t	+l	0.1
-t	-l	0.9

Variable Elimination (VE)

Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

$P(P)$	$P(T \Gamma P)$
$+r$	0.1
$-r$	0.9

- Any known values are selected
- E.g. if we know $L=+\ell$ the initial factors are

$P(R)$	$P(T \mid R)$
$+r$ 0.1 $-r$ 0.9	$+r$ +t 0.8 $+r$ $-t$ 0.2 $-r$ +t 0.1 $-r$ $-t$ 0.9

- Procedure: Join all factors, then eliminate all hidden variables

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
- Just like a database join
- Get all factors over the joining variable
- Build a new factor over the union of the variables
 involved
- Example: Join on R

- Computation for each entry: pointwise products

$$
\forall r, t: \quad P(r, t)=P(r) \cdot P(t \mid r)
$$

Example: Multiple Joins

Example: Multiple Joins

$$
P(R)
$$

Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
- Shrinks a factor to a smaller one
- A projection operation
- Example:
$P(R, T)$

$+r$	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

sum R	$P(T)$	
\square	+t 0.17 -t 0.83	

Multiple Elimination

Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

Marginalizing Early (= Variable Elimination)

Traffic Domain

(R) $\quad P(L)=$?

- Inference by Enumeration

$$
=\sum_{t} \sum_{r} P(L \mid t) \underbrace{P(r) P(t \mid r)}_{\text {Join on } \mathrm{r}}
$$

Join on t

Eliminate r

Eliminate t

- Variable Elimination

$$
=\sum_{t} P(L \mid t) \sum_{r} P(r) P(t \mid r)
$$

Eliminate t

Marginalizing Early! (aka VE)

Evidence

- If evidence, start with factors that select that evidence
- No evidence uses these initial factors:

$P(R)$	
$+r$	0.1
$-r$	0.9

$P(T \mid R)$		
	+t	
	+t	0.1

$$
P(L \mid T)
$$

+t	+l	0.3
+t	-l	0.7
-t	+l	0.1
-t	-I	0.9

- Computing $P(L \mid+r)$ the initial factors become:

\[

\]

$$
\begin{gathered}
P(T \mid+r) \\
\begin{array}{|c|c|c|c|}
\hline+r & +t & 0.8 \\
\hline+r & -t & 0.2 \\
\hline
\end{array}
\end{gathered}
$$

$P(L \mid T)$

+t	+l	0.3
+t	-l	0.7
-t	+l	0.1
-t	-l	0.9

- We eliminate all vars other than query + evidence

Evidence II

- Result will be a selected joint of query and evidence
- E.g. for $P(L \mid+r)$, we would end up with:

$P(+r, L)$			Normalize	$P(L \mid+r)$	
+r	+1	0.026		+1	0.26
+r	-1	0.074		-1	0.74

- To get our answer, just normalize this!
- That's it!

General Variable Elimination

- Query: $P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)$
- Start with initial factors:
- Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
- Pick a hidden variable H
- Join all factors mentioning H

- Eliminate (sum out) H

$$
0 \times \frac{1}{Z}
$$

Example

$$
P(B \mid j, m) \propto P(B, j, m)
$$

$$
P(B) \quad P(E) \quad P(A \mid B, E) \quad P(j \mid A) \quad P(m \mid A)
$$

Choose A

$$
\left.\begin{array}{l}
P(A \mid B, E) \\
P(j \mid A) \\
P(m \mid A)
\end{array} \quad \underset{\times}{ } \quad P(j, m, A \mid B, E) \quad \square\right\rangle P(j, m \mid B, E)
$$

$$
P(B) \quad P(E) \quad P(j, m \mid B, E)
$$

Example

$$
P(B) \quad P(E) \quad P(j, m \mid B, E)
$$

Choose E

$$
\begin{gathered}
P(E) \\
P(j, m \mid B, E)
\end{gathered} \stackrel{\searrow}{ } P(j, m, E \mid B) \quad \underset{ }{\sum} P(j, m \mid B)
$$

$P(B) \quad P(j, m \mid B)$

Finish with B

$$
\begin{gathered}
P(B) \\
P(j, m \mid B)
\end{gathered} \stackrel{\times}{ } \quad P(j, m, B) \quad \underset{\sim}{\text { Normalize }} P(B \mid j, m)
$$

Example 2: $\mathrm{P}(\mathrm{B} \mid \mathrm{a})$

Start / Select
Join on B
Normalize
$P(B)$

B	P
+b	0.1
$\neg \mathrm{~b}$	0.9

$P(A \mid B) \rightarrow P(a \mid B)$

B	A	P
+b	+a	0.8
b	$\neg \mathrm{~d}$	0.2
$\neg \mathrm{~b}$	+a	0.1
+b	a	0.9

$P(a, B)$		
A B P +a +b 0.08 +a $\neg \mathrm{b}$ 0.09		

$P(B \mid a)$

A	B	P
+a	+b	$8 / 17$
+a	$\neg \mathrm{b}$	$9 / 17$

Same Example in Equations

$$
P(B \mid j, m) \propto P(B, j, m)
$$

$P(B) \quad P(E) \quad P(A \mid B, E) \quad P(j \mid A) \quad P(m \mid A)$

$$
\begin{aligned}
P(B \mid j, m) & \propto P(B, j, m) \\
& =\sum_{e, a} P(B, j, m, e, a) \\
& =\sum_{e, a} P(B) P(e) P(a \mid B, e) P(j \mid a) P(m \mid a) \\
& =\sum_{e} P(B) P(e) \sum_{a} P(a \mid B, e) P(j \mid a) P(m \mid a) \\
& =\sum_{e} P(B) P(e) f_{1}(B, e, j, m) \\
& =P(B) \sum_{e} P(e) f_{1}(B, e, j, m) \\
& =P(B) f_{2}(B, j, m)
\end{aligned}
$$

marginal can be obtained from joint by summing out use Bayes' net joint distribution expression
use $x^{*}(y+z)=x y+x z$
joining on a, and then summing out gives f_{1}
use $x^{*}(y+z)=x y+x z$
joining on e, and then summing out gives f_{2}

Another Variable Elimination Example

$$
\text { Query: } P\left(X_{3} \mid Y_{1}=y_{1}, Y_{2}=y_{2}, Y_{3}=y_{3}\right)
$$

Start by inserting evidence, which gives the following initial factors:

$$
p(Z) p\left(X_{1} \mid Z\right) p\left(X_{2} \mid Z\right) p\left(X_{3} \mid Z\right) p\left(y_{1} \mid X_{1}\right) p\left(y_{2} \mid X_{2}\right) p\left(y_{3} \mid X_{3}\right)
$$

Eliminate X_{1}, this introduces the factor $f_{1}\left(Z, y_{1}\right)=\sum_{x_{1}} p\left(x_{1} \mid Z\right) p\left(y_{1} \mid x_{1}\right)$, and we are left with:

$$
p(Z) f_{1}\left(Z, y_{1}\right) p\left(X_{2} \mid Z\right) p\left(X_{3} \mid Z\right) p\left(y_{2} \mid X_{2}\right) p\left(y_{3} \mid X_{3}\right)
$$

Eliminate X_{2}, this introduces the factor $f_{2}\left(Z, y_{2}\right)=\sum_{x_{2}} p\left(x_{2} \mid Z\right) p\left(y_{2} \mid x_{2}\right)$, and we are left with:

$$
p(Z) f_{1}\left(Z, y_{1}\right) f_{2}\left(Z, y_{2}\right) p\left(X_{3} \mid Z\right) p\left(y_{3} \mid X_{3}\right)
$$

Eliminate Z, this introduces the factor $f_{3}\left(y_{1}, y_{2}, X_{3}\right)=\sum_{z} p(z) f_{1}\left(z, y_{1}\right) f_{2}\left(z, y_{2}\right) p\left(X_{3} \mid z\right)$, and we are left:

$$
p\left(y_{3} \mid X_{3}\right), f_{3}\left(y_{1}, y_{2}, X_{3}\right)
$$

No hidden variables left. Join the remaining factors to get:

$$
f_{4}\left(y_{1}, y_{2}, y_{3}, X_{3}\right)=P\left(y_{3} \mid X_{3}\right) f_{3}\left(y_{1}, y_{2}, X_{3}\right) .
$$

Normalizing over X_{3} gives $P\left(X_{3} \mid y_{1}, y_{2}, y_{3}\right)$.

Variable Elimination Ordering

- For the query $\mathrm{P}\left(\mathrm{X}_{\mathrm{n}} \mid \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$ work through the following two different orderings as done in previous slide: $Z, X_{1}, \ldots, X_{n-1}$ and $X_{1}, \ldots, X_{n-1}, Z$. What is the size of the maximum factor generated for each of the orderings?

- Answer: 2^{n+1} versus 2^{2} (assuming binary)
- In general: the ordering can greatly affect efficiency.

VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
- E.g., previous slide’s example $2^{\text {n }}$ vs. 2
- Does there always exist an ordering that only results in small factors?
- No!

Worst Case Complexity?

- CSP:
$\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{5}\right) \wedge\left(x_{2} \vee x_{5} \vee x_{7}\right) \wedge\left(x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6} \vee \neg x_{7}\right) \wedge\left(\neg x_{5} \vee \neg x_{6} \vee x_{7}\right)$

$$
\begin{aligned}
& P\left(X_{i}=0\right)=P\left(X_{i}=1\right)=0.5 \\
& Y_{1}=X_{1} \vee X_{2} \vee \neg X_{3} \\
& \cdots \\
& Y_{8}=\neg X_{5} \vee X_{6} \vee X_{7} \\
& Y_{1,2}=Y_{1} \wedge Y_{2} \\
& Y_{7,8}=Y_{7} \wedge Y_{8} \\
& Y_{1,2,3,4}=Y_{1,2} \wedge Y_{3,4} \\
& Y_{5,6,7,8}=Y_{5,6} \wedge Y_{7,8} \\
& Z=Y_{1,2,3,4} \wedge Y_{5,6,7,8}
\end{aligned}
$$

- If we can answer $P(z)$ equal to zero or not, we answered whether the 3-SAT problem has a solution.
- Hence inference in Bayes' nets is NP-hard. No known efficient probabilistic inference in general.

Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees you can always find an ordering that is efficient
- Try it!!
- Cut-set conditioning for Bayes' net inference
- Choose set of variables such that if removed only a polytree remains
- Exercise: Think about how the specifics would work out!

Bayes' Nets

Representation

- Conditional Independences
- Probabilistic Inference
- Enumeration (exact, exponential complexity)

Variable elimination (exact, worst-case exponential complexity, often better)

Inference is NP-complete

- Sampling (approximate)
- Learning Bayes' Nets from Data

Approximate Inference: Sampling

Sampling

- Sampling is a lot like repeated simulation
- Predicting the weather, basketball games, ...
- Basic idea
- Draw N samples from a sampling distribution S
- Compute an approximate posterior probability
- Show this converges to the true probability P
- Why sample?
- Learning: get samples from a distribution you don't know
- Inference: getting a sample is faster than computing the right answer (e.g. with variable elimination)

Sampling

- Sampling from given distribution

- Step 1: Get sample u from uniform distribution over [0, 1)
- E.g. random() in python
- Step 2: Convert this sample u into an outcome for the given distribution by having each outcome associated with a sub-interval of $[0,1)$ with sub-interval size equal to probability of the outcome
- Example

C	$P(C)$
red	0.6
green	0.1
blue	0.3

$$
\begin{gathered}
0 \leq u<0.6, \rightarrow C=\text { red } \\
0.6 \leq u<0.7, \rightarrow C=\text { green } \\
0.7 \leq u<1, \rightarrow C=\text { blue }
\end{gathered}
$$

- If random() returns $u=0.83$, then our sample is $C=$ blue
- E.g, after sampling 8 times:

Sampling in Bayes' Nets

- Prior Sampling
- Rejection Sampling
- Likelihood Weighting
- Gibbs Sampling

Prior Sampling

Prior Sampling

Prior Sampling

- For $\mathrm{i}=1,2, \ldots, \mathrm{n}$
- Sample x_{i} from $P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$
- Return ($x_{1}, x_{2}, \ldots, x_{n}$)

Prior Sampling

- This process generates samples with probability:

$$
S_{P S}\left(x_{1} \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)=P\left(x_{1} \ldots x_{n}\right)
$$

...i.e. the BN's joint probability

- Let the number of samples of an event be $\quad N_{P S}\left(x_{1} \ldots x_{n}\right)$
- Then $\lim _{N \rightarrow \infty} \hat{P}\left(x_{1}, \ldots, x_{n}\right)=\lim _{N \rightarrow \infty} N_{P S}\left(x_{1}, \ldots, x_{n}\right) / N$

$$
=S_{P S}\left(x_{1}, \ldots, x_{n}\right)
$$

$$
=P\left(x_{1} \ldots x_{n}\right)
$$

- I.e., the sampling procedure is consistent

Example

- We'll get a bunch of samples from the BN:

$$
\begin{aligned}
& +c,-s,+r,+w \\
& +c,+s,+r,+w \\
& -c,+s,+r,-w \\
& +c,-s,+r,+w \\
& -c,-s,-r,+w
\end{aligned}
$$

- If we want to know $P(W)$
- We have counts <+w:4, -w:1>
- Normalize to get $\mathrm{P}(\mathrm{W})=<+\mathrm{w}: 0.8,-\mathrm{w}: 0.2>$
- This will get closer to the true distribution with more samples
- Can estimate anything else, too
- What about $P(C \mid+w)$? $P(C \mid+r,+w)$? $P(C \mid-r,-w)$?
- Fast: can use fewer samples if less time (what's the drawback?)

Rejection Sampling

Rejection Sampling

- Let' s say we want P(C)
- No point keeping all samples around
- Just tally counts of C as we go
- Let' s say we want $\mathrm{P}(\mathrm{C} \mid+\mathrm{s})$
- Same thing: tally C outcomes, but ignore (reject) samples which don't

$+C,-s,+r,+w$
$+C,+s,+r,+w$
$-c,+s,+r,-w$
$+C,-s,+r,+w$
$-C,-S,-r,+W$

Rejection Sampling

- IN: evidence instantiation
- For $\mathrm{i}=1,2, \ldots, \mathrm{n}$
- Sample x_{i} from $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \operatorname{Parents}\left(\mathrm{X}_{\mathrm{i}}\right)\right)$
- If x_{i} not consistent with evidence
- Reject: Return, and no sample is generated in this cycle
- Return ($\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$)

Likelihood Weighting

Likelihood Weighting

- Problem with rejection sampling:
- If evidence is unlikely, rejects lots of samples
- Evidence not exploited as you sample
- Consider P(Shape|blue)

pyramid, green pyramid, red sphere, blue cube, red sphere, green

- Idea: fix evidence variables and sample the rest
- Problem: sample distribution not consistent!
- Solution: weight by probability of evidence given parents
pyramid, blue pyramid, blue sphere, blue cube, blue sphere, blue

Likelihood Weighting

$P(C)$

$+c$	0.5
-c	0.5

Likelihood Weighting

Likelihood Weighting

- Sampling distribution if z sampled and e fixed evidence

$$
S_{W S}(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{l} P\left(z_{i} \mid \text { Parents }\left(Z_{i}\right)\right)
$$

- Now, samples have weights

$$
w(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{m} P\left(e_{i} \mid \operatorname{Parents}\left(E_{i}\right)\right)
$$

- Together, weighted sampling distribution is consistent

$$
\begin{aligned}
S_{\mathrm{WS}}(z, e) \cdot w(z, e) & =\prod_{i=1}^{l} P\left(z_{i} \mid \operatorname{Parents}\left(z_{i}\right)\right) \prod_{i=1}^{m} P\left(e_{i} \mid \operatorname{Parents}\left(e_{i}\right)\right) \\
& =P(\mathbf{z}, \mathbf{e})
\end{aligned}
$$

Likelihood Weighting

- Likelihood weighting is good
- We have taken evidence into account as we generate the sample
- E.g. here, W's value will get picked based on the evidence values of S, R
- More of our samples will reflect the state of the world suggested by the evidence

Gibbs Sampling

Gibbs Sampling

- Procedure: keep track of a full instantiation $x_{1}, x_{2}, \ldots, x_{n}$. Start with an arbitrary instantiation consistent with the evidence. Sample one variable at a time, conditioned on all the rest, but keep evidence fixed. Keep repeating this for a long time.
- Property: in the limit of repeating this infinitely many times the resulting sample is coming from the correct distribution
- Rationale: both upstream and downstream variables condition on evidence.
- In contrast: likelihood weighting only conditions on upstream evidence, and hence weights obtained in likelihood weighting can sometimes be very small. Sum of weights over all samples is indicative of how many "effective" samples were obtained, so want high weight.

Gibbs Sampling Example: P(S|+r)

- Step 1: Fix evidence
- R = +r

- Step 2: Initialize other variables
- Randomly

- Steps 3: Repeat
- Choose a non-evidence variable X
- Resample X from $P(X \mid$ all other variables)

Sample from $P(S \mid+c,-w,+r) \quad$ Sample from $P(C \mid+s,-w,+r) \quad$ Sample from $P(W \mid+s,+c,+r)$

Efficient Resampling of One Variable

- Sample from P(S | +c, +r, -w)

$$
\begin{aligned}
P(S \mid+c,+r,-w) & =\frac{P(S,+c,+r,-w)}{P(+c,+r,-w)} \\
& =\frac{P(S,+c,+r,-w)}{\sum_{s} P(s,+c,+r,-w)} \\
& =\frac{P(+c) P(S \mid+c) P(+r \mid+c) P(-w \mid S,+r)}{\sum_{s} P(+c) P(s \mid+c) P(+r \mid+c) P(-w \mid s,+r)} \\
& =\frac{P(+c) P(S \mid+c) P(+r \mid+c) P(-w \mid S,+r)}{P(+c) P(+r \mid+c) \sum_{s} P(s \mid+c) P(-w \mid s,+r)} \\
& =\frac{P(S \mid+c) P(-w \mid S,+r)}{\sum_{s} P(s \mid+c) P(-w \mid s,+r)}
\end{aligned}
$$

- Many things cancel out - only CPTs with S remain!
- More generally: only CPTs that have resampled variable need to be considered, and joined together

Bayes' Net Sampling Summary

- Prior Sampling P

- Likelihood Weighting $\mathrm{P}(\mathrm{Q} \mid \mathrm{e})$

- Rejection Sampling P(Q|e)

- Gibbs Sampling P(Q|e)

Further Reading on Gibbs Sampling*

- Gibbs sampling produces sample from the query distribution $\mathrm{P}(\mathrm{Q} \mid \mathrm{e})$ in limit of re-sampling infinitely often
- Gibbs sampling is a special case of more general methods called Markov chain Monte Carlo (MCMC) methods
- Metropolis-Hastings is one of the more famous MCMC methods (in fact, Gibbs sampling is a special case of Metropolis-Hastings)
- You may read about Monte Carlo methods - they're just sampling

How About Particle Filtering?

> = likelihood weighting

Elapse

Particles:
$(3,3)$
$(2,3)$
$(3,3)$
$(3,2)$
$(3,3)$
$(3,2)$
$(1,2)$
$(3,3)$
$(3,3)$
$(2,3)$

Weight

Particles:
$(3,2)$
$(2,3)$
$(3,2)$
$(3,1)$
$(3,3)$
$(3,2)$
$(1,3)$
$(2,3)$
$(3,2)$

Particles $(3,2) \mathrm{w}=.9$ $(2,3) \quad w=.2$ $(3,2) w=.9$ $(3,1) w=.4$ $(3,3) w=.4$ $(3,2) \quad w=.9$ $(1,3) w=.1$ $(2,3) w=.2$ $(3,2) w=.9$

(New) Particles:
$(3,2)$
$(2,2)$
$(3,2)$
$(2,3)$
$(3,3)$
$(3,2)$
$(1,3)$
$(2,3)$
$(3,2)$
$(3,2)$

Particle Filtering

- Particle filtering operates on ensemble of samples
- Performs likelihood weighting for each individual sample to elapse time and incorporate evidence
- Resamples from the weighted ensemble of samples to focus computation for the next time step where most of the probability mass is estimated to be

