

What is intelligence?
- (bounded) Rationality
- Agent has a performance measure to optimize
- Given its state of knowledge
- Choose optimal action
- With limited computational resources
- Human-like intelligence/behavior

Search in Discrete State Spaces	
- Every discrete problem can be cast as a search problem.	
- states, actions, transitions, cost, goal-test	
- Types	
- uninformed systematic: often slow	
- DFS, BFS, uniform-cost, iterative deepening	
- Heuristic-guided: better	
- Greedy best first, A*	
- relaxation leads to heuristics	
- Local: fast, fewer guarantees; often local optimal	
- Hill climbing and variations	
- Simulated Annealing: global optimal	

| Adversarial Search |
| :--- | :--- |
| - AND/OR search space (max, \min) |
| - minimax objective function |
| - minimax algorithm (\sim dfs) |
| - alpha-beta pruning |
| - Utility function for partial search |
| - Learning utility functions by playing with itself |
| - Openings/Endgame databases |
| |

Knowledge Representation and Reasoning
- Representing: what agent knows
Propositional logic
Constraint networks
HMMs
Bayesian networks
..
- Reasoning: what agent can infer
Search
Dynamic programming
Preprocessing to simplify

Search+KR\&R Example: CSP	
- Representation - Variables, Domains, Constraints - Reasoning: - Arc Consistency (k-Consistency) - Solving - Backtracking search: partial var assignments - Heuristics: min remaining values, min conflicts - Local search: complete var assignments	

KR\&R: Markov Decision Process

- Representation
- states, actions, probabilistic outcomes, rewards

```
V*}(s)=\mp@subsup{\operatorname{max}}{a}{}\mp@subsup{Q}{}{*}(s,a
Q*(s,a)=\sumT(s,a,\mp@subsup{s}{}{\prime})[R(s,a,\mp@subsup{s}{}{\prime})+\gamma\mp@subsup{V}{}{*}(\mp@subsup{s}{}{\prime})
- Reasoning: \(\mathrm{V}^{*}{ }^{\mathrm{s}^{\prime}}\) )
- Expectimax
- Value Iteration: dynamic programming
- Reinforcement Learning:
- Exploration / exploitation
- Learn model or learn Q-function?
```


That's It!
- Please help out with some course evaluations. - Thanks to TAs Ben, Emilia, Kenny, Vardhman, Nicholas. - Thanks to you all for your interest in Al and your participation in the course. - Best wishes for the summer and after, and always maximize your expected utilities!

