CSE 473: Artificial Intelligence

Bayes’ Nets: Inference

Steve Tanimoto
[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Inference

= |nference: calculating some = Examples:

useful quantity from a joint
probability distribution

= Posterior probability
P(QIEr =e1,... B =¢)
= Most likely explanation:

argmax, P(Q =q|Ey =e1...)

Inference by Enumeration

Test for Infant Metabolic Defects
* Works fine with
= General case: = We want: multiple query
* Evidence variables:  F1---Bp=e1...ex | x, xp X, varjab/es, t00
= Query* variable: Q N P €]..:€
= Hidden variables: Hy...Hy All variables (Q‘ : k

Blue ovals represent chromatographic peaks, grey ovals represent 20 metabolic diseases

= Step 2: Sum out H to get joint = Step 3: Normalize

of Query and evidence

X_
A

Z2=3 P(Q.er )
7

Step 1: Select the
entries consistent
with the evidence

P(Qeey...e) = 2. P@h1.. . hrer...e)
. P(Qler-+-en) = SP(Q,e1-en)

hyehr
X X X

Inference by Enumeration in Bayes’ Net

Inference by Enumeration vs. Variable Elimination

= |dea: interleave joining and marginalizing!

= Given unlimited time, inference in BNs is easy

= Reminder of inference by enumeration by example: e e

P(B |+ j,+m) o P(B,+j,+m) o

=Y P(B,e,a,+j,+m) I I

e,a

=" P(B)P(e)P(a|B,e) P(+jla) P(+mla)

=P (B)P(+e)P(+a| B, +e)P(+j| + a)P(+m| + a) + P(B)P(+¢)P(—a|B, +e)P(+j| — a)P(+m| — a
P(B)P(—e)P(+a|B, —e)P(+j| + a)P(+m| + a) + P(B)P(—e)P(—a|B, —e)P(+j| — a)P(+m| — a

= Why is inference by enumeration so slow?
= You join up the whole joint distribution before
you sum out the hidden variables

= Called “Variable Elimination”
= Still NP-hard, but usually much faster than
inference by enumeration

* First we'll need some new notation: factors




Traffic Domain

Factor Zoo

®  PL)=7
G = |nference by Enumeration = Variable Elimination
=YX P P@)Pr) =Y P(LI) Y~ P(r)P(tr)
toor i -
0
Joinont Eliminate r
—_—
Eliminate r Joinont
—
Eliminate t Eliminate t

Factor Zoo |

= Joint distribution: P(X,Y)
= Entries P(x,y) for all x, y
® Sumstol

= Selected joint: P(x,Y)
= Aslice of the joint distribution
= Entries P(x,y) for fixed x, all y
= Sums to P(x)

= Number of capitals =
dimensionality of the table

P(T,W)

T w P

hot sun | 0.4

hot rain | 0.1

cold sun | 0.2

cold rain_| 03

P(cold, W)
T W P
cold sun | 0.2
cold rain | 0.3

Factor Zoo |

e Tino dimensions

sun rain
hot | 0.4 0.1
cold| 0.2 0.3

One dimension
sun _rain

= Number of capitals =
dimensionality of the table

P(T,W)

T w P

hot sun | 0.4

hot rain | 0.1

cold sun | 0.2

cold rain_| 03

P(cold, W)
T W P
cold sun | 0.2
cold rain_| 0.3

Factor Zoo Il

Factor Zoo lll

= Single conditional: P(Y | x)
= Entries P(y | x) for fixed x, all y
® Sumstol

= Family of conditionals:
P(X |Y)
= Multiple conditionals
= Entries P(x | y) for allx, y
= Sumsto |Y|

P(W |cold)
T w P
cold sun | 0.4
cold rain_| 0.6
P(W|T)
T w P
hot sun | 0.8
hot rain | 0.2 } P(Wl}wt)
cold sun | 0.4
cold rain_| 0.6 P(W‘COZd)

= Specified family: P(y | X)
= Entries P(y | x) for fixed y,
but for all x
= Sums to ... who knows!

P(rain|T)

T w P

cold rain_| 0.6

hot | rain | 02|} P(rain|hot)
P(rain|cold)




Factor Zoo Summary

Example: Traffic Domain

= Ingeneral, when we write P(Y; ... Yy | X; ... X))
= |tis a “factor,” a multi-dimensional array

= Itsvaluesare P(y; ... Yy | Xy ... Xp)

= Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

= Random Variables
= R: Raining

= T: Traffic

= L: Late for class!

P(L)="7
=> " P(rt,L)

=Y P(r)P(tlr)P(L|t)
it

P(R)
0.1

-r [ 09

P(T|R)

+r + | 08

+r -t [ 02

-r 4t |01

-r -t [ 09

P(L|T)

+ + |03

+ -l 0.7

-t + |01

-t -l 0.9

Inference by Enumeration: Procedural Outline

Operation 1: Join Factors

Track objects called factors
Initial factors are local CPTs (one per node)

P(R) P(T|R) P(L|T)
[ Toa w ]« o8 w1 o3
« | o9 wr |t 02 st 1 Jo7
[t [o1 4|+ o1
-r -t |09 -t g 0.9

Any known values are selected

= First basic operation: joining factors

= Combining factors:
= Just like a database join
* Get all factors over the joining variable
= Build a new factor over the union of the variables

involved

= Example: Join on R

y E

= E.g. if we know L = 4, the initial factors are e P(R) X P(T‘R) [— P(R,T)
P(T [+ Joa] +r[+t]08 +r [+t ] 0.08

P (TIR) PGHUT) [ Too] +r ] -t [0.2 +r | t | 0.02
} r } 01 } +r ] +t [08 [ } 4 }oz} e los T 00s

- 0.9 s | t [02 4|+ [o01 = - .. R X
o | 4t 01 e 0 -r|-t[09 -r|-t] 081
-r -t ]09
= Procedure: Join all factors, then eliminate all hidden variables . for each entry: poi products Vr,t: P(rt) = P(r) - P(t)r)

Example: Multiple Joins

Example: Multiple Joins

(-

P(R)
H 01
-r [ 09

P(T|R)

+r | +t

0.8

+r| -t

0.2

-r |+t

0.1

r|-t

P(L|T)

0.9

+t) +l

0.3

+t] -l

0.7

-t |+l

0.1

-l

0.9

Join R

P(R,T)

0.08

—

0.02

0.09

0.81

P(L|T)

+

0.3

+

0.7

-t

0.1

-t

0.9

JoinT
:

P(R,T,L)
4r | 4t + | 0.024
4r | 4t -l | 0.056
4r | -t + | 0.002
4r | -t -l | 0.018
-r |+t |+l | 0.027
ar | o+t -l | 0.063
-r -t + | 0.081
-r -t - [ 0.729




Operation 2: Eliminate

Multiple Elimination

= Second basic operation: marginalization
= Take a factor and sum out a variable
= Shrinks a factor to a smaller one

= An aggregate/project operation

= Example:
@
P(R,T
+r (+t OAOZ sum R P(T)

+r |t ]0.02 [—— +t | 017
-r | +t]0.09 -t | 083

-r | -t]0.81

P(R,T, L)

D < IC

- 0.024
o |+t | 4 [00s6 Sum Sum

w |« [« ooz outR FPTL)  outT P(L)
|+ | 4 o018 T+ Toost
w007 o, [ oms| o> [ ][00
[« | 4 ]0063 T 008 1 [0.886
[ | o o081 T To7er

-r -t -|

Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

Marginalizing Early (= Variable Elimination)

(-

Traffic Domain

Marginalizing Early! (aka VE)

(®) P(L)="?

o = |nference by Enumeration = Variable Elimination

=33 PLIP()P(Ir) =>"P(Lt) Y Pr)P(tr)
0 - -
Joinont Eliminate r
Eliminate r Joinont

JoinR P(R,T) SumoutR JoinT SumoutT
PR = mTalos = p(ry =2 :
-+r 0.1 +r| -t | 0.02
H:_, 09 e To0s
r]-t]osL o8
P(T|R)
+r |+t [0.8 @ @
+r] -t 0.2 ( )
-r | +t]0.1 P(T,L
- -t 0.9 ! P(L)
T - +t |+ ] 0.051
N | 10.134
(Z|T) P(L|T) (LI -t [+ 0.083 [ - [o.866
+t|+]03 +t |+ (03 -t | -1 ]0.747
|07 H0s w1 o7
t | +]0.1 < 0'1 -t [+]0.1
t|-1]09 S 0'9 t|-]09




Evidence

Evidence Il

= |f evidence, start with factors that select that evidence
= |fthere is no evidence, then use these initial factors:

P(R) P(T|R) P(L|T)
[+ To1 +r |+t [08 +t [+ [03
[ T o9 +r | t 02 +t | 1 |07

o+ o1 & [+ o1
- -t |09 t -l 0.9

= Butif given some evidence, eg +r, then select for it...
= Computing P(L| 4 ) the initial factors become:

P(+r)  P(T|+r)  PIT)
Coloi] [elafos T
Do Ton W Tor
i Tor
t | 0.9

= Next do joins & eliminate, removing all vars other than query + evidence

= Result will be a selected joint of query and evidence
= E.g.for P(L | +r), we would end up with:

P("FT',L) Normalize P(Ll +7')
0.026 > 0.26
+r| 1] 0074 1074

= To get our answer, just normalize this!

= That'sit!

General Variable Elimination

Example: Alarm Network

P(B ), m)=

Query: P(Q|Ey = e1,... By =¢y)

®

P(B) e e E | PE)
+b | 0.001 +e | 0.002

-b | 0.999 -e | 0.998
= Start with initial factors: o
= Local CPTs (but instantiated by evidence) s T el A PAIBE)
+b | +e | +a 0.95
= While there are still hidden variables I I 0.05
(not Q or evidence): o | 002
. Cifooseahiddenvar.iab!eH NIRRT N b | 0.06
= Join all factors mentioning H -
= Eliminate (sum out) H ta| 4 09 +a | +m 0.7 b | +e | +a 0.29
+a| | 01 +a|-m| 03 b | +e| a 0.71
= Join all remaining factors and normalize | 4| 005 - | +m | 001 b | -e|+a| 0001
-a| 4 | 095 a | -m | 099 b | -e|-a| 0999
Example Example
P(Blj,m) x P(B, j,m) Qf P®  PE)  PGmIBE) | OWpS.
P(B)  P(B)  PABE)  PGIA)  P(ml4)| Choose £
O @ P(E) E> PGym, E|B) §> PGmpy O
Choose A P(j,m|B, E)
P(A|B, E)
P(j14) PGm, AIB.E) [E) PG,mIB, ) P(B) PGmB) |
P(ml4) Finish with B
. ] P(B .
‘ P(B) P(E) P(j,m|B, E) ‘ ) §> P(j,m, B) P(B|j,m)

P(j,m|B)




Same Example in Equations

P(B|j,m) o< P(B,j,m) g (£)

P(B)  P(E)  PABE)  PGA)  P(ml) | 2

P(Blj,m) x P(B,j,m) o o

= z P(B.j,m,ea) marginal can be obtained from joint by summing out
ca

= Y P(B)P(e)P(a|B,e) P(jla) P(m|a) use Bayes’ net joint distribution expression
ea

= Y P(B)P(e)Y P(a|B.e)P(jla)P(mla)  useXy+xz=x*(y+z) do sum first

= Y P(B)P(e)[1(B.e,j,m) joining on a, and then summing out gives f;
<
= P(B)Y_ P(e)fi(B,e,j,m) use xy + xz = x*(y+z) do sum first
G
= P(B)f2(B.j.m) joining on e, and then summing out gives f,

Simple! Exploiting uwy + Uwz + uxy + UXz + VWy + VWz + VXy +vxz = (u+v)(w+x)(y+z) to reduce computation

Variable Elimination

P(blj,m) = UéP(b) EP(%) ZP(a\b,e)P(ﬂa)P(m,a)

P(e) P(—e)
.002 .998

Plulb,e) Pl—alb,e) P(ulb,—e) P(oalbme)
.95 .05 .94 .06
P(jla)
00 P(jl ma) P(jla) P(jl—a)
.05 .90 .05
{';((’)"'“J P(ml =) Pmla) Plml =)
s .01 .70 o1

Repeated computations < Dynamic Programming

Choices during Variable Elimination

Another Variable Elimination Example

Query: P(Q|Ey = e1,... By =¢y)

Start with initial factors:
= Local CPTs (but instantiated by evidence)

While there are still hidden variables
(not Q or evidence):

= Choose a hidden variable H

= Join all factors mentioning H

= Eliminate (sum out) H

Join all remaining factors and normalize

Query: P(X3|Yy =1, Ya = 2. ¥a = ua)

(2
© © o

Start by inserting evidenee, which gives the following initial factors:

PE)P{ XN Z (X Z)p( X5 2 )plan | X0 ) plye ) X o)l Xa)

What variables could we eliminate?

Another Variable Elimination Example

Another Variable Elimination Example

Query: P(X3|Yy =y1,Y2 = 1. Ya = u3)

(2)

Start by inserting evidenec, which gives the following initial factors:

WYX | Z )l (Xl Z)pln | X1 )p (| X )plips| Xa)

actor fi(Z,m) = X, ples] Z)p{in|n). and e @ e

W) fu Zoy)p(Xal Z)p( X3 Z)plual X Xs)

Eliminate X, this introduces th
we are left with:

Eliminate X, this introduces the factor fo(Zm) = ¥, p(za| Z)plyalez), and
we are left with —

PZA(Z ) o2 ) A X Z)p (3l Xs)

=P filzan) falz g )pl Xsle)

What dimension are fy, f, & f3?

1
plslXa). Salwo 2. Xs)
No hidden variables left. Join the remaining factors to get:
Jilns w2 v: Xa) = PlunlXa) Flon, . X)-

Normalizing over Xy gives P(Xs|u, vz, 43).

Query: P(X3|Yy =1, Ya = 2. ¥a = ua)

(2
& © o

Start by inserting cvidenee, which gives the following initial factors:

MEWp(X2|Z)p( X 2| Z)p( Xs| Z )| X )l X2 )p(s] Xa)

Alternatively, suppose we start by eliminating Z:

P(Xi12)
P(X,12) E> f 02 X3) What is the resulting factor?
PXs12) p( What dimension is it? 3
p(y2 1X2)
Py Xs) How many entries? k3




Another Variable Elimination Example

Variable Elimination Ordering

Query: P(XslYi =w,Yo=m.Ya=u) g
Start by inserting evidence, which gives the following initial factors:

)X\ Z)plX,

LZ)p(X 3| Z) o | X0 D (| X )l | X )

Eliminate X1, this introduces the factor fi(Z,m) = X, plar|Zp(y|a). and @ @ @
we are left with:

P(Z) f1(Z. 10 Xo| Z)p(X o] Z)p{ya| Xa)p(us| Xs)

Eliminate X;, this introduces the factor .
we are left with:

m) = ¥, plza| Z)plyzlaz), and
PZV (20 ) o Zoms ) A X 2 )p(ual Xa) Computational complexity depends

s intbod hef i V= 5, o)) ol o), on the largest factor generated by
his introduces the factor fau. ye, Xa) = X2, p(2)fi (2. 90) fal2, 42 )p( Xl 2),
and we are loft: _— the process.

Eliminate

Size of factor = number of entries in

Pl Xa), il Xa) table.

No hidelen variables left. Join the remaining factors to get:

Salur pz s Xs) = Plusl Xa) Falun, 2. Xa)

Normalizing over X gives P( Xy, v2,bis).

= For the query P(X,|yy,....y,) work through the following two different orderings

as done in previous slide: Z, X,, ..., X,.; and X;, ..., X1, Z. What is the size of the
maximum factor generated for each of the orderings?

Answer: 2™ versus 22 (assuming binary)

In general: the ordering can greatly affect efficiency.

VE: Computational and Space Complexity

Worst Case Complexity?

= The computational and space complexity of variable elimination is
determined by the largest factor

= The elimination ordering can greatly affect the size of the largest factor.
= E.g., previous slide’s example 2" vs. 2

= Does there always exist an ordering that only results in small factors?
= No!

P(X;=0)=P(X; =1)=05 ° o 9

Yi =X, VXV -Xs

Y12 AYsa

()
NESRS——. O Y QD W »
Yia=Y1AY:
18 =YrAYs @ e e
2

If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.

= Hence inference in Bayes’ nets is NP-hard. No known efficient probabilistic inference in general.

Bayes’ Nets

& Representation

o Conditional Independences

Probabilistic Inference

& Enumeration (exact, exponential
complexity)

JVariabIe elimination (exact, worst-case
exponential complexity, often better)

o Inference is NP-complete

= Sampling (approximate)

Learning Bayes’ Nets from Data




