

Inference by Enumeration in Bayes' Net
" Given unlimited time, inference in BNs is easy
" Reminder of inference by enumeration by example:
$P(B \mid+j,+m) \propto_{B} P(B,+j,+m)$
$=\sum_{e, a} P(B, e, a,+j,+m)$
$=\sum_{e, a} P(B) P(e) P(a \mid B, e) P(+j \mid a) P(+m \mid a)$
$=P(B) P(+e) P(+a \mid B,+e) P(+j \mid+a) P(+m \mid+a)+P(B) P(+e) P(-a \mid B,+e) P(+j \mid-a) P(+m \mid-a$
$P(B) P(-e) P(+a \mid B,-e) P(+j \mid+a) P(+m \mid+a)+P(B) P(-e) P(-a \mid B,-e) P(+j \mid-a) P(+m \mid-a$

Traffic Domain	
(${ }^{\text {a }} \quad P(L)=$?	
(T) - Inference by Enumeration	- Variable Elimination
$\text { (1) }=\sum \sum \sum_{1}^{P(L t) P(t) P(t)}$	$=\sum_{c} P\left(L\|t\| \sum^{P} P^{P(t) P(t \mid r)}\right.$
wonbe	Emmater
Emmine	,mme
Emimatet	timmer

Example: Traffic Domain			
Random Variables - R: Raining - T: Traffic - L: Late for class!	$P(R)$		
	+r	0.	
	-r	0.9	
		$\mid R$	
	+r	+t	0.8
	+r	-t	0.2
	-r	+t	0.1
	-r	-t	0.9
$\sum P(r, t, L)$		$L \mid T$	
$\sum_{r, t} P(r, t, L)$	+t	+1	0.3
	+t	-1	0.7
$\sum P(r) P(t \mid r) P(L \mid t)$	-t	+1	0.1
$\sum_{r, t} P(r) P(t \mid r) P(L \mid t)$	-t	-1	0.9

Another Variable Elimination Example

```
Query: }P(\mp@subsup{X}{3}{}|\mp@subsup{Y}{1}{}=\mp@subsup{y}{1}{},\mp@subsup{Y}{2}{}=\mp@subsup{y}{2}{},\mp@subsup{Y}{3}{}=\mp@subsup{y}{3}{}
Start by inserting evidence, which gives the following initial factors:
    p(Z)p(\mp@subsup{X}{1}{}|Z)p(\mp@subsup{X}{2}{}|Z)p(\mp@subsup{X}{3}{}|Z)p(\mp@subsup{y}{1}{}|\mp@subsup{X}{1}{})p(\mp@subsup{y}{2}{}|\mp@subsup{X}{2}{})pp(\mp@subsup{y}{3}{}|\mp@subsup{X}{3}{})
Eliminate Xi, this introduces the factor }\underline{\mp@subsup{f}{1}{\prime}(Z,\mp@subsup{y}{1}{})}=\mp@subsup{\sum}{\mp@subsup{x}{1}{}}{}p(\mp@subsup{x}{1}{}|Z)p(\mp@subsup{y}{n}{}|\mp@subsup{x}{1}{}),\mathrm{ and
we are left with:
            p(Z)f(Z, Z,\mp@subsup{y}{1}{})p(\mp@subsup{X}{2}{}|Z)p(\mp@subsup{X}{3}{}|Z)p(y\mp@subsup{y}{2}{}|\mp@subsup{X}{2}{})p(\mp@subsup{y}{3}{}|\mp@subsup{X}{3}{})
l}\begin{array}{l}{\mathrm{ Eliminate }\mp@subsup{X}{2}{}\mathrm{ , this introduces the factor }\underline{\mp@subsup{f}{2}{}(Z,\mp@subsup{y}{2}{})}=\mp@subsup{\sum}{\mp@subsup{r}{2}{}}{}p(\mp@subsup{x}{2}{}|Z)p(\mp@subsup{y}{2}{}|\mp@subsup{x}{2}{})\mathrm{ , and}}\\{\mathrm{ we are left with:}}
            p(Z)\mp@subsup{f}{1}{}(Z,\mp@subsup{y}{1}{})\mp@subsup{f}{2}{}(Z,\mp@subsup{y}{2}{})p(\mp@subsup{X}{3}{}|Z)p(\mp@subsup{y}{3}{}|\mp@subsup{X}{3}{})
Einmate Z, this introduces the factor 
        p(y, |}|\mp@subsup{X}{3}{}),f(\mp@subsup{f}{3}{}(\mp@subsup{y}{1}{},\mp@subsup{y}{2}{},\mp@subsup{X}{3}{}
No hidden variables left. Join the remaining factors to get:
    f4(y,y,y2,y,
Normalizing over }\mp@subsup{X}{3}{}\mathrm{ give }P(\mp@subsup{X}{3}{}|\mp@subsup{y}{1}{},\mp@subsup{y}{2}{},\mp@subsup{y}{3}{})\mathrm{ ,
```

Another Variable Elimination Example

$$
\text { Query: } P\left(X_{3} \mid Y_{1}=y_{1}, Y_{2}=y_{2}, Y_{3}=y_{3}\right)
$$

Start by inserting evidence, which gives the following initial factors:
$p(Z) p\left(X_{1} \mid Z\right) p\left(X_{2} \mid Z\right) p\left(X_{3} \mid Z\right) p\left(y_{1} \mid X_{1}\right) p\left(y_{2} \mid X_{2}\right) p\left(y_{3} \mid X_{3}\right)$
Alternatively, suppose we start by eliminating Z :
$P\left(X_{1} \mid Z\right)$

$P\left(X_{2} \mid Z\right)$
$P\left(X_{3} \mid Z\right)$

$p\left(y_{3} \mid X_{3}\right) \quad$ How many entries? k^{3}

Another Variable Elimination Example	
Query: $P\left(X_{3} \mid Y_{1}=y_{1}, Y_{2}=y_{2}, Y_{3}=y_{3}\right)$ Start by inserting evidence, which gives the following initial factors: $p(Z) p\left(X_{1} \mid Z\right) p\left(X_{2} \mid Z\right) p\left(X_{3} \mid Z\right) p\left(y_{1} \mid X_{1}\right) p\left(y_{2} \mid X_{2}\right) p\left(y_{3} \mid X_{3}\right)$ Eliminate X_{1}, this introduces the factor $\underline{f_{1}\left(Z, y_{1}\right)}=\sum_{x_{1}} p\left(x_{1} \mid Z\right) p\left(y_{1} \mid x_{1}\right)$, and we are left with: $p(Z) f_{1}\left(Z_{1}, y_{1}\right) p\left(X_{2} \mid Z\right) p\left(X_{3} \mid Z\right) p\left(y_{2} \mid X_{2}\right) p\left(y_{3} \mid X_{3}\right)$ Eliminate X_{2}, this introduces the factor $\underline{f_{2}\left(Z, y_{2}\right)}=\sum_{r_{2}} p\left(x_{2} \mid Z\right) p\left(y_{2} \mid x_{2}\right)$, and we are left with: $p(Z) f_{1}\left(Z, y_{1}\right) \underline{f_{2}\left(Z, y_{2}\right) p\left(X_{3} \mid Z\right) p\left(y_{3} \mid X_{3}\right)}$ Eliminate Z, this introduces the factor $\underline{f_{3}\left(y_{1}, y_{2}, X_{3}\right)}=\sum_{z} p(z) f_{1}\left(z, y_{1}\right) f_{2}\left(z, y_{2}\right) p\left(X_{3} \mid z\right)$, and we are left: $p\left(y_{3} \mid X_{3}\right), f_{3}\left(y_{1}, y_{2}, X_{3}\right)$ No hidden variables left. Join the remaining factors to get: $f_{4}\left(y_{1}, y_{2}, y_{3}, X_{3}\right)=P\left(y_{3} \mid X_{3}\right) f_{3}\left(y_{1}, y_{2}, X_{3}\right) .$ Normalizing over X_{3} gives $P\left(X_{3} \mid y_{1}, y_{2}, y_{3}\right)$.	Computational complexity depends on the largest factor generated by the process. Size of factor $=$ number of entries in table.

Variable Elimination Ordering
- For the query $\mathrm{P}\left(\mathrm{X}_{\mathrm{n}} \mid \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$ work through the following two different orderings as done in previous slide: $Z, X_{1}, \ldots, X_{n-1}$ and $X_{1}, \ldots, X_{n-1}, Z$. What is the size of the maximum factor generated for each of the orderings?
- Answer: 2^{n+1} versus 2^{2} (assuming binary) - In general: the ordering can greatly affect efficiency.

| VE: Computational and Space Complexity |
| :--- | :--- |
| - The computational and space complexity of variable elimination is |
| determined by the largest factor |
| - The elimination ordering can greatly affect the size of the largest factor. |
| - E.g., previous slide's example 2^{n} vs. 2 |

Bayes' Nets
Representation
Conditional Independences
- Probabilistic Inference
Enumeration (exact, exponential complexity) Variable elimination (exact, worst-case exponential complexity, often better) Inference is NP-complete - Sampling (approximate) - Learning Bayes' Nets from Data

