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CSE 473: Artificial Intelligence

Bayes’ Nets: Inference

Steve Tanimoto
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]

 Examples:

 Posterior probability

 Most likely explanation:

Inference

 Inference: calculating some 
useful quantity from a joint 
probability distribution

Test for Infant Metabolic Defects

4
Blue ovals represent chromatographic peaks, grey ovals represent 20 metabolic diseases 

Inference by Enumeration
 General case:

 Evidence variables: 
 Query* variable:
 Hidden variables: All variables

* Works fine with 
multiple query 
variables, too

 We want:

 Step 1: Select the 
entries consistent 
with the evidence

 Step 2: Sum out H to get joint 
of Query and evidence

 Step 3: Normalize

Inference by Enumeration in Bayes’ Net
 Given unlimited time, inference in BNs is easy

 Reminder of inference by enumeration by example:
B E

A

MJ

Inference by Enumeration vs. Variable Elimination
 Why is inference by enumeration so slow?

 You join up the whole joint distribution before 
you sum out the hidden variables

 Idea: interleave joining and marginalizing!
 Called “Variable Elimination”
 Still NP-hard, but usually much faster than 

inference by enumeration

 First we’ll need some new notation: factors
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Traffic Domain

 Inference by EnumerationT

L

R

 Variable Elimination

Join on rJoin on r

Join on t

Join on t

Eliminate r

Eliminate t

Eliminate r

Eliminate t

Factor Zoo

Factor Zoo I

 Joint distribution: P(X,Y)
 Entries P(x,y) for all x, y
 Sums to 1

 Selected joint: P(x,Y)
 A slice of the joint distribution
 Entries P(x,y) for fixed x, all y
 Sums to P(x)

 Number of capitals = 
dimensionality of the table

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

cold sun 0.2

cold rain 0.3

Factor Zoo I

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

 Number of capitals = 
dimensionality of the table

hot

cold

sun rain

0.4 0.1

0.2 0.3

T W P

cold sun 0.2

cold rain 0.3
cold

sun rain

0.2 0.3

Factor Zoo II

T W P

hot sun 0.8

hot rain 0.2

cold sun 0.4

cold rain 0.6

T W P

cold sun 0.4

cold rain 0.6

 Single conditional: P(Y | x)
 Entries P(y | x) for fixed x, all y
 Sums to 1

 Family of conditionals: 
P(X |Y)
 Multiple conditionals
 Entries P(x | y) for all x, y
 Sums to |Y|

Factor Zoo III

 Specified family: P( y | X )
 Entries P(y | x) for fixed y,

but for all x
 Sums to … who knows!

T W P

hot rain 0.2

cold rain 0.6
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Factor Zoo Summary

 In general, when we write P(Y1 … YN | X1 … XM)

 It is a “factor,” a multi-dimensional array

 Its values are P(y1 … yN | x1 … xM)

 Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

Example: Traffic Domain

 Random Variables
 R: Raining
 T: Traffic
 L: Late for class! T

L

R
+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

Inference by Enumeration: Procedural Outline

 Track objects called factors
 Initial factors are local CPTs (one per node)

 Any known values are selected
 E.g. if we know                  , the initial factors are

 Procedure: Join all factors, then eliminate all hidden variables

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t +l 0.3
-t +l 0.1

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

Operation 1: Join Factors

 First basic operation: joining factors
 Combining factors:

 Just like a database join
 Get all factors over the joining variable
 Build a new factor over the union of the variables 

involved

 Example: Join on R

 Computation for each entry: pointwise products

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81T

R

R,T

Example: Multiple Joins Example: Multiple Joins

T

R Join R

L

R, T

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

R, T, L

+r +t +l 0.024
+r +t -l 0.056
+r -t +l 0.002
+r -t -l 0.018
-r +t +l 0.027
-r +t -l 0.063
-r -t +l 0.081
-r -t -l 0.729

Join T
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Operation 2: Eliminate

 Second basic operation: marginalization

 Take a factor and sum out a variable
 Shrinks a factor to a smaller one

 An aggregate/project operation

 Example:

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t 0.17
-t 0.83

R, T T

Multiple Elimination

Sum
out R

Sum
out T

T, L LR, T, L

+r +t +l 0.024
+r +t -l 0.056
+r -t +l 0.002
+r -t -l 0.018
-r +t +l 0.027
-r +t -l 0.063
-r -t +l 0.081
-r -t -l 0.729

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

+l 0.134
-l 0.886

Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration) Marginalizing Early (= Variable Elimination)

Traffic Domain

 Inference by EnumerationT

L

R

 Variable Elimination

Join on rJoin on r

Join on t

Join on t

Eliminate r

Eliminate t

Eliminate r

Eliminate t

Marginalizing Early! (aka VE)
Sum out R

T

L

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t 0.17
-t 0.83

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

T

R

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

Join R

R, T

L

T, L L

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

+l 0.134
-l 0.866

Join T Sum out T
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Evidence

 If evidence, start with factors that select that evidence
 If there is no evidence, then use these initial factors:

 But if given some evidence, eg +r, then select for it…
 Computing                        , the initial factors become:

 Next do joins & eliminate, removing  all vars other than query + evidence

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r 0.1 +r +t 0.8
+r -t 0.2

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

Evidence II

 Result will be a selected joint of query and evidence
 E.g. for P(L | +r), we would end up with:

 To get our answer, just normalize this!

 That ’s it!

+l 0.26
-l 0.74

+r +l 0.026
+r -l 0.074

Normalize

General Variable Elimination

 Query:

 Start with initial factors:
 Local CPTs (but instantiated by evidence)

 While there are still hidden variables 
(not Q or evidence):
 Choose a hidden variable H
 Join all factors mentioning H
 Eliminate (sum out) H

 Join all remaining factors and normalize

Example: Alarm Network

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99

B E

A

MJ

P(B | j, m) = ?

Example

Choose A

Example

Choose E

Finish with B

Normalize
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Same Example in Equations

marginal can be obtained from joint by summing out

use Bayes’ net joint distribution expression

use xy + xz= x*(y+z)   do sum first

joining on a, and then summing out gives f1

use xy + xz = x*(y+z)  do sum first

joining on e, and then summing out gives f2

Simple!  Exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to reduce computation

P(b|j,m) = P(b) P(e) P(a|b,e)P(j|a)P(m,a)
e              a

Repeated computations  Dynamic Programming

© UC Berkeley

Variable Elimination

Choices during Variable Elimination

 Query:

 Start with initial factors:
 Local CPTs (but instantiated by evidence)

 While there are still hidden variables 
(not Q or evidence):
 Choose a hidden variable H
 Join all factors mentioning H
 Eliminate (sum out) H

 Join all remaining factors and normalize

Another Variable Elimination Example

What variables could we eliminate?

Another Variable Elimination Example

What dimension are f1, f2 & f3?

1

Another Variable Elimination Example

What is the resulting factor?

What dimension is it?

P(X1 | Z)

P(X2 | Z)

P(X3 | Z)

Alternatively, suppose we start by eliminating Z:

fZ(X1, X2, X3)

p(y1 |X1)

p(y2 |X2)

p(y3 |X3)

3

How many entries? k3
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Another Variable Elimination Example

Computational complexity depends 
on the largest factor generated by 
the process.  
Size of factor = number of entries in 
table.  

Variable Elimination Ordering

 For the query P(Xn|y1,…,yn) work through the following two different orderings 
as done in previous slide: Z, X1, …, Xn-1 and X1, …, Xn-1, Z.  What is the size of the 
maximum factor generated for each of the orderings?

 Answer: 2n+1 versus 22 (assuming binary)

 In general: the ordering can greatly affect efficiency.  

…

…

VE: Computational and Space Complexity

 The computational and space complexity of variable elimination is 
determined by the largest factor

 The elimination ordering can greatly affect the size of the largest factor.  
 E.g., previous slide’s example 2n vs. 2

 Does there always exist an ordering that only results in small factors?
 No!

Worst Case Complexity?
 CSP:  

 If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.

 Hence inference in Bayes’ nets is NP-hard.  No known efficient probabilistic inference in general.

…

…

Bayes’ Nets

 Representation

 Conditional Independences

 Probabilistic Inference

 Enumeration (exact, exponential 
complexity)

 Variable elimination (exact, worst-case 
exponential complexity, often better)

 Inference is NP-complete

 Sampling (approximate)

 Learning Bayes’ Nets from Data


