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Bayes’ Nets: Inference

Steve Tanimoto
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Inference

= |nference: calculating some = Examples:
useful quantity from a joint

probability distribution " Posterior probability

P(Q|E1=e1,... B = ep)
= Most likely explanation:

argmax, P(Q = q|E1 =e1...)




Test for Infant Metabolic Defects
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Blue ovals represent chromatographic peaks, grey ovals represent 20 metabolic diseases



Inference by Enumeration

=  General case:
» Evidence variables: £1
* Query* variable: Q

= Hidden variables: Hi...H;,
= Step 1: Select the =  Step 2: Sum out H to get joint
entries consistent of Query and evidence
with the evidence
= Poo
v ]
[ 0z |
N
— P hi...h .
P(Q,el...ek)— Z (@: 1 Ty €1 6/]{3)

B =e1...¢€

hl...hr

X1 82500 8n

All variables

~

X1, X5,... Xn

* Works fine with
multiple query
variables, too

P(Qle1 - . . ex)

= We want:

= Step 3: Normalize

1
><_
A

Z=Y P(Qerex)

PQler--ex) = ZP(@e1--ex)



Inference by Enumeration in Bayes’ Net
= Given unlimited time, inference in BNs is easy e e
= Reminder of inference by enumeration by example:
P(B |+ j,4+m) xB P(B,+j,+m) °
:ZP (B, e,a,+j,+m)
OO
_ZP P(a|B,e)P(+jla)P(+m|a)

=P(B)P(+e)P(+a|B, +e)P(+j| + a)P(+m| + a) + P(B)P(+e)P(—a|B,+e)P(+j| — a)P(+m| — a)
P(B)P(—e)P(+a|B,—e)P(+j| + a)P(+m| + a) + P(B)P(—e)P(—a|B, —e)P(+j| — a)P(+m| — a)



Inference by Enumeration vs. Variable Elimination

= Why is inference by enumeration so slow? = |[dea: interleave joining and marginalizing!

= You join up the whole joint distribution before = Called “Variable Elimination”

you sum out the hidden variables = Still NP-hard, but usually much faster than
inference by enumeration

= First we’ll need some new notation: factors



Traffic Domain

(R) P(L) =7

@ " Inference by Enumeration = Variable Elimination

e _ZZP L|t P(t|r) —ZP Li|t) ZP P(t|r)

Join <')n r Join on r
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Factor ZoO
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Factor Zoo |

P(T,W)
= Joint distribution: P(X,Y) - W P
= Entries P(x,y) forall x, y hot sun | 0.4
" Sumstol hot rain | 0.1
cold sun 0.2
cold rain | 0.3
= Selected joint: P(x,Y)
= Aslice of the joint distribution P(cold, W)
= Entries P(x,y) for fixed x, all y T W P
= Sums to P(x) cold sun | 0.2
cold rain | 0.3

= Number of capitals =
dimensionality of the table



Factor Zoo |

Two dimens;

Oon
° P(T, W)
sun rain - W o
h 0.4
hot | 0.4| 0.1 of | sun
hot rain 0.1
cold| 0.2 0.3 cold | sun | 0.2
cold rain 0.3
O .
ne d’mension | P(cold, W)
sun rain = W b
cold| 0.2] 0.3 cold | sun | 0.2
cold rain 0.3

= Number of capitals =

dimensionality of the table



Factor Zoo |l

= Single conditional: P(Y | x)

P(W |cold)
= Entries P(y | x) for fixed x, all y
T W P
= Sumstol
cold sun 0.4
cold rain | 0.6
P(W|T)
= Family of conditionals: T W Pl
hot sun 0.8
PIXY) —1— 1 P(W|hot)
= Multiple conditionals ° rain =]
= Entries P(x | y) forall x, y cold sun | 04 - P(W|cold)
= Sumsto || cold rain | 0.6




Factor Zoo Il

= Specified family: P(y | X)
= Entries P(y | x) for fixedy,
but for all x
= Sums to ... who knows!

P(rain|T)

T W P
hot | rain | 0.2 }: P(rain|hot)

cold rain | 0.6 P(raz’n|cold)




Factor Zoo Summary

" In general, when we write P(Y, ... Yy | X ... X\y)
= |tisa “factor,” a multi-dimensional array

= Jtsvalues are P(y; ... Yy | X{ - X)

= Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array




Example: Traffic Domain

= Random Variables

= R: Raining

= T: Traffic

= |: Late for class!

|
~

P(R)

+r 0.1

-r 0.9

P(T|R)

+r

+t

0.8

+r

-t

0.2

-r

+t

0.1

-r

-t

0.9

P(L|T)

+t

+l

0.3

+t

0.7

-t

+|

0.1

-t

0.9




Inference by Enumeration: Procedural Outline

= Track objects called factors
" |nitial factors are local CPTs (one per node)

P(R) P(T|R) P(L|T)
+r 0.1 +r | +t [ 0.8 +t +| 0.3
-r 0.9 +r -t | 0.2 +t -l 0.7
-r +t | 0.1 -t + | 0.1
-r -t | 0.9 -t -l 0.9

=" Any known values are selected
= E.g.if we know L. = -/, the initial factors are

P(R) P(T|R)  P(+{T)
+r 0.1 +r | +t [ 0.8 +t + 0.3
-r 0.9 +r -t |1 0.2 -t + | 0.1

-r +t | 0.1
-r -t 1 0.9

= Procedure: Join all factors, then eliminate all hidden variables



Operation 1: Join Factors

S Bl |

First basic operation: joining factors

Combining factors:

= Just like a database join

= Get all factors over the joining variable
= Build a new factor over the union of the variables

involved

Example: Joinon R

e P(R) X P(T|R)

+r

0.1

+r

+t

0.8

0.9

+r

-t

0.2

= Computation for each entry: pointwise products

-r

+t

0.1

-r

-t

0.9

vr,t .

—> P(R,T)
+r | +t | 0.08
+r | -t | 0.02
-r | +t | 0.09
-r | -t | 0.81

P(r,t) = P(r) - P(t|r)



Example: Multiple Joins

-
N -




Example: Multiple Joins f..”.

1 &8 |

+r | 0.1
-r 0.9 Jo|n R P(R7 T)

Join T -
+r | +t | 0.08
P(TIR) [ 0.0e CR 1L

:> +r | -t |:>
+r | +t |0.8 | +t]10.09
+r | -t 0.2 -r]-t]0.81 m P(R, T, L)
-r | +t0.1 +r |+t + | 0.024
-r | -t]0.9 0 +r +t -1 0.056
+r -t + | 0.002
P(LIT) P(LIT) o [« | - |o0i8
+t | +1 |0.3 +t | +1 |0.3 -r +t + | 0.027
+t | -l |0.7 +t | -l |0.7 -r +t -1 | 0.063
+| |0.1 -t | 4+ (0.1 -r -t + | 0.081
-1 10.9 -t | -l]0.9 -r -t -1 | 0.729




Operation 2: Eliminate

= Second basic operation: marginalization

= Take a factor and sum out a variable
= Shrinks a factor to a smaller one

= An aggregate/project operation

= Example:
@
P(R,T
+r (+t 0.0Z sum R P(T)

+r | -t | 0.02 |:> +

-r | +t | 0.09 -t
-r | -t | 0.81




P(R,T, L)

Multiple Elimination

>

+r

+r

Sum
out R

P(T,L)
+t [+ [ 0.051
+t [ -1 [0.119
+1 | 0.083
| | 0.747

Sum
out T

®

P(L)

+l

0.134

0.886




Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

(




Marginalizing Early (= Variable Elimination)




Traffic Domain

(R) P(L) =7

@ " Inference by Enumeration = Variable Elimination

e _ZZP L|t P(t|r) —ZP Li|t) ZP P(t|r)

Join <')n r Join on r
[ [ | J
[ | T Y
Joinont Eliminate r
[ | Jj
L 1
Eliminate r Joinont

| J
|

Eliminate t Eliminate t




P(R)

+r

0.1

-r

0.9

P(T|R)

+r

+t

0.8

+r

-t

0.2

-r

+

0.1

-r

-t

0.9

P(LIT)

+t

+|

0.3

+t

0.7

-t

+l

0.1

-t

0.9

Join R

—>

Marginalizing Early! (aka VE)

P(R, T) Sum out R
+r | +t | 0.08 ',: P(T)
+r | -t | 0.02 w | 017
-r | +t | 0.09 T 1 0.83
-r|-t|0.81 '

®

P(L|T)

+t | +l

0.3

0.7

-t |+l

0.1

0.9

:

P(L|T)

+t

+ 0.3

+t

-I 10.7

-t

+ 0.1

-t

-1 |0.9

JoinT

—>

SumoutT

>

P(T, L)

—>

+t | 4+l | 0.051

+t | -1 | 0.119

+| | 0.083

-t | -l | 0.747

®

P(L)

+l

0.134

0.866




Evidence

If evidence, start with factors that select that evidence
= |fthere is no evidence, then use these initial factors:

P(R) P(T|R) P(L|T)
+r 0.1 +r +t | 0.8 +t +l 0.3
-r 0.9 +r -t | 0.2 +t -l 0.7

-r +t | 0.1 -t + 0.1
-r -t | 0.9 -t -l 0.9

= But if given some evidence, eg +r, then select for it...
= Computing P(L| + 7)the initial factors become:

P(+r)  P(T|+7r)  PIT)

| +r | 01 | 0.8 +t | + |03
+r -t | 0.2 +t -l 0.7

-t +| 0.1

4 | -1 [o9

Next do joins & eliminate, removing all vars other than query + evidence



Evidence Il

= Result will be a selected joint of query and evidence
= E.g.for P(L | +r), we would end up with:

P(+r, L) Normalize P(L
+r | 4l | 0.026 :E +I
+r | -l | 0.074 -l

= To get our answer, just normalize this!

"= That’s it!




General Variable Elimination

Query: P(Q|E1 =e1,... L = ek)

Start with initial factors:
= Local CPTs (but instantiated by evidence)

While there are still hidden variables
(not Q or evidence):

= Choose a hidden variable H

= Join all factors mentioning H

= Eliminate (sum out) H

Join all remaining factors and normalize
° [<m-l X



Example: Alarm Network PB]|j,m)="7

B | P(B) E | P(E)
+b | 0.001 +e | 0.002
B | E| A | PA|IBE)
+b | +e | +a 0.95
0 @ +b | +e | -a 0.05
+tb | -e | +a 0.94

A J P(J|A) A M | P(M|A) +tb | -e | -a 0.06
+a | +j 0.9 +a | +m 0.7 -b | +e | +a 0.29
+a | 0.1 +a | -m 0.3 -b | +e | -a 0.71
-;a | 4 0.05 -a | +m 0.01 -b | -e | +a 0.001
-a | A 0.95 -a | -m 0.99 -b | -e | -a 0.999




Example

P(B|j,m) < P(B, j,m)

P(B) P(E) P(A|B, E) P@lA)  P(m]A)
Choose A
P(A|B, E)
P@|A) X > P(j,m,AlB,E) [¥ ) P(j,m|B,E)
P(m|A)

P(B)

P(E) P(j,m|B, E)




Example

P(B) P(E) P(j,m|B, E)
Choose E
PLE) ::><> P(j,m, E|B) :z > P(j,m|B)
P(j,m|B, E)
P(B) P(j,m|B)
Finish with B
P(B)

P(j,m|B)

X > P(j,m,B) Normalize > P(B‘j, m)




Same Example in Equations

P(B|j,m) x P(B, j,m) (& (&

pP(B)  P(E) P(A|B, E) P(jlA)  P(m|A) 0

P(B|j,m) o« P(B,jm) o @

= Y P(B,j,m,e,a) marginal can be obtained from joint by summing out
= Y P(B)P(e)P(a|B,e)P(jla)P(m|a) use Bayes’ net joint distribution expression

— Z P(B)P(e) Z P(a|B,e)P(jla)P(mla)  usexy+xz=x*(y+z) dosum first

= Y P(B)P(e)f1(B,e, j,m) joining on a, and then summing out gives f,
[
= P(B)> P(e)f1(B,e,j,m) use xy + xz = x*(y+z) do sum first
e
= P(B)f2(B,j,m) joining on e, and then summing out gives f,

Simple! Exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to reduce computation



Variable Elimination
P(b]j,m) = oceP(b) ZP(%) ZP(a|b,e)P(j|a)P(m,a)

Prulb,e) Pl—ulb,e) Prlulb,—e)
95 05 94

------------------------------------------------------------------------------------------------------------------------

: P(fl )
: .90 P(jl ) P(jl ) Pril =)
; .05 90 .05
@)
J?;”l ) FP(ml—=u) F(mlw) Piml—u)
- 01 .70 o1
@)

Repea’red computations = Dynamic Programming




Choices during Variable Elimination

= Query: P(Q|E1 =e1,... Ek = ek)

= Start with initial factors:
= Local CPTs (but instantiated by evidence)

= While there are still hidden variables
(not Q or evidence):
= Choose a hidden variable H
= Join all factors mentioning H
= Eliminate (sum out) H

= Join all remaining factors and normalize f I
%



Another Variable Elimination Example

Query: P(X3|Y1 =1, Y2 = y2, Y3 = y3)

Start by inserting evidence, which gives the following initial factors:

p(Z)p(X1]2)p(X2|Z)p(X5]|2)p(y1| X1)p(y2| X2)p(ys| X3)

What variables could we eliminate?



Another Variable Elimination Example

Query: P(X3|Y1 =y1,Y2 = y2,Y3 = y3)
Start by inserting evidence, which gives the following initial factors:
p(2)p(X1|2)p(X2| Z)p(X5]2)p(y1| X1)p(y2| X2)p(ys]| Xs3)

Eliminate X, this introduces the factor fi(Z,y;) = Z:L_l p(z1|2)p(y1|z1), and
we are left with:

P(2) fL(Z, y1)p(X2|Z2)p(X3| Z)p(ya| X2)p(ys| X3)

Eliminate X, this introduces the factor fo(Z,y2) = >, p(x2|Z2)p(y2|r2), and
we are left with:

p(2) f1(Z, 1) f2(Z, y2)p( X3 Z)p(y3| X3)

Eliminate Z, this introduces the factor f3(yi,y2, X3) = >, p(2) f1(z, y1) f2(2, v2)p(X3|2),
and we are left: 1

What dimension are f;, f, & f;?

p(ys|X3), f3(y1, y2, X3)

No hidden variables left. Join the remaining factors to get:

fd(ylay23y3ax3) = P(y3|X3)f3(y17y21X3)'

Normalizing over X3 gives P(X3|y1,y2,y3)-



Another Variable Elimination Example

Query: P(X3|Y1 =1, Y2 = y2, Y3 = y3)

Start by inserting evidence, which gives the following initial factors:

p(Z2)p(X1|2)p(X2| Z)p(X3]| Z)p(y1 | X1)p(y2| X2)p(ys| Xs)

Alternatively, suppose we start by eliminating Z:

P(Xy12)
P(X; | 2) XD ) 5 X3) What is the resulting factor?
P 12) P(% What dimension is it? 3
Py 1Xz)
o(ys [Xs) How many entries? k3




Another Variable Elimination Example

Query: P(X3|Y1 =y1,Y2 = y2, Y3 = y3)
Start by inserting evidence, which gives the following initial factors:
p(2)p(X1|2)p(X2| Z)p(X5]2)p(y1| X1)p(y2| X2)p(ys]| Xs3)

Eliminate X, this introduces the factor fi(Z,y1) = >, p(x1]|2)p(y1|z1), and
we are left with:

P(Z) f1(Z, y1)p(X2| Z)p(X3| Z2)p(ye| X2)p(y3| X3)

Eliminate X, this introduces the factor fo(Z,y2) = >, p(x2|Z2)p(y2|r2), and
we are left with:

p(Z2)f1(Z,y1) f2(Z, y2)p(X3| Z)p(ys| X3)

Eliminate Z, this introduces the factor f3(yi,y2, X3) = >, p(2) f1(z, y1) f2(2, v2)p(X3|2),
and we are left:

p(ys| Xs), f3(y1, y2, X3)

No hidden variables left. Join the remaining factors to get:

fd(ylay23y3ax3) = P(y3|Xd)f-5(y17y21XJ)

Normalizing over X3 gives P(X3|y1,y2,y3)-

Computational complexity depends
on the largest factor generated by
the process.

Size of factor = number of entries in
table.



Variable Elimination Ordering

= For the query P(X,|yy,-..,y,) work through the following two different orderings
as done in previous slide: Z, X, ..., X, ; and Xy, ..., X, .1, Z. What is the size of the
maximum factor generated for each of the orderings?

= Answer: 21 versus 22 (assuming binary)

= |n general: the ordering can greatly affect efficiency.



VE: Computational and Space Complexity

= The computational and space complexity of variable elimination is
determined by the largest factor

= The elimination ordering can greatly affect the size of the largest factor.
= E.g., previous slide’s example 2" vs. 2

= Does there always exist an ordering that only results in small factors?
= No!



Worst Case Complexity?

= CSP:
(x1VaaVz3)A(—z1VEsVzg )N (22 V2o VI )N (m23V oz Vxs)A (22 Ves V7 )N (24 VesVee) A(~xsVaeVxr )A(—xsVzgVay)

P(X;=0)= P(X; =1) = 0.5
Yi =X, VXyV-X;3
==X ¥V XeV Xr
Yl_.g =Y1AYs

Yrs =Yz AYs
Yiosa=Y12AY34
Ys678 =Ys6A Y73

Z=Y1234NY5678

= |f we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.

= Hence inference in Bayes’ nets is NP-hard. No known efficient probabilistic inference in general.



Bayes’ Nets

& Representation
« Conditional Independences

= Probabilistic Inference

J Enumeration (exact, exponential
complexity)

J Variable elimination (exact, worst-case
exponential complexity, often better)

J Inference is NP-complete

= Sampling (approximate)

= Learning Bayes’ Nets from Data



