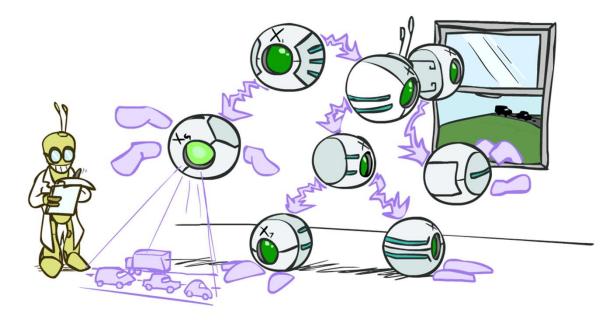
CSE 473: Artificial Intelligence

Bayes' Nets: Inference



Steve Tanimoto

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Inference

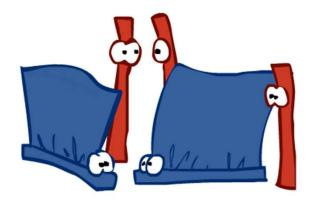
 Inference: calculating some useful quantity from a joint probability distribution

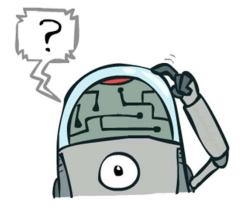
- Examples:
 - Posterior probability

 $P(Q|E_1 = e_1, \dots E_k = e_k)$

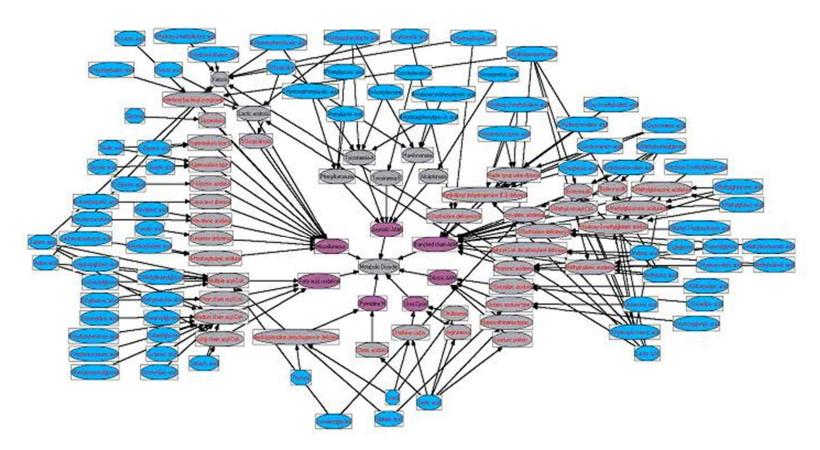
Most likely explanation:

 $\operatorname{argmax}_q P(Q = q | E_1 = e_1 \dots)$



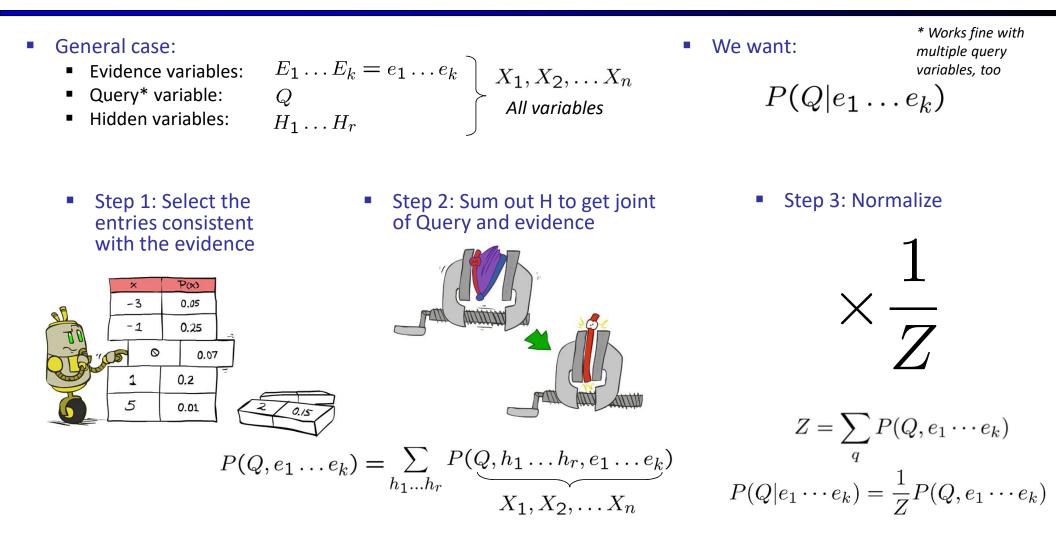


Test for Infant Metabolic Defects



Blue ovals represent chromatographic peaks, grey ovals represent 20 metabolic diseases

Inference by Enumeration



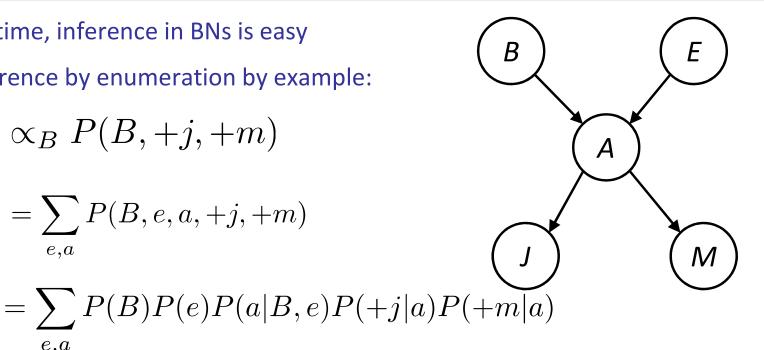
Inference by Enumeration in Bayes' Net

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

 $P(B \mid +j,+m) \propto_B P(B,+j,+m)$

e.a

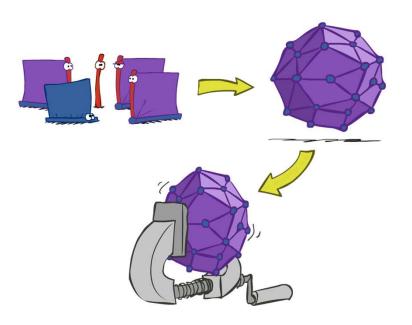
$$=\sum_{e,a} P(B,e,a,+j,+m)$$



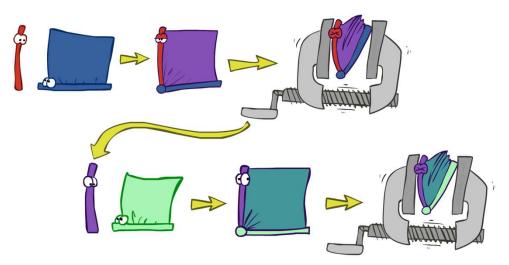
= P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)PP(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)P(+m|-a)P(-a|B,-e)P(+j|-a)P(+m|-a)P(-a|B,-e)P(+j|-a)P(-a|B,-e

Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables

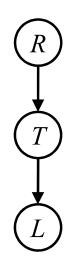


- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration

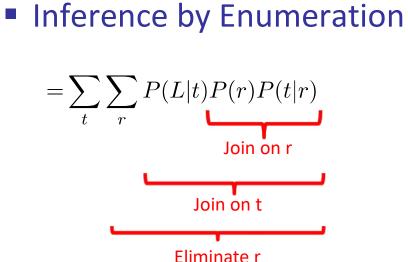


First we'll need some new notation: factors

Traffic Domain



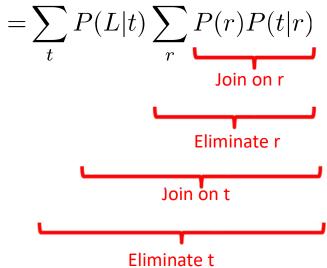
$$P(L) = ?$$



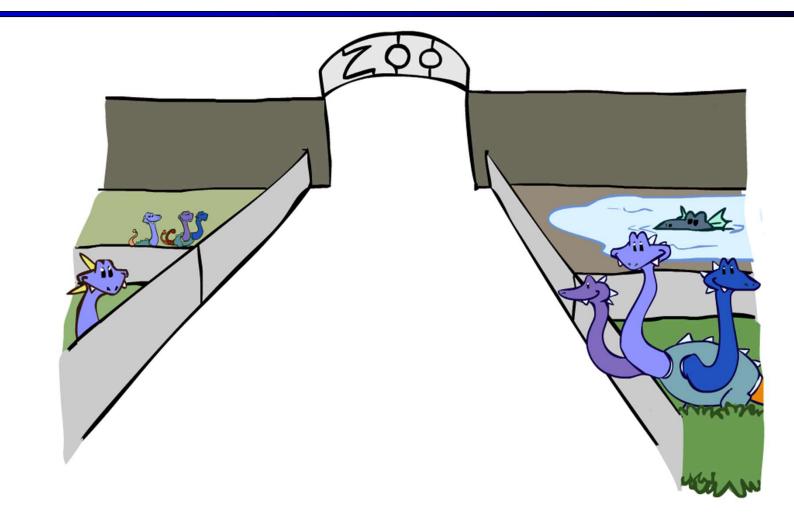
Eliminate r

Eliminate t

Variable Elimination



Factor Zoo



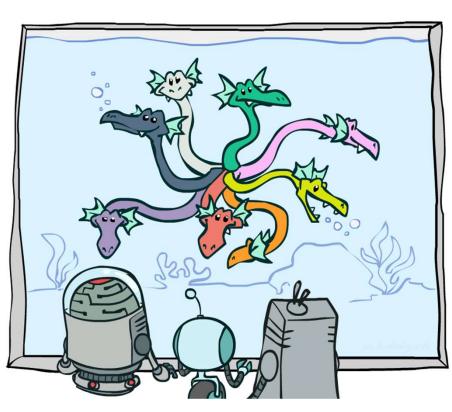
Factor Zoo I

- Joint distribution: P(X,Y)
 - Entries P(x,y) for all x, y
 - Sums to 1

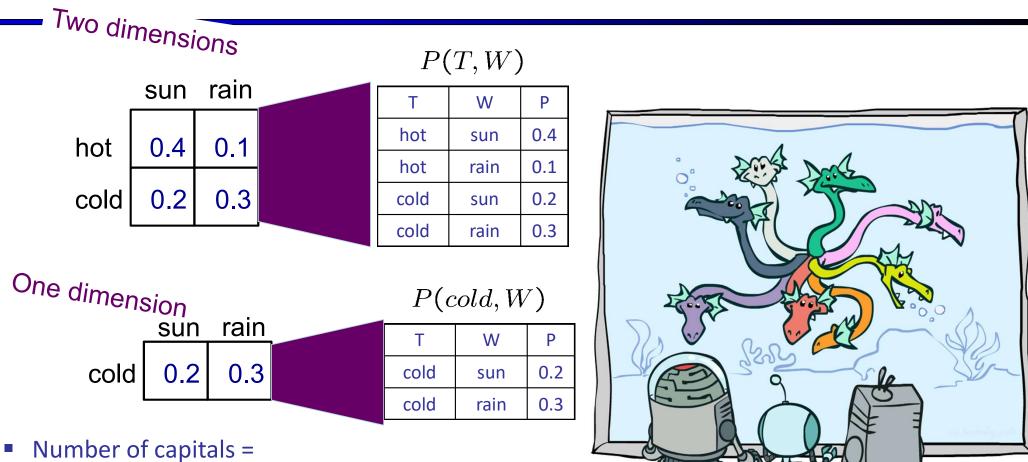
- Selected joint: P(x,Y)
 - A slice of the joint distribution
 - Entries P(x,y) for fixed x, all y
 - Sums to P(x)
- Number of capitals = dimensionality of the table

P((T, W))
Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(c	$\mathcal{P}(cold, W)$	
Т	W	Ρ
cold	sun	0.2
cold	rain	0.3



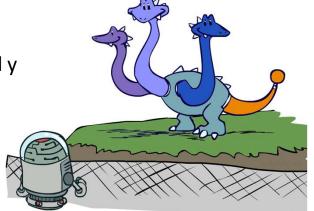
Factor Zoo I



dimensionality of the table

Factor Zoo II

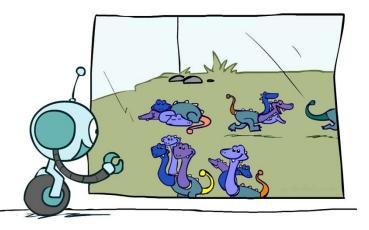
- Single conditional: P(Y | x)
 - Entries P(y | x) for fixed x, all y
 - Sums to 1



P(W	cold

Т	W	Р
cold	sun	0.4
cold	rain	0.6

- Family of conditionals: P(X | Y)
 - Multiple conditionals
 - Entries P(x | y) for all x, y
 - Sums to |Y|



\boldsymbol{P}	(W	$ T\rangle$
Γ		

Т	W	Р
hot	sun	0.8
hot	rain	0.2
cold	sun	0.4
cold	rain	0.6

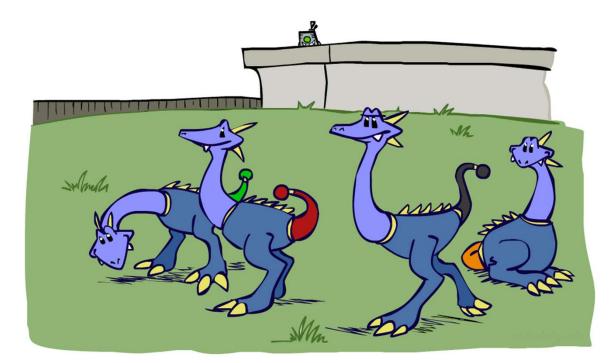
P(W|hot)P(W|cold)

Factor Zoo III

- Specified family: P(y | X)
 - Entries P(y | x) for fixed y, but for all x
 - Sums to ... who knows!

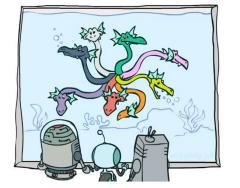
P(rain|T)

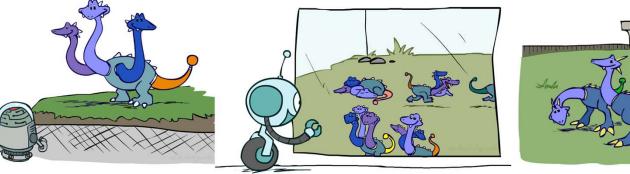
Т	W	Р	
hot	rain	0.2	P(rain hot)
cold	rain	0.6	$\left \frac{1}{2} P(rain cold) \right $

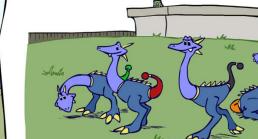


Factor Zoo Summary

- In general, when we write $P(Y_1 ... Y_N | X_1 ... X_M)$
 - It is a "factor," a multi-dimensional array
 - Its values are P(y₁ ... y_N | x₁ ... x_M)
 - Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

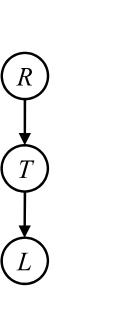






Example: Traffic Domain

Random Variables R: Raining T: Traffic L: Late for class! P(L) = ? $= \sum_{r,t} P(r,t,L)$ $= \sum_{r,t} P(r)P(t|r)P(L|t)$



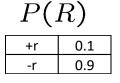
P(R)	
+r	0.1
-r	0.9

<i>P</i> (T R)
+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

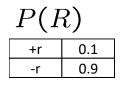


P(T R)		
+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	_t	ΛQ

P(L I)			
	+t	+	0.3
	+t	-	0.7
	-t	+	0.1
	-t	-	0.9

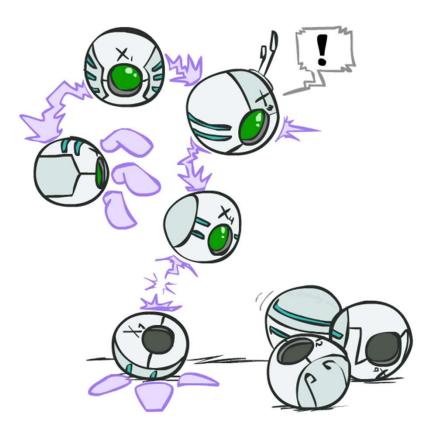
D(T|T)

- Any known values are selected
 - E.g. if we know $L = +\ell$, the initial factors are



P(T R)			
+r	+t	0.8	
+r	-t	0.2	
-r	+t	0.1	
-r	-t	0.9	

$P(+\ell T)$		
+t	+	0.3
-t	+	0.1



Procedure: Join all factors, then eliminate all hidden variables

Operation 1: Join Factors

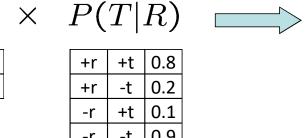
- First basic operation: joining factors
- **Combining factors:**
 - Just like a database join
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved

R

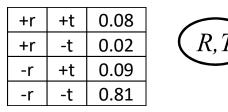
T

P(R)0.1 +r 0.9 -r

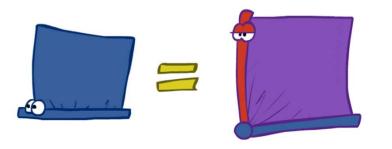
+t 0.8 +r 0.2 -t | +r +t | 0.1 -r -t | 0.9 -r



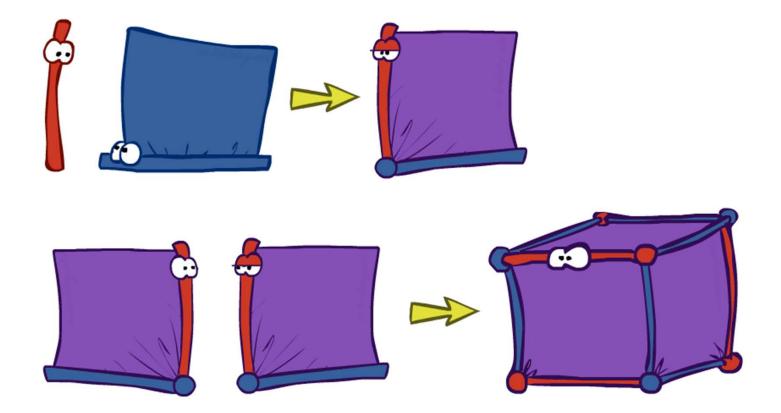
P(R,T)

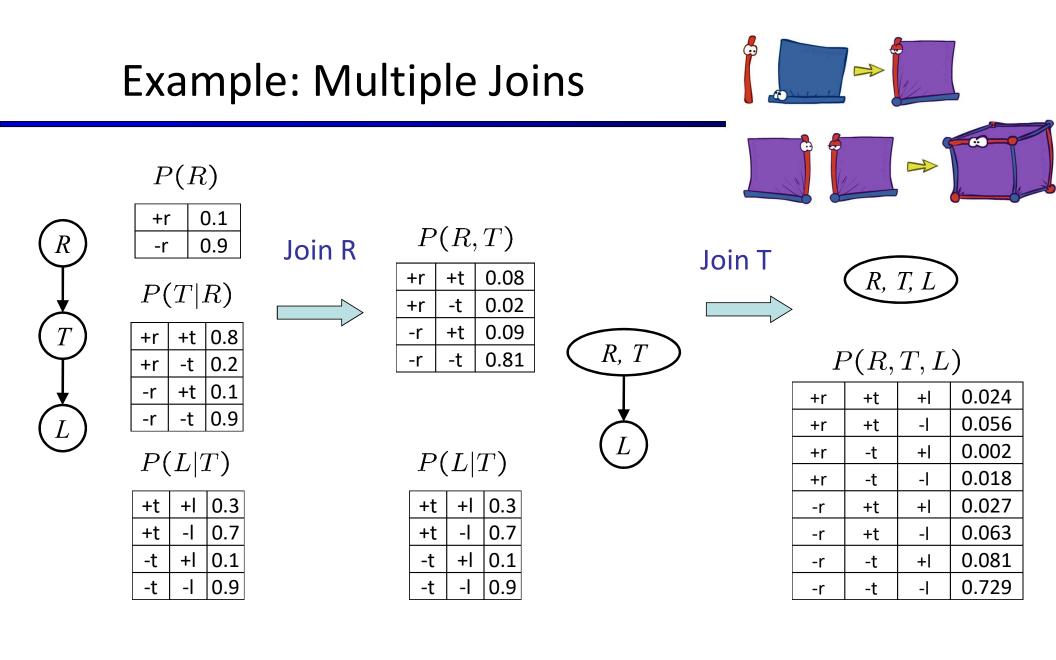


• Computation for each entry: pointwise products $\forall r, t : P(r, t) = P(r) \cdot P(t|r)$

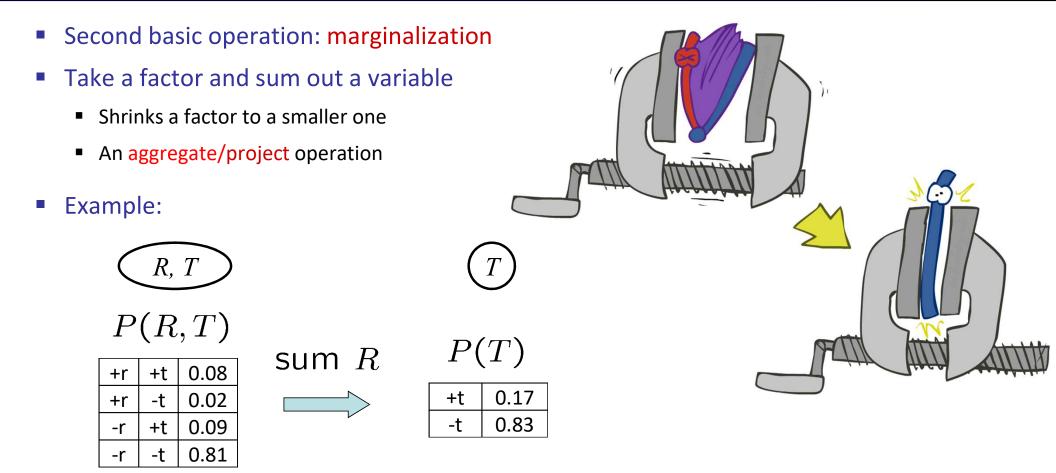


Example: Multiple Joins

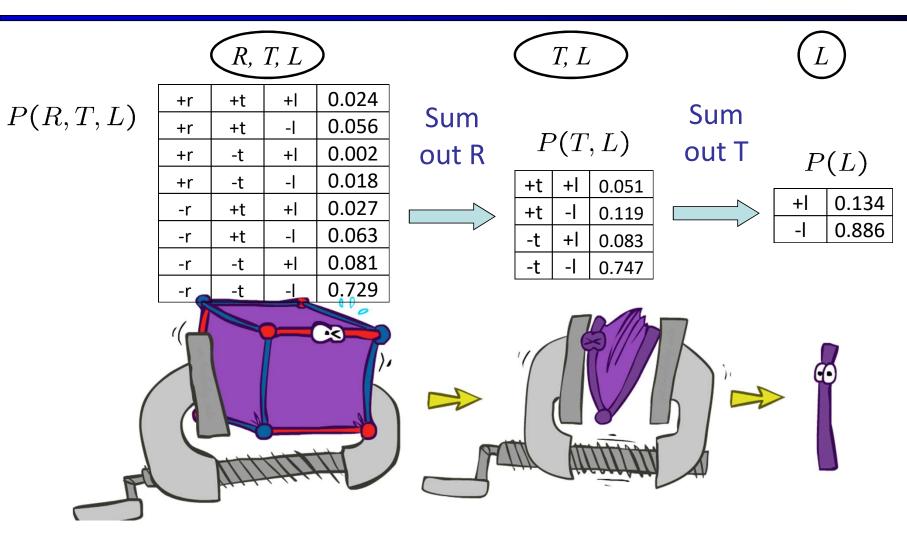




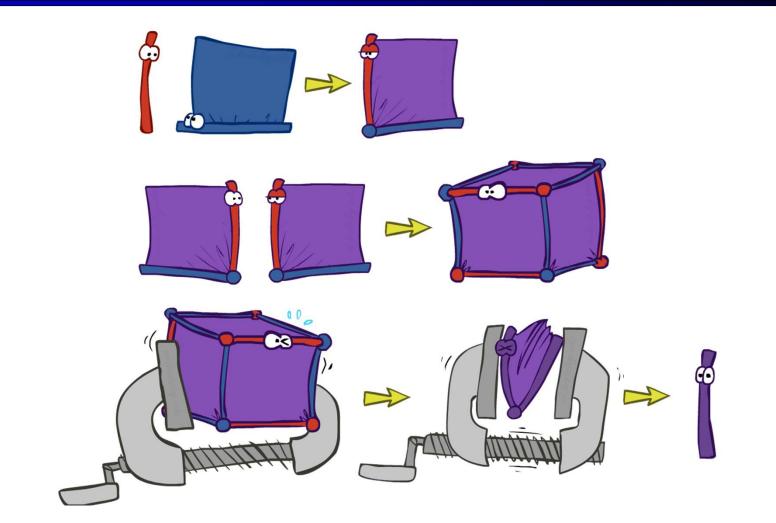
Operation 2: Eliminate



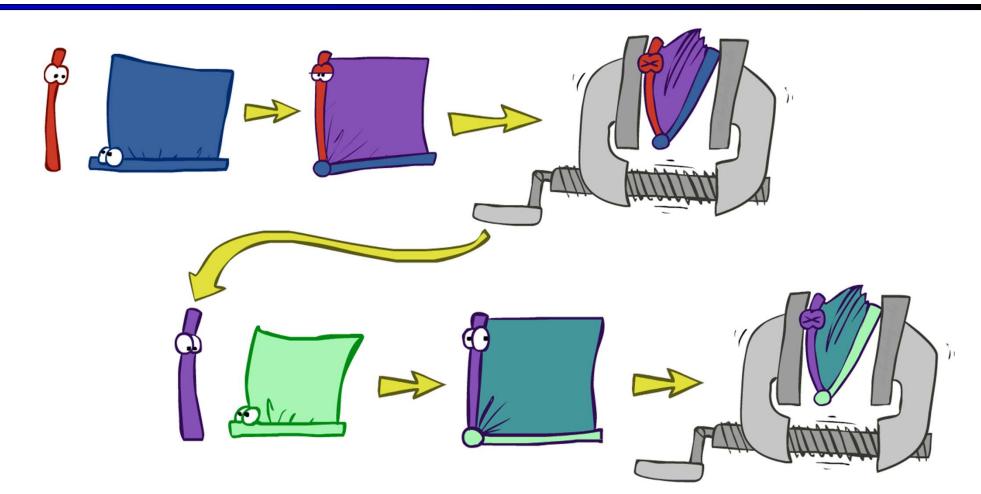
Multiple Elimination



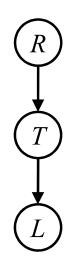
Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)



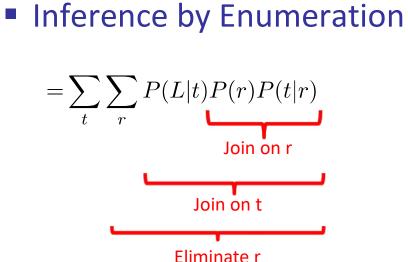
Marginalizing Early (= Variable Elimination)



Traffic Domain



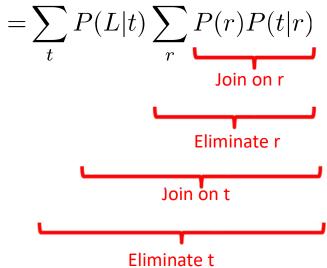
$$P(L) = ?$$



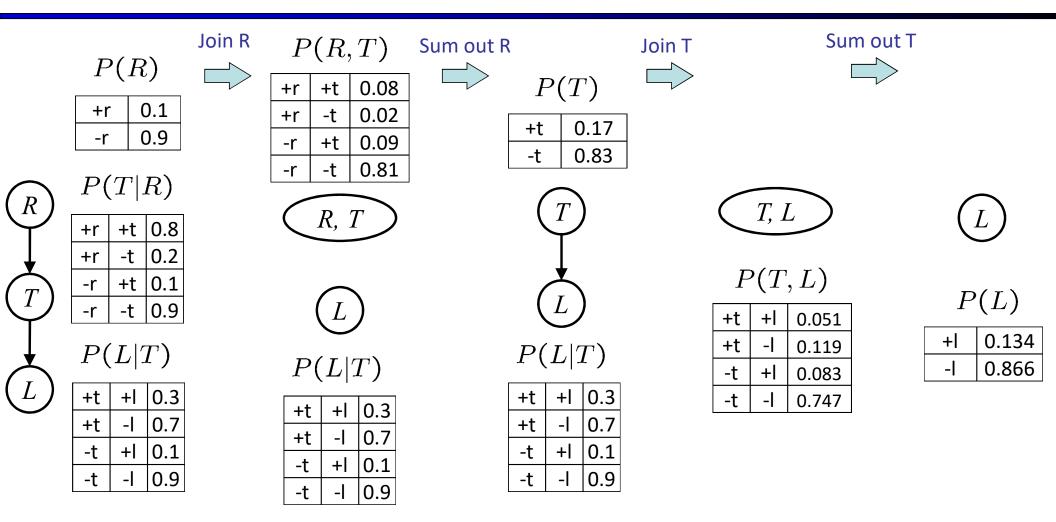
Eliminate r

Eliminate t

Variable Elimination



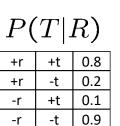
Marginalizing Early! (aka VE)



Evidence

- If evidence, start with factors that select that evidence
 - If there is no evidence, then use these initial factors:

P(R)		
+r	0.1	
-r	0.9	



P(L T)			
	+t	+	0.3
	+t	-	0.7
	-t	+	0.1
	-t	-	0.9

- But if given some evidence, eg +r, then select for it...
- Computing P(L| + r) the initial factors become:

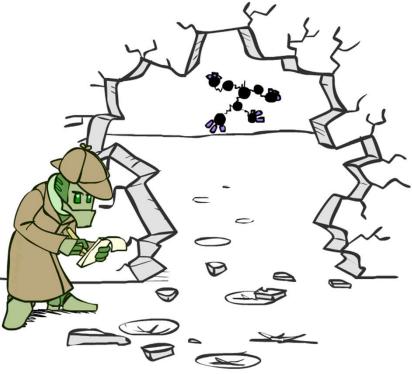
+t -t

+r)

0.8

P(T
+r
+r

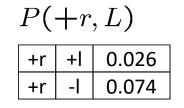
P(L T)			
+t	+	0.3	
+t	-	0.7	
-t	+	0.1	
-t	-	0.9	

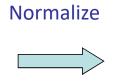


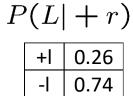
Next do joins & eliminate, removing all vars other than query + evidence

Evidence II

- Result will be a selected joint of query and evidence
 - E.g. for P(L | +r), we would end up with:







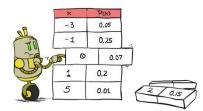
- To get our answer, just normalize this!
- That 's it!

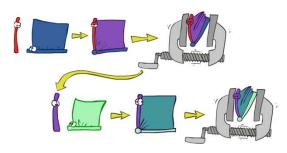
General Variable Elimination

• Query:
$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Choose a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H

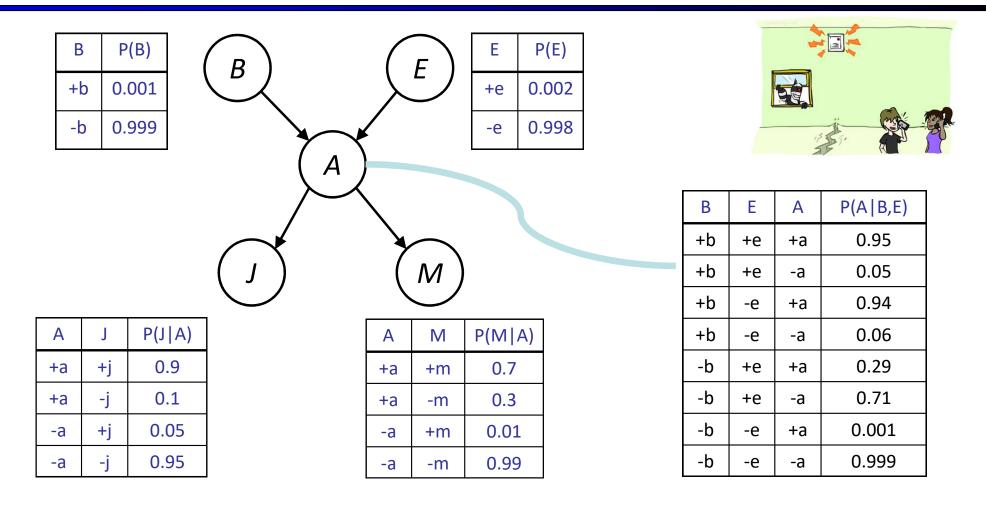
Join all remaining factors and normalize



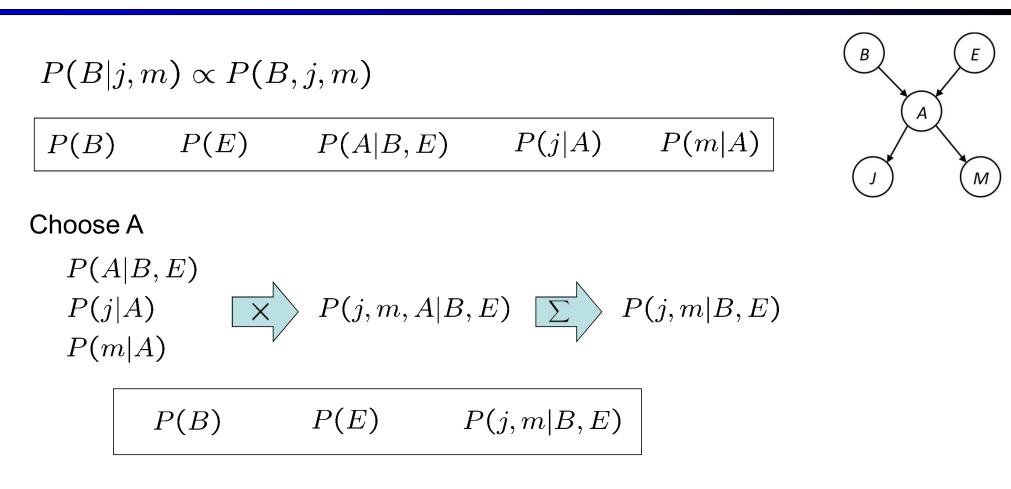


Example: Alarm Network

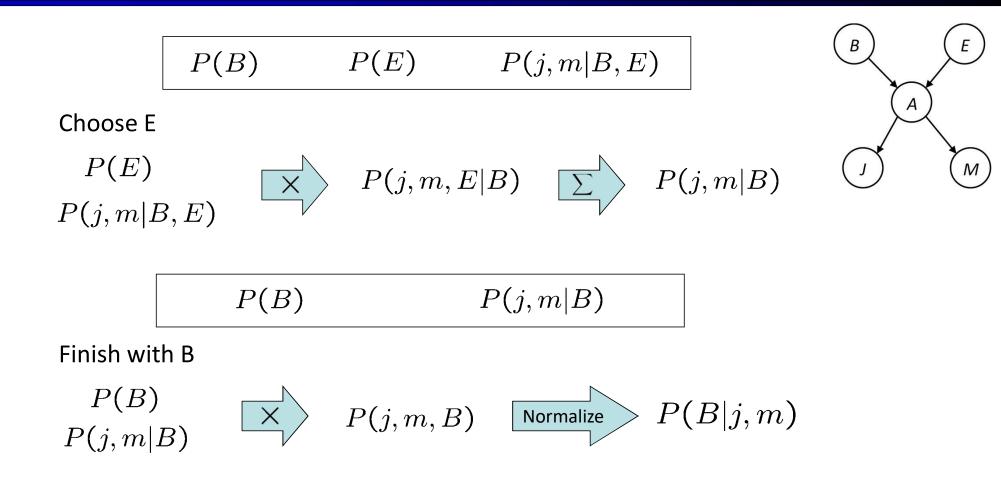
P(B | j, m) = ?



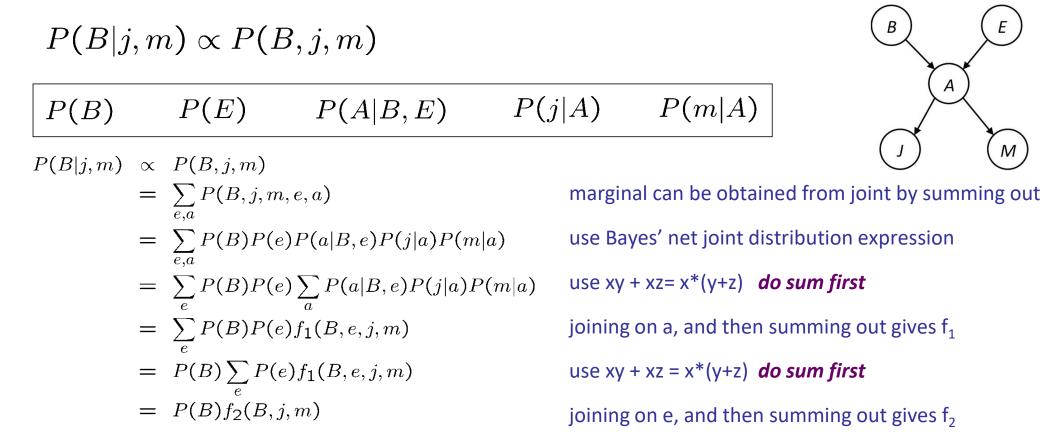
Example



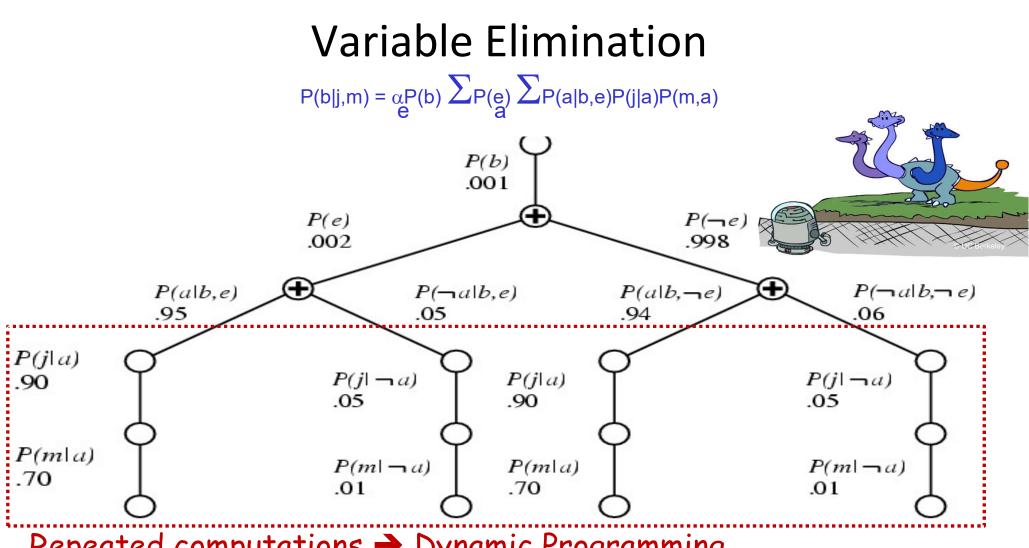
Example



Same Example in Equations



Simple! Exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to reduce computation



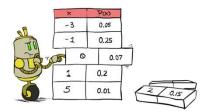
Repeated computations -> Dynamic Programming

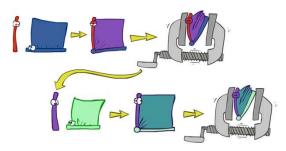
Choices during Variable Elimination

• Query:
$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Choose a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H

Join all remaining factors and normalize



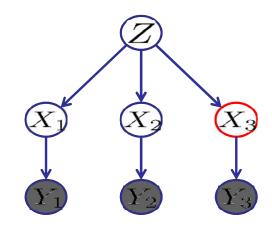


Query: $P(X_3|Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$

Start by inserting evidence, which gives the following initial factors:

 $p(Z)p(X_1|Z)p(X_2|Z)p(X_3|Z)p(y_1|X_1)p(y_2|X_2)p(y_3|X_3)$

What variables could we eliminate?



Query: $P(X_3|Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$

Start by inserting evidence, which gives the following initial factors:

 $p(Z)p(X_1|Z)p(X_2|Z)p(X_3|Z)p(y_1|X_1)p(y_2|X_2)p(y_3|X_3)$

Eliminate X_1 , this introduces the factor $f_1(Z, y_1) = \sum_{x_1} p(x_1|Z)p(y_1|x_1)$, and we are left with:

 $p(Z) \underline{f_1(Z, y_1)} p(X_2|Z) p(X_3|Z) p(y_2|X_2) p(y_3|X_3)$

Eliminate X_2 , this introduces the factor $\underline{f_2(Z, y_2)} = \sum_{x_2} p(x_2|Z)p(y_2|x_2)$, and we are left with:

$$p(Z)f_1(Z, y_1)\underline{f_2(Z, y_2)}p(X_3|Z)p(y_3|X_3)$$

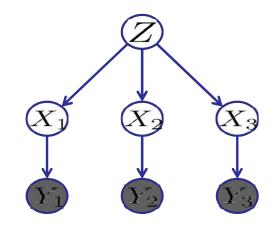
Eliminate Z, this introduces the factor $f_3(y_1, y_2, X_3) = \sum_z p(z) f_1(z, y_1) f_2(z, y_2) p(X_3|z)$, and we are left:

$$p(y_3|X_3), f_3(y_1, y_2, X_3)$$

No hidden variables left. Join the remaining factors to get:

 $f_4(y_1, y_2, y_3, X_3) = P(y_3 | X_3) f_3(y_1, y_2, X_3).$

Normalizing over X_3 gives $P(X_3|y_1, y_2, y_3)$.



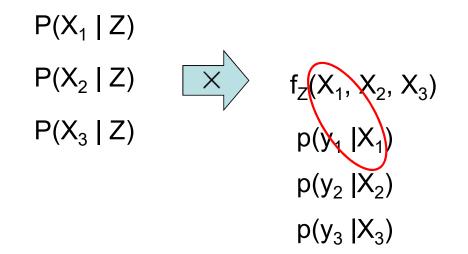
What dimension are f_1 , $f_2 \& f_3$?

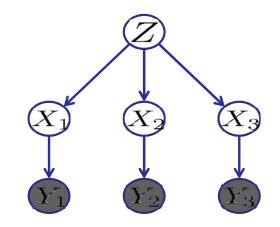
Query: $P(X_3|Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$

Start by inserting evidence, which gives the following initial factors:

 $p(Z)p(X_1|Z)p(X_2|Z)p(X_3|Z)p(y_1|X_1)p(y_2|X_2)p(y_3|X_3)$

Alternatively, suppose we start by eliminating Z:





What is the resulting factor?What dimension is it? 3How many entries? k³

Query: $P(X_3|Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$

Start by inserting evidence, which gives the following initial factors:

 $p(Z)p(X_1|Z)p(X_2|Z)p(X_3|Z)p(y_1|X_1)p(y_2|X_2)p(y_3|X_3)$

Eliminate X_1 , this introduces the factor $f_1(Z, y_1) = \sum_{x_1} p(x_1|Z)p(y_1|x_1)$, and we are left with:

 $p(Z) \underline{f_1(Z, y_1)} p(X_2|Z) p(X_3|Z) p(y_2|X_2) p(y_3|X_3)$

Eliminate X_2 , this introduces the factor $\underline{f_2(Z, y_2)} = \sum_{x_2} p(x_2|Z)p(y_2|x_2)$, and we are left with:

 $p(Z)f_1(Z, y_1)\underline{f_2(Z, y_2)}p(X_3|Z)p(y_3|X_3)$

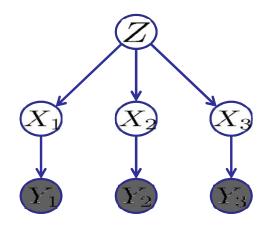
Eliminate Z, this introduces the factor $f_3(y_1, y_2, X_3) = \sum_z p(z) f_1(z, y_1) f_2(z, y_2) p(X_3|z)$, and we are left:

$$p(y_3|X_3), f_3(y_1, y_2, X_3)$$

No hidden variables left. Join the remaining factors to get:

 $f_4(y_1, y_2, y_3, X_3) = P(y_3 | X_3) f_3(y_1, y_2, X_3).$

Normalizing over X_3 gives $P(X_3|y_1, y_2, y_3)$.

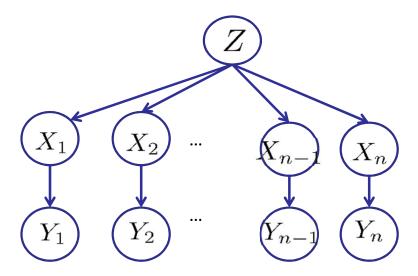


Computational complexity depends on the *largest factor* generated by the process.

Size of factor = number of entries in table.

Variable Elimination Ordering

For the query P(X_n|y₁,...,y_n) work through the following two different orderings as done in previous slide: Z, X₁, ..., X_{n-1} and X₁, ..., X_{n-1}, Z. What is the size of the maximum factor generated for each of the orderings?



- Answer: 2ⁿ⁺¹ versus 2² (assuming binary)
- In general: the ordering can greatly affect efficiency.

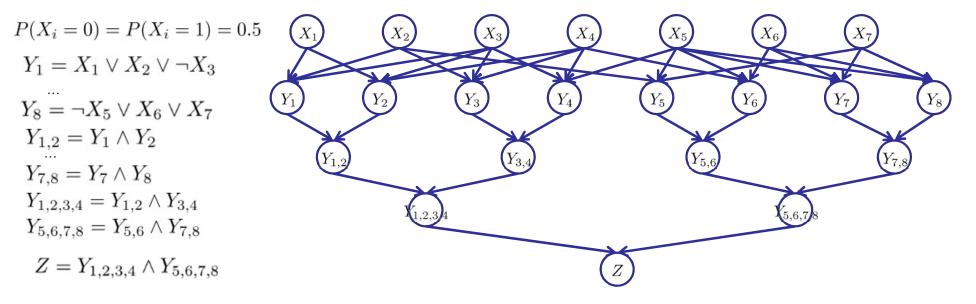
VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ vs. 2
- Does there always exist an ordering that only results in small factors?
 - No!

Worst Case Complexity?

CSP:

 $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (\neg x_5 \lor x_6 \lor x_7) \land (\neg x_6$



- If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.
- Hence inference in Bayes' nets is NP-hard. No known efficient probabilistic inference in general.

Bayes' Nets

Representation

- Conditional Independences
- Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - 🖌 Inference is NP-complete
 - Sampling (approximate)
- Learning Bayes' Nets from Data